entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
LayerNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/hv/chvc25wy6j3j5a3u4ftzbjunfad2snt7mihkwdcp6ilzxzipobhu.py
# Topologically Sorted Source Nodes: [sub, add, truediv, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.0001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {})
triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 0.0001
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x3), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, add, truediv, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch.nn import Parameter
from torch.nn.parameter import Parameter
from torch.nn.modules.normalization import LayerNorm
from torch.optim.lr_scheduler import *
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=0.0001):
super(LayerNorm, self).__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size))
self.beta = Parameter(torch.zeros(1, 1, hidden_size))
self.eps = eps
def forward(self, x):
"""
Args:
:param x: batch * len * input_size
Returns:
normalized x
"""
mu = torch.mean(x, 2, keepdim=True).expand_as(x)
sigma = torch.std(x, 2, keepdim=True).expand_as(x)
return (x - mu) / (sigma + self.eps) * self.alpha.expand_as(x
) + self.beta.expand_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
from torch.nn.parameter import Parameter
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 0.0001
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x3, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_1, primals_2,
primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(nn.Module):
def __init__(self, hidden_size, eps=0.0001):
super(LayerNormNew, self).__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size))
self.beta = Parameter(torch.zeros(1, 1, hidden_size))
self.eps = eps
def forward(self, input_0):
primals_2 = self.alpha
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
chunhuililili/mt_dnn
|
LayerNorm
| false | 10,192 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
GCN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ay/cay3542vhmin5gvntsp37i63dfwj3bpzz2hr5fa2ukw6ibl57qp3.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.sigmoid]
# Source node to ATen node mapping:
# add => add
# x => sigmoid
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
triton_poi_fused_add_sigmoid_0 = async_compile.triton('triton_poi_fused_add_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sigmoid_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf3, out=buf4)
del buf3
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_1, sigmoid_1], Original ATen: [aten.add, aten.sigmoid]
triton_poi_fused_add_sigmoid_0.run(buf5, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
return (buf5, buf2, buf5, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
self.bias = Parameter(torch.FloatTensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
return output + self.bias
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nout)
def forward(self, x, adj):
x = torch.sigmoid(self.gc1(x, adj))
x = self.gc2(x, adj)
return torch.sigmoid(x)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nout': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_sigmoid_0[grid(16)](buf2, primals_4, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf3, out=buf4)
del buf3
buf5 = buf4
del buf4
triton_poi_fused_add_sigmoid_0[grid(16)](buf5, primals_6, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_6
return buf5, buf2, buf5, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)
class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
self.bias = Parameter(torch.FloatTensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
return output + self.bias
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nout)
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_2 = self.gc2.weight
primals_6 = self.gc2.bias
primals_3 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
iDMG-dynamicGCN/DatasetCollection
|
GCN
| false | 10,193 |
[
"MIT"
] | 0 |
ad761b38bc86af1dd3aee6c72e819d6f00252164
|
https://github.com/iDMG-dynamicGCN/DatasetCollection/tree/ad761b38bc86af1dd3aee6c72e819d6f00252164
|
TorchLogCosh
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ab/cabgownau5iwqsxnjptlkqo7tfs7f7whrulbkdvoxw7hd2jxe7p5.py
# Topologically Sorted Source Nodes: [neg, mul, softplus, add], Original ATen: [aten.neg, aten.mul, aten.softplus, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# neg => neg
# softplus => exp, gt, log1p, where
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.0), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %log1p), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %where), kwargs = {})
triton_poi_fused_add_mul_neg_softplus_0 = async_compile.triton('triton_poi_fused_add_mul_neg_softplus_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_neg_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_neg_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -tmp0
tmp2 = 2.0
tmp3 = tmp0 * tmp2
tmp4 = 20.0
tmp5 = tmp3 > tmp4
tmp6 = tl_math.exp(tmp3)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp3, tmp7)
tmp9 = tmp1 + tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, mul, softplus, add], Original ATen: [aten.neg, aten.mul, aten.softplus, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_neg_softplus_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch as _torch
class TorchLogCosh(_torch.nn.Module):
"""
Log(cosh) activation function for PyTorch modules
"""
def __init__(self):
"""
Init method.
"""
super().__init__()
def forward(self, input):
"""
Forward pass of the function.
"""
return -input + _torch.nn.functional.softplus(2.0 * input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch as _torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_neg_softplus_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -tmp0
tmp2 = 2.0
tmp3 = tmp0 * tmp2
tmp4 = 20.0
tmp5 = tmp3 > tmp4
tmp6 = tl_math.exp(tmp3)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp3, tmp7)
tmp9 = tmp1 + tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_neg_softplus_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TorchLogCoshNew(_torch.nn.Module):
"""
Log(cosh) activation function for PyTorch modules
"""
def __init__(self):
"""
Init method.
"""
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
inailuig/netket
|
TorchLogCosh
| false | 10,194 |
[
"Apache-2.0"
] | 0 |
ab57a6fb019edb9ac298969950724781f2ae2b22
|
https://github.com/inailuig/netket/tree/ab57a6fb019edb9ac298969950724781f2ae2b22
|
AutoEncoder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ra/cra224sir7auxmy3uahcdxu3s4qtjmerylv5f5l4d2w56knl3yv5.py
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ug/cug7jf5vyab745xxewtsuswvbenvbnnefjmrlskwtfa5kz4uwn57.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_3 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nx/cnxezssbpamkwra3kbfqrgnvkxjz7jxz6ghuajxgkavteup7fvck.py
# Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_4 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bb/cbbicufcwpsnk322eudyeymdafmoz4owaoryaz27xka4js5ji7rq.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ml/cmlsgnhlc5xc4fnf44r4477luwob4pv66ve4iyuq5rqd3kdwvb5k.py
# Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_6 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ga/cga35qgbrnhw7eurlzscgcpykqayqvracco3nxsf4m54ddatk5m4.py
# Topologically Sorted Source Nodes: [encoder], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# encoder => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pf/cpfkk4tbw4jsooqmfkkbsgybjdh2v7owu4nh5gt6vl5ujnqsaza2.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_8 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (75,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.05333333333333334), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_8 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_8(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 75
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.05333333333333334
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ta/ctaf32zegnrmc7zywdj7b3rlnnmypgwmggwjhdzaomxtlar2aiao.py
# Topologically Sorted Source Nodes: [conv2d_4, x_7, x_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_7 => relu_4
# x_8 => _unsafe_index
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_relu_9 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 90000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 75) % 75
x0 = xindex % 75
x5 = (xindex // 5625)
x2 = (xindex // 5625) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x5)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gs/cgsmdrrasklzcwgqwzmxg2nwc32cbewmbufsrdaip57j677lvxpx.py
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_10 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_2, mul_4, mul_5
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (150,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_10 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 150
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/s6/cs6v7wmpqjghmdqt7ffkryfrmgm3c263spedaagnwe3mrvslejvi.py
# Topologically Sorted Source Nodes: [conv2d_5, x_9, x_10], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# x_10 => _unsafe_index_1
# x_9 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_relu_11 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_11(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 360000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 150) % 150
x0 = xindex % 150
x5 = (xindex // 22500)
x2 = (xindex // 22500) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 75, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (75*tmp4) + (5625*x5)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nm/cnmeqmbgxlc5ofk6ztbccz5anlzctxk4bj6jaz7pnfnkt4gpa2pc.py
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_12 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_4, mul_8, mul_9
# Graph fragment:
# %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (300,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_4, 1), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {})
# %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {})
# %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 300
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6i/c6iewbflwj6cfu22sfnci2nesximabsxh4alwlp7wiuqebivgp7s.py
# Topologically Sorted Source Nodes: [conv2d_6, x_11, x_12], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# x_11 => relu_6
# x_12 => _unsafe_index_2
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_6, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_relu_13 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_13(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2880000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 300) % 300
x0 = xindex % 300
x5 = (xindex // 90000)
x2 = (xindex // 90000) % 8
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 150, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (150*tmp4) + (22500*x5)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x6), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7a/c7ansopitzg3spk5xqvqycbwbkncqojlhjjkwbxbfegassvy2jal.py
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_14 => add_12, add_13, convert_element_type_12, convert_element_type_13, iota_6, mul_12, mul_13
# Graph fragment:
# %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (600,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_6, 1), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, 0), kwargs = {})
# %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_12, torch.float32), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {})
# %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_13, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uh/cuhltgfyk3mqt4gvq5skls3jfr2r6tja4tvefijllksfmj464gmg.py
# Topologically Sorted Source Nodes: [conv2d_7, x_13, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# x_13 => relu_7
# x_14 => _unsafe_index_3
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_7, [None, None, %unsqueeze_3, %convert_element_type_13]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_relu_15 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_15(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 23040000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 600) % 600
x0 = xindex % 600
x5 = (xindex // 360000)
x2 = (xindex // 360000) % 16
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 300, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (300*tmp4) + (90000*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x6), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/u4/cu4tbmqqzyl5z5c3hh57bcdo4cb2y7mt2hhpwusjfejsxnz2zeq6.py
# Topologically Sorted Source Nodes: [decoder], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# decoder => convolution_8
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_16 = async_compile.triton('triton_poi_fused_convolution_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4320000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 360000) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kw/ckwxv3tsnhrvojkiy2y5bsv25oo5e7x7j5jtc3wvhsorna5b5szz.py
# Topologically Sorted Source Nodes: [conv2d_7, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# x_13 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5760000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 90000) % 16
x0 = xindex % 90000
x4 = (xindex // 90000)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (90112*x4)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/55/c55runksho5o5anl3oygiasl45zsqdpbi4bhr5hq65chu7yr5ypn.py
# Topologically Sorted Source Nodes: [conv2d_6, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# x_11 => relu_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 720000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 22500) % 8
x0 = xindex % 22500
x4 = (xindex // 22500)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (22528*x4)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/q7/cq72vwuw4raackluk33hw7mf4ycnhna7xdlv65sr22faufn2c4f7.py
# Topologically Sorted Source Nodes: [conv2d_5, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# x_9 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 90000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 5625) % 4
x0 = xindex % 5625
x4 = (xindex // 5625)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (5632*x4)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4u/c4u3kn2yhldzbfa6qg2rposgcct6xzamjkvklz52tt2rodu7wpzx.py
# Topologically Sorted Source Nodes: [conv2d_4, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_7 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_20 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (8, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (4, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (8, ), (1, ))
assert_size_stride(primals_16, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (3, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_19, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 32768, grid=grid(32768), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 8192, grid=grid(8192), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 16, 16), (1024, 256, 16, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 4096, grid=grid(4096), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 1024, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 8, 8), (256, 64, 8, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf13, primals_9, 1024, grid=grid(1024), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int8)
# Topologically Sorted Source Nodes: [encoder], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_7.run(buf13, buf14, buf15, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1))
buf17 = empty_strided_cuda((75, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_8.run(buf17, 75, grid=grid(75), stream=stream0)
buf18 = empty_strided_cuda((4, 4, 75, 75), (22500, 5625, 75, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, x_7, x_8], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
triton_poi_fused__unsafe_index_convolution_relu_9.run(buf17, buf16, primals_11, buf18, 90000, grid=grid(90000), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 75, 75), (22500, 5625, 75, 1))
buf20 = empty_strided_cuda((150, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_10.run(buf20, 150, grid=grid(150), stream=stream0)
buf21 = empty_strided_cuda((4, 4, 150, 150), (90000, 22500, 150, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, x_9, x_10], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
triton_poi_fused__unsafe_index_convolution_relu_11.run(buf20, buf19, primals_13, buf21, 360000, grid=grid(360000), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 8, 150, 150), (180000, 22500, 150, 1))
buf23 = empty_strided_cuda((300, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_12.run(buf23, 300, grid=grid(300), stream=stream0)
buf24 = empty_strided_cuda((4, 8, 300, 300), (720000, 90000, 300, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_6, x_11, x_12], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
triton_poi_fused__unsafe_index_convolution_relu_13.run(buf23, buf22, primals_15, buf24, 2880000, grid=grid(2880000), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 16, 300, 300), (1440000, 90000, 300, 1))
buf26 = empty_strided_cuda((600, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_14.run(buf26, 600, grid=grid(600), stream=stream0)
buf27 = empty_strided_cuda((4, 16, 600, 600), (5760000, 360000, 600, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_7, x_13, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index]
triton_poi_fused__unsafe_index_convolution_relu_15.run(buf26, buf25, primals_17, buf27, 23040000, grid=grid(23040000), stream=stream0)
# Topologically Sorted Source Nodes: [decoder], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 3, 600, 600), (1080000, 360000, 600, 1))
buf29 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [decoder], Original ATen: [aten.convolution]
triton_poi_fused_convolution_16.run(buf29, primals_19, 4320000, grid=grid(4320000), stream=stream0)
del primals_19
buf30 = empty_strided_cuda((4, 16, 300, 300), (1441792, 90112, 300, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_17.run(buf25, primals_17, buf30, 5760000, grid=grid(5760000), stream=stream0)
del buf25
del primals_17
buf31 = empty_strided_cuda((4, 8, 150, 150), (180224, 22528, 150, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_6, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_18.run(buf22, primals_15, buf31, 720000, grid=grid(720000), stream=stream0)
del buf22
del primals_15
buf32 = empty_strided_cuda((4, 4, 75, 75), (22528, 5632, 75, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_5, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf19, primals_13, buf32, 90000, grid=grid(90000), stream=stream0)
del buf19
del primals_13
buf33 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_20.run(buf16, primals_11, buf33, 256, grid=grid(256), stream=stream0)
del buf16
del primals_11
return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf15, buf17, buf18, buf20, buf21, buf23, buf24, buf26, buf27, buf30, buf31, buf32, buf33, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((3, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder1 = nn.Conv2d(3, 16, 3, padding=1)
self.encoder2 = nn.Conv2d(16, 8, 3, padding=1)
self.encoder3 = nn.Conv2d(8, 4, 3, padding=1)
self.encoder4 = nn.Conv2d(4, 4, 3, padding=1)
self.pool = nn.MaxPool2d(2, ceil_mode=True)
self.up1 = nn.Upsample(75, mode='nearest')
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.decoder1 = nn.Conv2d(4, 4, 3, padding=1)
self.decoder2 = nn.Conv2d(4, 4, 3, padding=1)
self.decoder3 = nn.Conv2d(4, 8, 3, padding=1)
self.decoder4 = nn.Conv2d(8, 16, 3, padding=1)
self.decoder5 = nn.Conv2d(16, 3, 3, padding=1)
def forward(self, x):
x = F.relu(self.encoder1(x))
x = self.pool(x)
x = F.relu(self.encoder2(x))
x = self.pool(x)
x = F.relu(self.encoder3(x))
x = self.pool(x)
x = F.relu(self.encoder4(x))
encoder = self.pool(x)
x = F.relu(self.decoder1(encoder))
x = self.up1(x)
x = F.relu(self.decoder2(x))
x = self.up(x)
x = F.relu(self.decoder3(x))
x = self.up(x)
x = F.relu(self.decoder4(x))
x = self.up(x)
decoder = self.decoder5(x)
return decoder
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 8
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_8(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 75
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.05333333333333334
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_9(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 90000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 75 % 75
x0 = xindex % 75
x5 = xindex // 5625
x2 = xindex // 5625 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x5), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x6, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_10(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 150
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_11(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 360000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 150 % 150
x0 = xindex % 150
x5 = xindex // 22500
x2 = xindex // 22500 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 75, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 75 * tmp4 + 5625 * x5), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x6, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_12(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 300
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_13(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2880000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 300 % 300
x0 = xindex % 300
x5 = xindex // 90000
x2 = xindex // 90000 % 8
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 150, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 150 * tmp4 + 22500 * x5), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x6, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_relu_15(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 600 % 600
x0 = xindex % 600
x5 = xindex // 360000
x2 = xindex // 360000 % 16
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 300, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 300 * tmp4 + 90000 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x6, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 4320000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 360000 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5760000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 90000 % 16
x0 = xindex % 90000
x4 = xindex // 90000
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 90112 * x4), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 720000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 22500 % 8
x0 = xindex % 22500
x4 = xindex // 22500
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 22528 * x4), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 90000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 5625 % 4
x0 = xindex % 5625
x4 = xindex // 5625
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 5632 * x4), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (8, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (4, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (8,), (1,))
assert_size_stride(primals_16, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (3, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_19, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(32768)](buf5, primals_5,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch
.float32)
buf7 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(8192)](buf5, buf6,
buf7, 8192, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 16, 16), (1024, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(4096)](buf9, primals_7,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32
)
buf11 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(1024)](buf9, buf10,
buf11, 1024, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 8, 8), (256, 64, 8, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_6[grid(1024)](buf13, primals_9,
1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_7[grid(256)](buf13, buf14,
buf15, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf16 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1))
buf17 = empty_strided_cuda((75,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_8[grid(75)](buf17, 75,
XBLOCK=128, num_warps=4, num_stages=1)
buf18 = empty_strided_cuda((4, 4, 75, 75), (22500, 5625, 75, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_relu_9[grid(90000)](buf17,
buf16, primals_11, buf18, 90000, XBLOCK=512, num_warps=8,
num_stages=1)
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 75, 75), (22500, 5625, 75, 1))
buf20 = empty_strided_cuda((150,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_10[grid(150)](buf20, 150,
XBLOCK=128, num_warps=4, num_stages=1)
buf21 = empty_strided_cuda((4, 4, 150, 150), (90000, 22500, 150, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_relu_11[grid(360000)](buf20,
buf19, primals_13, buf21, 360000, XBLOCK=512, num_warps=8,
num_stages=1)
buf22 = extern_kernels.convolution(buf21, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 8, 150, 150), (180000, 22500, 150, 1))
buf23 = empty_strided_cuda((300,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_12[grid(300)](buf23, 300,
XBLOCK=256, num_warps=4, num_stages=1)
buf24 = empty_strided_cuda((4, 8, 300, 300), (720000, 90000, 300, 1
), torch.float32)
triton_poi_fused__unsafe_index_convolution_relu_13[grid(2880000)](buf23
, buf22, primals_15, buf24, 2880000, XBLOCK=1024, num_warps=4,
num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 16, 300, 300), (1440000, 90000, 300, 1))
buf26 = empty_strided_cuda((600,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_14[grid(600)](buf26, 600,
XBLOCK=256, num_warps=4, num_stages=1)
buf27 = empty_strided_cuda((4, 16, 600, 600), (5760000, 360000, 600,
1), torch.float32)
triton_poi_fused__unsafe_index_convolution_relu_15[grid(23040000)](
buf26, buf25, primals_17, buf27, 23040000, XBLOCK=512,
num_warps=8, num_stages=1)
buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 3, 600, 600), (1080000, 360000, 600, 1))
buf29 = buf28
del buf28
triton_poi_fused_convolution_16[grid(4320000)](buf29, primals_19,
4320000, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf30 = empty_strided_cuda((4, 16, 300, 300), (1441792, 90112, 300,
1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_17[grid(5760000)](
buf25, primals_17, buf30, 5760000, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf25
del primals_17
buf31 = empty_strided_cuda((4, 8, 150, 150), (180224, 22528, 150, 1
), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_18[grid(720000)](
buf22, primals_15, buf31, 720000, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf22
del primals_15
buf32 = empty_strided_cuda((4, 4, 75, 75), (22528, 5632, 75, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(90000)](
buf19, primals_13, buf32, 90000, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf19
del primals_13
buf33 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_20[grid(256)](
buf16, primals_11, buf33, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf16
del primals_11
return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18, buf1,
buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14,
buf15, buf17, buf18, buf20, buf21, buf23, buf24, buf26, buf27,
buf30, buf31, buf32, buf33)
class AutoEncoderNew(nn.Module):
def __init__(self):
super(AutoEncoderNew, self).__init__()
self.encoder1 = nn.Conv2d(3, 16, 3, padding=1)
self.encoder2 = nn.Conv2d(16, 8, 3, padding=1)
self.encoder3 = nn.Conv2d(8, 4, 3, padding=1)
self.encoder4 = nn.Conv2d(4, 4, 3, padding=1)
self.pool = nn.MaxPool2d(2, ceil_mode=True)
self.up1 = nn.Upsample(75, mode='nearest')
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.decoder1 = nn.Conv2d(4, 4, 3, padding=1)
self.decoder2 = nn.Conv2d(4, 4, 3, padding=1)
self.decoder3 = nn.Conv2d(4, 8, 3, padding=1)
self.decoder4 = nn.Conv2d(8, 16, 3, padding=1)
self.decoder5 = nn.Conv2d(16, 3, 3, padding=1)
def forward(self, input_0):
primals_1 = self.encoder1.weight
primals_2 = self.encoder1.bias
primals_4 = self.encoder2.weight
primals_5 = self.encoder2.bias
primals_6 = self.encoder3.weight
primals_7 = self.encoder3.bias
primals_8 = self.encoder4.weight
primals_9 = self.encoder4.bias
primals_10 = self.decoder1.weight
primals_11 = self.decoder1.bias
primals_12 = self.decoder2.weight
primals_13 = self.decoder2.bias
primals_14 = self.decoder3.weight
primals_15 = self.decoder3.bias
primals_16 = self.decoder4.weight
primals_17 = self.decoder4.bias
primals_18 = self.decoder5.weight
primals_19 = self.decoder5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
|
gjustin40/Pytorch-Cookbook
|
AutoEncoder
| false | 10,195 |
[
"MIT"
] | 0 |
069514d05b00d07521e1a1a028d0746b65099586
|
https://github.com/gjustin40/Pytorch-Cookbook/tree/069514d05b00d07521e1a1a028d0746b65099586
|
DQN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 16), (16, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch import nn
class DQN(nn.Module):
"""DQN network, three full connection layers
"""
def __init__(self):
super(DQN, self).__init__()
self.fc1 = nn.Linear(4, 16)
self.fc1.weight.data.normal_(0, 0.1)
self.fc2 = nn.Linear(16, 2)
self.fc2.weight.data.normal_(0, 0.1)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 16), (16, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf3, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_4, (16, 2), (1, 16), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), primals_4, buf3
class DQNNew(nn.Module):
"""DQN network, three full connection layers
"""
def __init__(self):
super(DQNNew, self).__init__()
self.fc1 = nn.Linear(4, 16)
self.fc1.weight.data.normal_(0, 0.1)
self.fc2 = nn.Linear(16, 2)
self.fc2.weight.data.normal_(0, 0.1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ivanwhaf/RL
|
DQN
| false | 10,196 |
[
"MIT"
] | 0 |
1610b3684269b1d60543c60460e9ee65309594ee
|
https://github.com/ivanwhaf/RL/tree/1610b3684269b1d60543c60460e9ee65309594ee
|
GeLU
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3v/c3vxe4labx22axljvqnpfvh4p4urhfykzepqmzyxdeaf6uj4elja.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %arg0_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.044715
tmp4 = tmp0 * tmp3
tmp5 = tmp4 * tmp0
tmp6 = tmp5 * tmp0
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class GeLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + F.tanh(0.7978845608 * (x + 0.044715 * x * x * x))
)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.044715
tmp4 = tmp0 * tmp3
tmp5 = tmp4 * tmp0
tmp6 = tmp5 * tmp0
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GeLUNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
irustandi/sentiment-discovery
|
GeLU
| false | 10,197 |
[
"BSD-3-Clause"
] | 0 |
a2e074f33bbac94ec9dba111a91da026633dad67
|
https://github.com/irustandi/sentiment-discovery/tree/a2e074f33bbac94ec9dba111a91da026633dad67
|
Generator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/w2/cw26etiuqgfsnlcvfovjrjfkwerbr3hb33ggi6l6pg47hpyjzaos.py
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3d/c3dyw6akmjhpp35jaqq3z7ozrdt7ywexn7u7aab2ekphhcccz3vm.py
# Topologically Sorted Source Nodes: [concat1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 98304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 6
x0 = xindex % 4096
x2 = (xindex // 24576)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 6, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-3) + x1), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/l7/cl7utfe7bhcs2m55c3vdbkrwcvmnsjji6vqhnykjtsppv3gprqlv.py
# Topologically Sorted Source Nodes: [concat2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat2 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_1, %relu_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 98304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 6
x0 = xindex % 4096
x2 = (xindex // 24576)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 6, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp12, other=0.0)
tmp16 = tl.load(in_ptr3 + ((-3) + x1), tmp12, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + (x3), tmp21, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uw/cuwzisxb4drputjagww2hliycpjgkk573x3xmc4tbpcgmr5atzho.py
# Topologically Sorted Source Nodes: [concat3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat3 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1, %relu_2, %relu_3], 1), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 196608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 12
x0 = xindex % 4096
x2 = (xindex // 49152)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (12288*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 6, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-3) + x1)) + (12288*x2)), tmp9, other=0.0)
tmp11 = tl.load(in_ptr2 + ((-3) + x1), tmp9, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full([1], 0, tl.int32)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tmp0 >= tmp7
tmp18 = tl.full([1], 9, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tmp17 & tmp19
tmp21 = tl.load(in_ptr3 + (x0 + (4096*((-6) + x1)) + (12288*x2)), tmp20, other=0.0)
tmp22 = tl.load(in_ptr4 + ((-6) + x1), tmp20, eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = triton_helpers.maximum(tmp13, tmp23)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp20, tmp24, tmp25)
tmp27 = tmp0 >= tmp18
tmp28 = tl.full([1], 12, tl.int64)
tmp29 = tmp0 < tmp28
tmp30 = tl.load(in_ptr5 + (x0 + (4096*((-9) + x1)) + (12288*x2)), tmp27, other=0.0)
tmp31 = tl.load(in_ptr6 + ((-9) + x1), tmp27, eviction_policy='evict_last', other=0.0)
tmp32 = tmp30 + tmp31
tmp33 = triton_helpers.maximum(tmp13, tmp32)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp27, tmp33, tmp34)
tmp36 = tl.where(tmp20, tmp26, tmp35)
tmp37 = tl.where(tmp9, tmp16, tmp36)
tmp38 = tl.where(tmp4, tmp5, tmp37)
tl.store(out_ptr0 + (x3), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tv/ctvjgj5twpgsgagm4xdsbg4sdecdb6ignjpton25dplnkoizkzvq.py
# Topologically Sorted Source Nodes: [clean_image_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# clean_image_1 => cat_3
# Graph fragment:
# %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_2, %relu_5], 1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 3
x0 = xindex % 4096
x2 = (xindex // 12288)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (12288*x2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-1) + x1)) + (8192*x2)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-1) + x1), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.load(in_ptr0 + (4096 + x0 + (4096*((-1) + x1)) + (12288*x2)), tmp6, other=0.0)
tmp15 = tmp13 * tmp14
tmp16 = tmp15 - tmp13
tmp17 = 1.0
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp6, tmp19, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x3), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ol/colle6vvmqfrzye7tnywfjubc6wqawwkd5lk6x4zt35sefqjsnbo.py
# Topologically Sorted Source Nodes: [conv2d_4, x5, mul, sub, add, clean_image], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.sub, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# clean_image => relu_5
# conv2d_4 => convolution_4
# mul => mul
# sub => sub
# x5 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu_4, %slice_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %relu_4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5 = async_compile.triton('triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 2
x2 = (xindex // 8192)
x4 = xindex % 8192
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (4096 + x4 + (12288*x2)), None)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp4 * tmp5
tmp7 = tmp6 - tmp4
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp3, tmp9)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tmp13 = tmp4 <= tmp11
tl.store(out_ptr0 + (x3), tmp12, None)
tl.store(out_ptr1 + (x3), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/b6/cb6y5xus3enlp35rnceehsj36ohxzegpsjibpv5quvxf5hjtsolh.py
# Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x4 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_8, %primals_9, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3, ), (1, ))
assert_size_stride(primals_6, (3, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_7, (3, ), (1, ))
assert_size_stride(primals_8, (3, 6, 7, 7), (294, 49, 7, 1))
assert_size_stride(primals_9, (3, ), (1, ))
assert_size_stride(primals_10, (2, 12, 3, 3), (108, 9, 3, 1))
assert_size_stride(primals_11, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 49152, grid=grid(49152), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf2, primals_5, buf3, 98304, grid=grid(98304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat2], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf2, primals_5, buf4, primals_7, buf5, 98304, grid=grid(98304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat3], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf1, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 196608, grid=grid(196608), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 2, 64, 64), (8192, 4096, 64, 1))
buf9 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [clean_image_1], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(primals_3, buf8, primals_11, buf9, 49152, grid=grid(49152), stream=stream0)
buf10 = empty_strided_cuda((4, 2, 64, 64), (8192, 4096, 64, 1), torch.bool)
buf11 = empty_strided_cuda((4, 2, 64, 64), (8192, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, x5, mul, sub, add, clean_image], Original ATen: [aten.convolution, aten.relu, aten.mul, aten.sub, aten.add, aten.threshold_backward]
triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5.run(buf8, primals_11, primals_3, buf10, buf11, 32768, grid=grid(32768), stream=stream0)
del buf8
del primals_11
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_6.run(buf6, primals_9, buf12, 49152, grid=grid(49152), stream=stream0)
del buf6
del primals_9
buf13 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_6.run(buf4, primals_7, buf13, 49152, grid=grid(49152), stream=stream0)
del buf4
del primals_7
buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_6.run(buf2, primals_5, buf14, 49152, grid=grid(49152), stream=stream0)
del buf2
del primals_5
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((3, 6, 7, 7), (294, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((2, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.utils.data
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.e_conv1 = nn.Conv2d(3, 3, 1, 1, 0, bias=True)
self.e_conv2 = nn.Conv2d(3, 3, 3, 1, 1, bias=True)
self.e_conv3 = nn.Conv2d(6, 3, 5, 1, 2, bias=True)
self.e_conv4 = nn.Conv2d(6, 3, 7, 1, 3, bias=True)
self.e_conv5 = nn.Conv2d(12, 2, 3, 1, 1, bias=True)
def forward(self, x):
x1 = self.relu(self.e_conv1(x))
x2 = self.relu(self.e_conv2(x1))
concat1 = torch.cat((x1, x2), 1)
x3 = self.relu(self.e_conv3(concat1))
concat2 = torch.cat((x2, x3), 1)
x4 = self.relu(self.e_conv4(concat2))
concat3 = torch.cat((x1, x2, x3, x4), 1)
x5 = self.relu(self.e_conv5(concat3))
x_sub = torch.narrow(x, 1, 1, 2)
clean_image = self.relu(x5 * x_sub - x5 + 1)
x_sub = torch.narrow(x, 1, 0, 1)
clean_image = torch.cat((x_sub, clean_image), 1)
"""
x5 = self.relu(self.e_conv5(concat3))
clean_image = self.relu((x5 * x_sub) - x5 + 1)
clean_image = torch.narrow(clean_image,)
"""
return clean_image
"""
def __init__(self, scale_factor):
upsample_block_num = int(math.log(scale_factor, 2))
super(Generator, self).__init__()
self.block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=9, padding=4),
nn.PReLU()
)
self.block2 = ResidualBlock(64)
self.block3 = ResidualBlock(64)
self.block4 = ResidualBlock(64)
self.block5 = ResidualBlock(64)
self.block6 = ResidualBlock(64)
self.block7 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64)
)
block8 = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)]
block8.append(nn.Conv2d(64, 3, kernel_size=9, padding=4))
self.block8 = nn.Sequential(*block8)
def forward(self, x):
block1 = self.block1(x)
block2 = self.block2(block1)
block3 = self.block3(block2)
block4 = self.block4(block3)
block5 = self.block5(block4)
block6 = self.block6(block5)
block7 = self.block7(block6)
block8 = self.block8(block1 + block7)
return (torch.tanh(block8) + 1) / 2
"""
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 6
x0 = xindex % 4096
x2 = xindex // 24576
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 6, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-3 + x1), tmp6, eviction_policy='evict_last',
other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 6
x0 = xindex % 4096
x2 = xindex // 24576
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 6, tl.int64)
tmp15 = tl.load(in_ptr2 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp12,
other=0.0)
tmp16 = tl.load(in_ptr3 + (-3 + x1), tmp12, eviction_policy=
'evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + x3, tmp21, None)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 12
x0 = xindex % 4096
x2 = xindex // 49152
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 12288 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 6, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-3 + x1) + 12288 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-3 + x1), tmp9, eviction_policy='evict_last',
other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full([1], 0, tl.int32)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tmp0 >= tmp7
tmp18 = tl.full([1], 9, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tmp17 & tmp19
tmp21 = tl.load(in_ptr3 + (x0 + 4096 * (-6 + x1) + 12288 * x2), tmp20,
other=0.0)
tmp22 = tl.load(in_ptr4 + (-6 + x1), tmp20, eviction_policy=
'evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = triton_helpers.maximum(tmp13, tmp23)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp20, tmp24, tmp25)
tmp27 = tmp0 >= tmp18
tl.full([1], 12, tl.int64)
tmp30 = tl.load(in_ptr5 + (x0 + 4096 * (-9 + x1) + 12288 * x2), tmp27,
other=0.0)
tmp31 = tl.load(in_ptr6 + (-9 + x1), tmp27, eviction_policy=
'evict_last', other=0.0)
tmp32 = tmp30 + tmp31
tmp33 = triton_helpers.maximum(tmp13, tmp32)
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp27, tmp33, tmp34)
tmp36 = tl.where(tmp20, tmp26, tmp35)
tmp37 = tl.where(tmp9, tmp16, tmp36)
tmp38 = tl.where(tmp4, tmp5, tmp37)
tl.store(out_ptr0 + x3, tmp38, None)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 3
x0 = xindex % 4096
x2 = xindex // 12288
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 12288 * x2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 3, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-1 + x1) + 8192 * x2), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-1 + x1), tmp6, eviction_policy='evict_last',
other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.load(in_ptr0 + (4096 + x0 + 4096 * (-1 + x1) + 12288 * x2),
tmp6, other=0.0)
tmp15 = tmp13 * tmp14
tmp16 = tmp15 - tmp13
tmp17 = 1.0
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp6, tmp19, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x3, tmp22, None)
@triton.jit
def triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 2
x2 = xindex // 8192
x4 = xindex % 8192
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (4096 + x4 + 12288 * x2), None)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp4 * tmp5
tmp7 = tmp6 - tmp4
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp3, tmp9)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tmp13 = tmp4 <= tmp11
tl.store(out_ptr0 + x3, tmp12, None)
tl.store(out_ptr1 + x3, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3,), (1,))
assert_size_stride(primals_6, (3, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_7, (3,), (1,))
assert_size_stride(primals_8, (3, 6, 7, 7), (294, 49, 7, 1))
assert_size_stride(primals_9, (3,), (1,))
assert_size_stride(primals_10, (2, 12, 3, 3), (108, 9, 3, 1))
assert_size_stride(primals_11, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(49152)](buf1, primals_2,
49152, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(98304)](buf1, buf2, primals_5, buf3,
98304, XBLOCK=1024, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = empty_strided_cuda((4, 6, 64, 64), (24576, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_2[grid(98304)](buf2, primals_5, buf4,
primals_7, buf5, 98304, XBLOCK=512, num_warps=8, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_3[grid(196608)](buf1, buf2, primals_5, buf4,
primals_7, buf6, primals_9, buf7, 196608, XBLOCK=512, num_warps
=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 2, 64, 64), (8192, 4096, 64, 1))
buf9 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_4[grid(49152)](primals_3, buf8, primals_11,
buf9, 49152, XBLOCK=512, num_warps=4, num_stages=1)
buf10 = empty_strided_cuda((4, 2, 64, 64), (8192, 4096, 64, 1),
torch.bool)
buf11 = empty_strided_cuda((4, 2, 64, 64), (8192, 4096, 64, 1),
torch.bool)
triton_poi_fused_add_convolution_mul_relu_sub_threshold_backward_5[grid
(32768)](buf8, primals_11, primals_3, buf10, buf11, 32768,
XBLOCK=256, num_warps=4, num_stages=1)
del buf8
del primals_11
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_6[grid(49152)](
buf6, primals_9, buf12, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del buf6
del primals_9
buf13 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_6[grid(49152)](
buf4, primals_7, buf13, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del buf4
del primals_7
buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_6[grid(49152)](
buf2, primals_5, buf14, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del buf2
del primals_5
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, buf14)
class GeneratorNew(nn.Module):
def __init__(self):
super(GeneratorNew, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.e_conv1 = nn.Conv2d(3, 3, 1, 1, 0, bias=True)
self.e_conv2 = nn.Conv2d(3, 3, 3, 1, 1, bias=True)
self.e_conv3 = nn.Conv2d(6, 3, 5, 1, 2, bias=True)
self.e_conv4 = nn.Conv2d(6, 3, 7, 1, 3, bias=True)
self.e_conv5 = nn.Conv2d(12, 2, 3, 1, 1, bias=True)
"""
def __init__(self, scale_factor):
upsample_block_num = int(math.log(scale_factor, 2))
super(Generator, self).__init__()
self.block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=9, padding=4),
nn.PReLU()
)
self.block2 = ResidualBlock(64)
self.block3 = ResidualBlock(64)
self.block4 = ResidualBlock(64)
self.block5 = ResidualBlock(64)
self.block6 = ResidualBlock(64)
self.block7 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64)
)
block8 = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)]
block8.append(nn.Conv2d(64, 3, kernel_size=9, padding=4))
self.block8 = nn.Sequential(*block8)
def forward(self, x):
block1 = self.block1(x)
block2 = self.block2(block1)
block3 = self.block3(block2)
block4 = self.block4(block3)
block5 = self.block5(block4)
block6 = self.block6(block5)
block7 = self.block7(block6)
block8 = self.block8(block1 + block7)
return (torch.tanh(block8) + 1) / 2
"""
def forward(self, input_0):
primals_1 = self.e_conv1.weight
primals_2 = self.e_conv1.bias
primals_4 = self.e_conv2.weight
primals_5 = self.e_conv2.bias
primals_6 = self.e_conv3.weight
primals_7 = self.e_conv3.bias
primals_8 = self.e_conv4.weight
primals_9 = self.e_conv4.bias
primals_10 = self.e_conv5.weight
primals_11 = self.e_conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
goldenbili/SRGAN_Test
|
Generator
| false | 10,198 |
[
"MIT"
] | 0 |
06705c92abd5b7084ae878a4746060760bcff5c3
|
https://github.com/goldenbili/SRGAN_Test/tree/06705c92abd5b7084ae878a4746060760bcff5c3
|
HLCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lm/clmt2msuhfklumqpp6nglkxr3w4zcfur55mrrpiel4yeric2fpc2.py
# Topologically Sorted Source Nodes: [softmax, si, softmax_1, st, loss, loss_1], Original ATen: [aten._softmax, aten.sqrt, aten.mse_loss, aten.mul]
# Source node to ATen node mapping:
# loss => mean, pow_1, sub_2
# loss_1 => mul
# si => sqrt
# softmax => div, sum_1
# softmax_1 => div_1, sum_2
# st => sqrt_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%div,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%div_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, %sqrt_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_red_fused__softmax_mse_loss_mul_sqrt_1 = async_compile.triton('triton_red_fused__softmax_mse_loss_mul_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__softmax_mse_loss_mul_sqrt_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__softmax_mse_loss_mul_sqrt_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp23 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp17 = tmp15 + tmp16
tmp18 = tmp10 / tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = tmp9 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = _tmp23 + tmp22
_tmp23 = tl.where(rmask, tmp24, _tmp23)
tmp23 = tl.sum(_tmp23, 1)[:, None]
tmp25 = 256.0
tmp26 = tmp23 / tmp25
tmp27 = 1.0
tmp28 = tmp26 * tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax, si, softmax_1, st, loss, loss_1], Original ATen: [aten._softmax, aten.sqrt, aten.mse_loss, aten.mul]
triton_red_fused__softmax_mse_loss_mul_sqrt_1.run(buf4, buf0, buf1, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class HLCriterion(Criterion):
def __init__(self, alpha=1.0, name='Hellinger Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1,
reduction='batchmean'):
"""input/target: logits
"""
input = input.float()
target = target.float()
si = F.softmax(target.detach(), dim=-1, dtype=torch.float32).sqrt_()
st = F.softmax(input.detach(), dim=-1, dtype=torch.float32).sqrt_()
loss = F.mse_loss(si, st)
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_red_fused__softmax_mse_loss_mul_sqrt_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp23 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp11 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp17 = tmp15 + tmp16
tmp18 = tmp10 / tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = tmp9 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = _tmp23 + tmp22
_tmp23 = tl.where(rmask, tmp24, _tmp23)
tmp23 = tl.sum(_tmp23, 1)[:, None]
tmp25 = 256.0
tmp26 = tmp23 / tmp25
tmp27 = 1.0
tmp28 = tmp26 * tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp28, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(256)](arg0_1, buf1, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_red_fused__softmax_mse_loss_mul_sqrt_1[grid(1)](buf4, buf0,
buf1, 1, 256, XBLOCK=1, RBLOCK=256, num_warps=8, num_stages=1)
del buf0
del buf1
return buf4,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class HLCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='Hellinger Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
HLCriterion
| false | 10,199 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
Cosine
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/65/c65fzntschmihaixi34nxrnc3ebvynor7gvbhgvxkbc5w2qsknbs.py
# Topologically Sorted Source Nodes: [norm, norm_1, mul, add], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# norm => pow_1, pow_2, sum_1
# norm_1 => pow_3, pow_4, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, %pow_4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-09), kwargs = {})
triton_poi_fused_add_linalg_vector_norm_mul_1 = async_compile.triton('triton_poi_fused_add_linalg_vector_norm_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_linalg_vector_norm_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp13 = tmp12 * tmp12
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp11 * tmp23
tmp25 = 1e-09
tmp26 = tmp24 + tmp25
tl.store(out_ptr0 + (x0), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bh/cbhnrrn4ctzyyoqx65k45oybf5e5pftynoyjwxgz6u3k34xuioxs.py
# Topologically Sorted Source Nodes: [norm, norm_1, mul, add, truediv, squeeze], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div, aten.squeeze]
# Source node to ATen node mapping:
# add => add
# mul => mul
# norm => pow_1, pow_2, sum_1
# norm_1 => pow_3, pow_4, sum_2
# squeeze => squeeze
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, %pow_4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-09), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %add), kwargs = {})
# %squeeze : [num_users=1] = call_function[target=torch.ops.aten.squeeze.default](args = (%div,), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [norm, norm_1, mul, add], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add]
triton_poi_fused_add_linalg_vector_norm_mul_1.run(arg0_1, arg1_1, buf2, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [norm, norm_1, mul, add, truediv, squeeze], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div, aten.squeeze]
triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2.run(buf3, buf2, 256, grid=grid(256), stream=stream0)
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import torch
from torch.optim.lr_scheduler import *
class Cosine(torch.nn.Module):
def __init__(self, config):
super().__init__()
def forward(self, src, tgt):
src = src.float()
tgt = tgt.float()
return (torch.matmul(src, tgt.transpose(2, 1)) / (src.norm(p=2, dim
=-1, keepdim=True) * tgt.norm(p=2, dim=-1, keepdim=True) + 1e-09)
).squeeze()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config()}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_linalg_vector_norm_mul_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp13 = tmp12 * tmp12
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp11 * tmp23
tmp25 = 1e-09
tmp26 = tmp24 + tmp25
tl.store(out_ptr0 + x0, tmp26, xmask)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2(in_out_ptr0,
in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out
=buf1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_add_linalg_vector_norm_mul_1[grid(64)](arg0_1,
arg1_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_add_div_linalg_vector_norm_mul_squeeze_2[grid(256)](
buf3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf2
return buf3,
class CosineNew(torch.nn.Module):
def __init__(self, config):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
Cosine
| false | 10,200 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
BiLinearSim
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src_], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_3, buf1, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
del buf0
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import torch
from torch.optim.lr_scheduler import *
class BiLinearSim(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.linear = torch.nn.Linear(config.hidden_size, config.
hidden_size, bias=False)
def forward(self, src, tgt):
src_ = self.linear(src)
output = torch.matmul(src_, tgt.transpose(2, 1))
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_3, buf1, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
del buf0
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0)
class BiLinearSimNew(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.linear = torch.nn.Linear(config.hidden_size, config.
hidden_size, bias=False)
def forward(self, input_0, input_1):
primals_1 = self.linear.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
|
chunhuililili/mt_dnn
|
BiLinearSim
| false | 10,201 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
JSCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wv/cwvti54lsojjpkh6f73xsvv55wjtno2rrmtjgaznlsjst37yn74a.py
# Topologically Sorted Source Nodes: [softmax, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax_1 => amax_3, sub_5
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_3), kwargs = {})
triton_poi_fused__log_softmax__softmax_0 = async_compile.triton('triton_poi_fused__log_softmax__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ew/cewejal4rpvwi6jnzulqnyb3ftv6rl774lzryrdhbo5q76xi6iai.py
# Topologically Sorted Source Nodes: [softmax, softmax_1, m, m_1, kl_div, log_softmax, kl_div_1, log_softmax_1, loss, loss_1], Original ATen: [aten._softmax, aten.add, aten.mul, aten.xlogy, aten._log_softmax, aten.sub, aten.sum, aten.div]
# Source node to ATen node mapping:
# kl_div => div_2, eq, full_default, full_default_1, isnan, log_1, mul_1, mul_2, sub_4, sum_4, where, where_1
# kl_div_1 => div_3, eq_1, full_default_2, full_default_3, isnan_1, log_3, mul_3, mul_4, sub_7, sum_6, where_2, where_3
# log_softmax => exp_2, log, sub_3, sum_3
# log_softmax_1 => exp_3, log_2, sub_6, sum_5
# loss => add_1
# loss_1 => mul_5
# m => add
# m_1 => mul
# softmax => div, sum_1
# softmax_1 => div_1, sum_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {})
# %mul : [num_users=10] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%mul,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%mul, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_2), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %log), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sub_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul_1), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_4,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, 4), kwargs = {})
# %isnan_1 : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%mul,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%mul, 0), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %log_3), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_2, %mul_4), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan_1, %full_default_3, %where_2), kwargs = {})
# %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [-1], True), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_5,), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_5, %log_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sub_6), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %mul_3), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_7,), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_2, %div_3), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {})
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1 = async_compile.triton('triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp46 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp10 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr2 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr2 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp35 = tl.load(in_ptr2 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr2 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp48 = tl.load(in_ptr3 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp49 = tl.load(in_ptr3 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp51 = tl.load(in_ptr3 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp54 = tl.load(in_ptr3 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.load(in_ptr3 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp12 = tmp10 + tmp11
tmp14 = tmp12 + tmp13
tmp16 = tmp14 + tmp15
tmp17 = tmp9 / tmp16
tmp18 = tmp8 + tmp17
tmp19 = 0.5
tmp20 = tmp18 * tmp19
tmp21 = libdevice.isnan(tmp20).to(tl.int1)
tmp22 = 0.0
tmp23 = tmp20 == tmp22
tmp24 = tl_math.log(tmp20)
tmp25 = tmp20 * tmp24
tmp26 = tl.where(tmp23, tmp22, tmp25)
tmp27 = float("nan")
tmp28 = tl.where(tmp21, tmp27, tmp26)
tmp31 = tl_math.exp(tmp30)
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp31 + tmp33
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp34 + tmp36
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp37 + tmp39
tmp41 = tl_math.log(tmp40)
tmp42 = tmp29 - tmp41
tmp43 = tmp20 * tmp42
tmp44 = tmp28 - tmp43
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = _tmp46 + tmp45
_tmp46 = tl.where(rmask, tmp47, _tmp46)
tmp50 = tl_math.exp(tmp49)
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp50 + tmp52
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp53 + tmp55
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp60 = tl_math.log(tmp59)
tmp61 = tmp48 - tmp60
tmp62 = tmp20 * tmp61
tmp63 = tmp28 - tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask, tmp66, _tmp65)
tmp46 = tl.sum(_tmp46, 1)[:, None]
tmp65 = tl.sum(_tmp65, 1)[:, None]
tmp67 = 0.25
tmp68 = tmp46 * tmp67
tmp69 = tmp65 * tmp67
tmp70 = tmp68 + tmp69
tmp71 = 1.0
tmp72 = tmp70 * tmp71
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp72, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0.run(arg1_1, buf0, buf5, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_1, log_softmax], Original ATen: [aten._softmax, aten._log_softmax]
triton_poi_fused__log_softmax__softmax_0.run(arg0_1, buf1, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf7 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [softmax, softmax_1, m, m_1, kl_div, log_softmax, kl_div_1, log_softmax_1, loss, loss_1], Original ATen: [aten._softmax, aten.add, aten.mul, aten.xlogy, aten._log_softmax, aten.sub, aten.sum, aten.div]
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1.run(buf7, buf0, buf1, buf3, buf5, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf3
del buf5
return (buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class JSCriterion(Criterion):
def __init__(self, alpha=1.0, name='JS Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1,
reduction='batchmean'):
"""input/target: logits
"""
input = input.float()
target = target.float()
m = F.softmax(target.detach(), dim=-1, dtype=torch.float32
) + F.softmax(input.detach(), dim=-1, dtype=torch.float32)
m = 0.5 * m
loss = F.kl_div(F.log_softmax(input, dim=-1, dtype=torch.float32),
m, reduction=reduction) + F.kl_div(F.log_softmax(target, dim=-1,
dtype=torch.float32), m, reduction=reduction)
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
@triton.jit
def triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp46 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp10 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp29 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp30 = tl.load(in_ptr2 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tl.load(in_ptr2 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp35 = tl.load(in_ptr2 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp38 = tl.load(in_ptr2 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp48 = tl.load(in_ptr3 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp49 = tl.load(in_ptr3 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp51 = tl.load(in_ptr3 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp54 = tl.load(in_ptr3 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp57 = tl.load(in_ptr3 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp12 = tmp10 + tmp11
tmp14 = tmp12 + tmp13
tmp16 = tmp14 + tmp15
tmp17 = tmp9 / tmp16
tmp18 = tmp8 + tmp17
tmp19 = 0.5
tmp20 = tmp18 * tmp19
tmp21 = libdevice.isnan(tmp20).to(tl.int1)
tmp22 = 0.0
tmp23 = tmp20 == tmp22
tmp24 = tl_math.log(tmp20)
tmp25 = tmp20 * tmp24
tmp26 = tl.where(tmp23, tmp22, tmp25)
tmp27 = float('nan')
tmp28 = tl.where(tmp21, tmp27, tmp26)
tmp31 = tl_math.exp(tmp30)
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp31 + tmp33
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp34 + tmp36
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp37 + tmp39
tmp41 = tl_math.log(tmp40)
tmp42 = tmp29 - tmp41
tmp43 = tmp20 * tmp42
tmp44 = tmp28 - tmp43
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = _tmp46 + tmp45
_tmp46 = tl.where(rmask, tmp47, _tmp46)
tmp50 = tl_math.exp(tmp49)
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp50 + tmp52
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp53 + tmp55
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp60 = tl_math.log(tmp59)
tmp61 = tmp48 - tmp60
tmp62 = tmp20 * tmp61
tmp63 = tmp28 - tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask, tmp66, _tmp65)
tmp46 = tl.sum(_tmp46, 1)[:, None]
tmp65 = tl.sum(_tmp65, 1)[:, None]
tmp67 = 0.25
tmp68 = tmp46 * tmp67
tmp69 = tmp65 * tmp67
tmp70 = tmp68 + tmp69
tmp71 = 1.0
tmp72 = tmp70 * tmp71
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp72, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0[grid(256)](arg1_1, buf0,
buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax__softmax_0[grid(256)](arg0_1, buf1,
buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf7 = buf4
del buf4
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_1[grid
(1)](buf7, buf0, buf1, buf3, buf5, 1, 256, XBLOCK=1, RBLOCK=256,
num_warps=8, num_stages=1)
del buf0
del buf1
del buf3
del buf5
return buf7,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class JSCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='JS Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
JSCriterion
| false | 10,202 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
KlCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax_1, exp_1, sub_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/g5/cg5f2rptqnpi2mrqpqc4tujqpbrrrjrse6plhgftx425znsffpfv.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uf/cufuuxvelrltzwxjbbkikdu25p6qhp4n3izwy7jc75fb6567imxf.py
# Topologically Sorted Source Nodes: [softmax, loss, log_softmax, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# loss => div_1, eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub_3, sum_3, where, where_1
# loss_1 => mul_2
# softmax => div, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 1.0), kwargs = {})
triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2 = async_compile.triton('triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp34 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp18 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp26 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float("nan")
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = _tmp34 + tmp33
_tmp34 = tl.where(rmask, tmp35, _tmp34)
tmp34 = tl.sum(_tmp34, 1)[:, None]
tmp36 = 0.25
tmp37 = tmp34 * tmp36
tmp38 = 1.0
tmp39 = tmp37 * tmp38
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp39, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(arg0_1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax, loss, log_softmax, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div]
triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2.run(buf4, buf0, buf2, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class KlCriterion(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""input/target: logits
"""
input = input.float()
target = target.float()
loss = F.kl_div(F.log_softmax(input, dim=-1, dtype=torch.float32),
F.softmax(target, dim=-1, dtype=torch.float32), reduction=
'batchmean')
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.
constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp34 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp18 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp26 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float('nan')
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = _tmp34 + tmp33
_tmp34 = tl.where(rmask, tmp35, _tmp34)
tmp34 = tl.sum(_tmp34, 1)[:, None]
tmp36 = 0.25
tmp37 = tmp34 * tmp36
tmp38 = 1.0
tmp39 = tmp37 * tmp38
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp39, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](arg0_1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_red_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2[grid(1)
](buf4, buf0, buf2, 1, 256, XBLOCK=1, RBLOCK=256, num_warps=8,
num_stages=1)
del buf0
del buf2
return buf4,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class KlCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
KlCriterion
| false | 10,203 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
Mnist_CNN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wr/cwrjr75ksmgrel4djhr27volr7bzoob6ixyduxm74y2ky6udtlzn.py
# Topologically Sorted Source Nodes: [conv2d, xb_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# xb_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/iz/cizeqrrbvjbeoqr7ojtcvnagh6alsvquwz2qlmnzzbytbq77tnn4.py
# Topologically Sorted Source Nodes: [conv2d_1, xb_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# xb_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 49) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/23/c237kritlyjcuojdcyxxqqygn46332pp2fgszsmeqpe2chj5uwq2.py
# Topologically Sorted Source Nodes: [conv2d_2, xb_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# xb_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rr/crrealymt6xnsywuzmxru2w3tcsoludjyewecl5ik2qqtmaogdt2.py
# Topologically Sorted Source Nodes: [xb_4], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# xb_4 => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%relu_2, [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + (x0), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (16, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (10, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 14, 14), (3136, 196, 14, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, xb_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 12544, grid=grid(12544), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 7, 7), (784, 49, 7, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, xb_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 3136, grid=grid(3136), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 10, 4, 4), (160, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, xb_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 640, grid=grid(640), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 10, 1, 1), (10, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [xb_4], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_3.run(buf5, buf6, 40, grid=grid(40), stream=stream0)
return (reinterpret_tensor(buf6, (4, 10), (10, 1), 0), primals_2, primals_4, primals_6, primals_1, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 28, 28), (784, 784, 28, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((10, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.quantization
import torch.onnx
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class Mnist_CNN(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(16, 10, kernel_size=3, stride=2, padding=1)
def forward(self, xb):
xb = xb.view(-1, 1, 28, 28)
xb = F.relu(self.conv1(xb))
xb = F.relu(self.conv2(xb))
xb = F.relu(self.conv3(xb))
xb = F.avg_pool2d(xb, 4)
return xb.view(-1, xb.size(1))
def get_inputs():
return [torch.rand([4, 1, 28, 28])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.quantization
import torch.onnx
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 3136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 49 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + x0, tmp32, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (16, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (10, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 14, 14), (3136, 196, 14, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(12544)](buf1, primals_3,
12544, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 7, 7), (784, 49, 7, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(3136)](buf3, primals_5,
3136, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 10, 4, 4), (160, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(640)](buf5, primals_7, 640,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 10, 1, 1), (10, 1, 1, 1), torch.float32)
triton_poi_fused_avg_pool2d_3[grid(40)](buf5, buf6, 40, XBLOCK=64,
num_warps=1, num_stages=1)
return reinterpret_tensor(buf6, (4, 10), (10, 1), 0
), primals_2, primals_4, primals_6, primals_1, buf1, buf3, buf5
class Mnist_CNNNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 16, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(16, 10, kernel_size=3, stride=2, padding=1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
hongsam123/PyTorch-tutorials-kr
|
Mnist_CNN
| false | 10,204 |
[
"BSD-3-Clause"
] | 0 |
e48bbbc7088bf6b9da66abb8862b8d0539662bd5
|
https://github.com/hongsam123/PyTorch-tutorials-kr/tree/e48bbbc7088bf6b9da66abb8862b8d0539662bd5
|
Pooler
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# pooled_output => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.add]
# Source node to ATen node mapping:
# pooled_output => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.optim.lr_scheduler import *
def linear(x):
return x
def activation(func_a):
"""Activation function wrapper
"""
try:
f = eval(func_a)
except:
f = linear
return f
class DropoutWrapper(nn.Module):
"""
This is a dropout wrapper which supports the fix mask dropout
"""
def __init__(self, dropout_p=0, enable_vbp=True):
super(DropoutWrapper, self).__init__()
"""variational dropout means fix dropout mask
ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11
"""
self.enable_variational_dropout = enable_vbp
self.dropout_p = dropout_p
def forward(self, x):
"""
:param x: batch * len * input_size
"""
if self.training is False or self.dropout_p == 0:
return x
if len(x.size()) == 3:
mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self.
dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1))
mask.requires_grad = False
return mask.unsqueeze(1).expand_as(x) * x
else:
return F.dropout(x, p=self.dropout_p, training=self.training)
class Pooler(nn.Module):
def __init__(self, hidden_size, dropout_p=0.1, actf='tanh'):
super(Pooler, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = activation(actf)
self.dropout = DropoutWrapper(dropout_p=dropout_p)
def forward(self, hidden_states):
first_token_tensor = hidden_states[:, 0]
first_token_tensor = self.dropout(first_token_tensor)
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn as nn
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
def linear(x):
return x
def activation(func_a):
"""Activation function wrapper
"""
try:
f = eval(func_a)
except:
f = linear
return f
class DropoutWrapper(nn.Module):
"""
This is a dropout wrapper which supports the fix mask dropout
"""
def __init__(self, dropout_p=0, enable_vbp=True):
super(DropoutWrapper, self).__init__()
"""variational dropout means fix dropout mask
ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11
"""
self.enable_variational_dropout = enable_vbp
self.dropout_p = dropout_p
def forward(self, x):
"""
:param x: batch * len * input_size
"""
if self.training is False or self.dropout_p == 0:
return x
if len(x.size()) == 3:
mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self.
dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1))
mask.requires_grad = False
return mask.unsqueeze(1).expand_as(x) * x
else:
return F.dropout(x, p=self.dropout_p, training=self.training)
class PoolerNew(nn.Module):
def __init__(self, hidden_size, dropout_p=0.1, actf='tanh'):
super(PoolerNew, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = activation(actf)
self.dropout = DropoutWrapper(dropout_p=dropout_p)
def forward(self, input_0):
primals_2 = self.dense.weight
primals_3 = self.dense.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
chunhuililili/mt_dnn
|
Pooler
| false | 10,205 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
NsKlCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wh/cwhvriz6hxksjnf7xkq6bdjc3fmcw4ahhhtmiub5rzoghqztmqjv.py
# Topologically Sorted Source Nodes: [log_softmax, p, add, truediv, sub, add_1, log, rp, log_softmax_1, y, add_2, truediv_1, sub_1, add_3, log_1, ry, sub_2, mul, mul_1, sum_1, loss, loss_1], Original ATen: [aten._log_softmax, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.sub, aten.log, aten.neg, aten.sum, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# log => log_2
# log_1 => log_3
# log_softmax => exp, log, sub_1, sum_1
# log_softmax_1 => exp_2, log_1, sub_3, sum_2
# loss => div
# loss_1 => mul_4
# mul => mul_2
# mul_1 => mul_3
# p => exp_1
# rp => neg
# ry => neg_1
# sub => sub_4
# sub_1 => sub_5
# sub_2 => sub_6
# sum_1 => sum_3
# truediv => mul, reciprocal
# truediv_1 => mul_1, reciprocal_1
# y => exp_3
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, 1e-06), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_4, 1e-06), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_2,), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %log_1), kwargs = {})
# %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_3, 1e-06), kwargs = {})
# %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 1.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_5, 1e-06), kwargs = {})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_3,), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg, %neg_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %sub_6), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, 2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 64), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {})
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1 = async_compile.triton('triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp52 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp25 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp26 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp34 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tl.full([1, 1], 1, tl.int32)
tmp18 = tmp17 / tmp16
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tmp21 = tmp20 - tmp19
tmp22 = tmp21 + tmp15
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp39 + tmp15
tmp41 = tmp17 / tmp40
tmp42 = tmp41 * tmp19
tmp43 = tmp42 - tmp19
tmp44 = tmp43 + tmp15
tmp45 = tl_math.log(tmp44)
tmp46 = -tmp45
tmp47 = tmp24 - tmp46
tmp48 = tmp14 * tmp47
tmp49 = 2.0
tmp50 = tmp48 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = _tmp52 + tmp51
_tmp52 = tl.where(rmask, tmp53, _tmp52)
tmp52 = tl.sum(_tmp52, 1)[:, None]
tmp54 = 0.015625
tmp55 = tmp52 * tmp54
tmp56 = 1.0
tmp57 = tmp55 * tmp56
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp57, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax_1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_0.run(arg1_1, buf2, 256, grid=grid(256), stream=stream0)
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [log_softmax, p, add, truediv, sub, add_1, log, rp, log_softmax_1, y, add_2, truediv_1, sub_1, add_3, log_1, ry, sub_2, mul, mul_1, sum_1, loss, loss_1], Original ATen: [aten._log_softmax, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.sub, aten.log, aten.neg, aten.sum, aten.div]
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1.run(buf5, buf0, buf2, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
def stable_kl(logit, target, epsilon=1e-06, reduce=True):
logit = logit.view(-1, logit.size(-1)).float()
target = target.view(-1, target.size(-1)).float()
bs = logit.size(0)
p = F.log_softmax(logit, 1).exp()
y = F.log_softmax(target, 1).exp()
rp = -(1.0 / (p + epsilon) - 1 + epsilon).detach().log()
ry = -(1.0 / (y + epsilon) - 1 + epsilon).detach().log()
if reduce:
return (p * (rp - ry) * 2).sum() / bs
else:
return (p * (rp - ry) * 2).sum()
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class NsKlCriterion(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""input/target: logits
"""
input = input.float()
target = target.float()
loss = stable_kl(input, target.detach())
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr,
RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp52 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp9 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp26 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp34 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tl.full([1, 1], 1, tl.int32)
tmp18 = tmp17 / tmp16
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tmp21 = tmp20 - tmp19
tmp22 = tmp21 + tmp15
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp39 + tmp15
tmp41 = tmp17 / tmp40
tmp42 = tmp41 * tmp19
tmp43 = tmp42 - tmp19
tmp44 = tmp43 + tmp15
tmp45 = tl_math.log(tmp44)
tmp46 = -tmp45
tmp47 = tmp24 - tmp46
tmp48 = tmp14 * tmp47
tmp49 = 2.0
tmp50 = tmp48 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = _tmp52 + tmp51
_tmp52 = tl.where(rmask, tmp53, _tmp52)
tmp52 = tl.sum(_tmp52, 1)[:, None]
tmp54 = 0.015625
tmp55 = tmp52 * tmp54
tmp56 = 1.0
tmp57 = tmp55 * tmp56
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp57, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4
del buf4
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1[
grid(1)](buf5, buf0, buf2, 1, 256, XBLOCK=1, RBLOCK=256,
num_warps=8, num_stages=1)
del buf0
del buf2
return buf5,
def stable_kl(logit, target, epsilon=1e-06, reduce=True):
logit = logit.view(-1, logit.size(-1)).float()
target = target.view(-1, target.size(-1)).float()
bs = logit.size(0)
p = F.log_softmax(logit, 1).exp()
y = F.log_softmax(target, 1).exp()
rp = -(1.0 / (p + epsilon) - 1 + epsilon).detach().log()
ry = -(1.0 / (y + epsilon) - 1 + epsilon).detach().log()
if reduce:
return (p * (rp - ry) * 2).sum() / bs
else:
return (p * (rp - ry) * 2).sum()
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class NsKlCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
NsKlCriterion
| false | 10,206 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
CeCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4s/c4sinl6spiqxhpvyucixluedc7ia6rt4kmscnsrfq6ef6uymhfpa.py
# Topologically Sorted Source Nodes: [loss, loss_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
# Source node to ATen node mapping:
# loss => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# loss_1 => mul_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {})
triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = 1.0
tmp23 = tmp21 * tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class CeCriterion(Criterion):
def __init__(self, alpha=1.0, name='Cross Entropy Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
if weight:
loss = torch.mean(F.cross_entropy(input, target, reduce=False,
ignore_index=ignore_index) * weight)
else:
loss = F.cross_entropy(input, target, ignore_index=ignore_index)
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = 1.0
tmp23 = tmp21 * tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf2, buf0,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class CeCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='Cross Entropy Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
CeCriterion
| false | 10,207 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
MseCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/7p/c7po76azmxaenhqdhxmjkwmmyrh5jpr4p5zydgfurvfy3q5qm6gp.py
# Topologically Sorted Source Nodes: [loss, loss_1], Original ATen: [aten.mse_loss, aten.mul]
# Source node to ATen node mapping:
# loss => mean, pow_1, sub
# loss_1 => mul
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_mse_loss_mul_0 = async_compile.triton('triton_per_fused_mse_loss_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1], Original ATen: [aten.mse_loss, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mse_loss_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class MseCriterion(Criterion):
def __init__(self, alpha=1.0, name='MSE Regression Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
if weight:
loss = torch.mean(F.mse_loss(input.squeeze(), target, reduce=
False) * weight.reshape((target.shape[0], 1)))
else:
loss = F.mse_loss(input.squeeze(), target)
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mse_loss_mul_0[grid(1)](buf1, arg0_1, arg1_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class MseCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='MSE Regression Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
MseCriterion
| false | 10,208 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
MultiheadAttentionWrapper
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/m5/cm5f2v4luzyczo3xcytmjg2h6fymvgarwaaqswwrj34olun37r6i.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %_scaled_dot_product_efficient_attention_default : [num_users=1] = call_function[target=torch.ops.aten._scaled_dot_product_efficient_attention.default](args = (%unsqueeze_default, %unsqueeze_default_1, %unsqueeze_default_2, None, False), kwargs = {scale: 1.0})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(arg1_1, buf1, 64, grid=grid(64), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(arg2_1, buf2, 64, grid=grid(64), stream=stream0)
del arg2_1
# Topologically Sorted Source Nodes: [], Original ATen: []
buf3 = torch.ops.aten._scaled_dot_product_efficient_attention.default(buf0, buf1, buf2, None, False, scale=1.0)
del buf0
del buf1
del buf2
buf4 = buf3[0]
del buf3
return (reinterpret_tensor(buf4, (4, 4, 4), (4, 16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.utils import weight_norm
from torch.optim.lr_scheduler import *
def linear(x):
return x
def activation(func_a):
"""Activation function wrapper
"""
try:
f = eval(func_a)
except:
f = linear
return f
class DropoutWrapper(nn.Module):
"""
This is a dropout wrapper which supports the fix mask dropout
"""
def __init__(self, dropout_p=0, enable_vbp=True):
super(DropoutWrapper, self).__init__()
"""variational dropout means fix dropout mask
ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11
"""
self.enable_variational_dropout = enable_vbp
self.dropout_p = dropout_p
def forward(self, x):
"""
:param x: batch * len * input_size
"""
if self.training is False or self.dropout_p == 0:
return x
if len(x.size()) == 3:
mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self.
dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1))
mask.requires_grad = False
return mask.unsqueeze(1).expand_as(x) * x
else:
return F.dropout(x, p=self.dropout_p, training=self.training)
class MultiheadAttentionWrapper(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, query_dim, key_dim, value_dim, prefix='attention',
opt={}, dropout=None):
super().__init__()
self.prefix = prefix
self.num_heads = opt.get('{}_head'.format(self.prefix), 1)
self.dropout = DropoutWrapper(opt.get('{}_dropout'.format(self.
prefix), 0)) if dropout is None else dropout
self.qkv_dim = [query_dim, key_dim, value_dim]
assert query_dim == key_dim, 'query dim must equal with key dim'
self.hidden_size = opt.get('{}_hidden_size'.format(self.prefix), 64)
self.proj_on = opt.get('{}_proj_on'.format(prefix), False)
self.share = opt.get('{}_share'.format(self.prefix), False)
self.layer_norm_on = opt.get('{}_norm_on'.format(self.prefix), False)
self.scale_on = opt.get('{}_scale_on'.format(self.prefix), False)
if self.proj_on:
self.proj_modules = nn.ModuleList([nn.Linear(dim, self.
hidden_size) for dim in self.qkv_dim[0:2]])
if self.layer_norm_on:
for proj in self.proj_modules:
proj = weight_norm(proj)
if self.share and self.qkv_dim[0] == self.qkv_dim[1]:
self.proj_modules[1] = self.proj_modules[0]
self.f = activation(opt.get('{}_activation'.format(self.prefix),
'relu'))
self.qkv_head_dim = [self.hidden_size // self.num_heads] * 3
self.qkv_head_dim[2] = value_dim // self.num_heads
assert self.qkv_head_dim[0
] * self.num_heads == self.hidden_size, 'hidden size must be divisible by num_heads'
assert self.qkv_head_dim[2
] * self.num_heads == value_dim, 'value size must be divisible by num_heads'
else:
self.qkv_head_dim = [(emb // self.num_heads) for emb in self.
qkv_dim]
assert self.qkv_head_dim[0] * self.num_heads == self.qkv_dim[0
], 'query size must be divisible by num_heads'
assert self.qkv_head_dim[1] * self.num_heads == self.qkv_dim[1
], 'key size must be divisible by num_heads'
assert self.qkv_head_dim[2] * self.num_heads == self.qkv_dim[2
], 'value size must be divisible by num_heads'
if self.scale_on:
self.scaling = self.qkv_head_dim[0] ** -0.5
self.drop_diagonal = opt.get('{}_drop_diagonal'.format(self.prefix),
False)
self.output_size = self.qkv_dim[2]
def forward(self, query, key, value, key_padding_mask=None):
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.qkv_dim[0]
q, k, v = query, key, value
if self.proj_on:
if self.dropout:
q, k = self.dropout(q), self.dropout(k)
q, k = [self.f(proj(input)) for input, proj in zip([query, key],
self.proj_modules)]
src_len = k.size(0)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.scale_on:
q *= self.scaling
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.
qkv_head_dim[0]).transpose(0, 1)
k = k.contiguous().view(src_len, bsz * self.num_heads, self.
qkv_head_dim[1]).transpose(0, 1)
v = v.contiguous().view(src_len, bsz * self.num_heads, self.
qkv_head_dim[2]).transpose(0, 1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len,
src_len]
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.float().masked_fill(key_padding_mask
.unsqueeze(1).unsqueeze(2), float('-inf')).type_as(attn_weights
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
src_len)
if self.drop_diagonal:
assert attn_weights.size(1) == attn_weights.size(2)
diag_mask = torch.diag(attn_weights.data.new(attn_weights.size(
1)).zero_() + 1).byte().unsqueeze(0).expand_as(attn_weights)
attn_weights.data.masked_fill_(diag_mask, -float('inf'))
attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as(
attn_weights)
attn_weights = self.dropout(attn_weights)
attn = torch.bmm(attn_weights, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.
qkv_head_dim[2]]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, -1)
attn = attn.transpose(0, 1)
return attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'query_dim': 4, 'key_dim': 4, 'value_dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn as nn
from torch.nn.utils import weight_norm
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1), tmp0, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps
=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused_0[grid(64)](arg1_1, buf1, 64, XBLOCK=64, num_warps
=1, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((1, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused_0[grid(64)](arg2_1, buf2, 64, XBLOCK=64, num_warps
=1, num_stages=1)
del arg2_1
buf3 = torch.ops.aten._scaled_dot_product_efficient_attention.default(
buf0, buf1, buf2, None, False, scale=1.0)
del buf0
del buf1
del buf2
buf4 = buf3[0]
del buf3
return reinterpret_tensor(buf4, (4, 4, 4), (4, 16, 1), 0),
def linear(x):
return x
def activation(func_a):
"""Activation function wrapper
"""
try:
f = eval(func_a)
except:
f = linear
return f
class DropoutWrapper(nn.Module):
"""
This is a dropout wrapper which supports the fix mask dropout
"""
def __init__(self, dropout_p=0, enable_vbp=True):
super(DropoutWrapper, self).__init__()
"""variational dropout means fix dropout mask
ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11
"""
self.enable_variational_dropout = enable_vbp
self.dropout_p = dropout_p
def forward(self, x):
"""
:param x: batch * len * input_size
"""
if self.training is False or self.dropout_p == 0:
return x
if len(x.size()) == 3:
mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self.
dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1))
mask.requires_grad = False
return mask.unsqueeze(1).expand_as(x) * x
else:
return F.dropout(x, p=self.dropout_p, training=self.training)
class MultiheadAttentionWrapperNew(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, query_dim, key_dim, value_dim, prefix='attention',
opt={}, dropout=None):
super().__init__()
self.prefix = prefix
self.num_heads = opt.get('{}_head'.format(self.prefix), 1)
self.dropout = DropoutWrapper(opt.get('{}_dropout'.format(self.
prefix), 0)) if dropout is None else dropout
self.qkv_dim = [query_dim, key_dim, value_dim]
assert query_dim == key_dim, 'query dim must equal with key dim'
self.hidden_size = opt.get('{}_hidden_size'.format(self.prefix), 64)
self.proj_on = opt.get('{}_proj_on'.format(prefix), False)
self.share = opt.get('{}_share'.format(self.prefix), False)
self.layer_norm_on = opt.get('{}_norm_on'.format(self.prefix), False)
self.scale_on = opt.get('{}_scale_on'.format(self.prefix), False)
if self.proj_on:
self.proj_modules = nn.ModuleList([nn.Linear(dim, self.
hidden_size) for dim in self.qkv_dim[0:2]])
if self.layer_norm_on:
for proj in self.proj_modules:
proj = weight_norm(proj)
if self.share and self.qkv_dim[0] == self.qkv_dim[1]:
self.proj_modules[1] = self.proj_modules[0]
self.f = activation(opt.get('{}_activation'.format(self.prefix),
'relu'))
self.qkv_head_dim = [self.hidden_size // self.num_heads] * 3
self.qkv_head_dim[2] = value_dim // self.num_heads
assert self.qkv_head_dim[0
] * self.num_heads == self.hidden_size, 'hidden size must be divisible by num_heads'
assert self.qkv_head_dim[2
] * self.num_heads == value_dim, 'value size must be divisible by num_heads'
else:
self.qkv_head_dim = [(emb // self.num_heads) for emb in self.
qkv_dim]
assert self.qkv_head_dim[0] * self.num_heads == self.qkv_dim[0
], 'query size must be divisible by num_heads'
assert self.qkv_head_dim[1] * self.num_heads == self.qkv_dim[1
], 'key size must be divisible by num_heads'
assert self.qkv_head_dim[2] * self.num_heads == self.qkv_dim[2
], 'value size must be divisible by num_heads'
if self.scale_on:
self.scaling = self.qkv_head_dim[0] ** -0.5
self.drop_diagonal = opt.get('{}_drop_diagonal'.format(self.prefix),
False)
self.output_size = self.qkv_dim[2]
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
chunhuililili/mt_dnn
|
MultiheadAttentionWrapper
| false | 10,209 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
Network
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 784) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# out_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = (xindex // 14)
x2 = (xindex // 1176)
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fd/cfd3q6x464cl7vept5hkzz2av6ogtk5up7qocwljfaq5nbponjso.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 100) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bq/cbqph7b6z5pkvjbyl5xcehcmtf5gj4cge7to6mumw5i6vt6xp2db.py
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out_5 => relu_1
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_7), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kd/ckdg574tplsphiaxjgd3mlzczq6o6slvwdi62ykbk6k52i3tdbov.py
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out_6 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wf/cwf7idkvctcz726nblespeq5hl4v2rgvawdqwncw2xagtfwrsrfi.py
# Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_7 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (120, 1600), (1600, 1))
assert_size_stride(primals_7, (120, ), (1, ))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84, ), (1, ))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (4, 1600), (1600, 1), 0), reinterpret_tensor(primals_6, (1600, 120), (1, 1600), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf7, primals_7, 480, grid=grid(480), stream=stream0)
del primals_7
buf8 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_9, 336, grid=grid(336), stream=stream0)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
buf12 = empty_strided_cuda((4, 10), (10, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_5.run(buf11, primals_11, buf12, 40, grid=grid(40), stream=stream0)
del primals_11
return (buf11, primals_1, primals_3, primals_4, buf1, buf2, buf3, reinterpret_tensor(buf5, (4, 1600), (1600, 1), 0), buf7, buf9, buf12, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((120, 1600), (1600, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Network(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 10 * 10, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = self.conv1(x)
out = F.relu(out)
out = self.pool(out)
out = self.conv2(out)
out = out.view(-1, 16 * 10 * 10)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = F.relu(self.fc3(out))
return out
def get_inputs():
return [torch.rand([4, 3, 32, 32])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 784 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = xindex // 14
x2 = xindex // 1176
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 100 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (120, 1600), (1600, 1))
assert_size_stride(primals_7, (120,), (1,))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84,), (1,))
assert_size_stride(primals_10, (10, 84), (84, 1))
assert_size_stride(primals_11, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2,
18816, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch
.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2,
buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(6400)](buf5, primals_5, 6400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (4, 1600), (1600, 1), 0),
reinterpret_tensor(primals_6, (1600, 120), (1, 1600), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_3[grid(480)](buf7, primals_7, 480, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf8 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (120, 84), (1,
120), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(336)](buf9, primals_9, 336, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_10, (84, 10), (1,
84), 0), out=buf10)
buf11 = buf10
del buf10
buf12 = empty_strided_cuda((4, 10), (10, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_5[grid(40)](buf11,
primals_11, buf12, 40, XBLOCK=64, num_warps=1, num_stages=1)
del primals_11
return (buf11, primals_1, primals_3, primals_4, buf1, buf2, buf3,
reinterpret_tensor(buf5, (4, 1600), (1600, 1), 0), buf7, buf9,
buf12, primals_10, primals_8, primals_6)
class NetworkNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 10 * 10, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
ibrahimalmakky/py4ai
|
Network
| false | 10,210 |
[
"MIT"
] | 0 |
224f54086523314ff9c7133680f119c62f6ea249
|
https://github.com/ibrahimalmakky/py4ai/tree/224f54086523314ff9c7133680f119c62f6ea249
|
ComplexConv
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/hu/chuyhfal6unm2glvnv2o25jncg7prpzpoibqrpgzq2pm2ai5ww6k.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# output => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sub, %add], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr2 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr3 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp8 + tmp9
tmp11 = tmp7 - tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 8, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + ((4*x1) + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + ((-4) + x0), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr3 + ((-4) + x0), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tmp20 + tmp21
tmp23 = tmp19 + tmp22
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp14, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp13, tmp25)
tl.store(out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 8, 4), (32, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4), (32, 4, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1), (4, 1, 1))
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4), (32, 4, 1), 16), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1), (4, 1, 1))
buf2 = empty_strided_cuda((4, 8, 1), (8, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, buf1, primals_5, buf2, 32, grid=grid(32), stream=stream0)
del buf0
del buf1
del primals_3
del primals_5
return (buf2, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (32, 4, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (32, 4, 1), 16), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 8, 4), (32, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ComplexConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(ComplexConv, self).__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else
'cpu')
self.padding = padding
self.conv_re = nn.Conv1d(in_channel, out_channel, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.conv_im = nn.Conv1d(in_channel, out_channel, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
def forward(self, x):
n = x.size()[1]
m = int(n / 2)
x_real = x[:, :m]
x_imag = x[:, m:]
real = self.conv_re(x_real) - self.conv_im(x_imag)
imaginary = self.conv_re(x_real) + self.conv_im(x_imag)
output = torch.cat((real, imaginary), dim=1)
return output
def get_inputs():
return [torch.rand([4, 8, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr2 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp9 = tl.load(in_ptr3 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tmp8 + tmp9
tmp11 = tmp7 - tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp17 = tl.load(in_ptr0 + (4 * x1 + (-4 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr1 + (-4 + x0), tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr3 + (-4 + x0), tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp22 = tmp20 + tmp21
tmp23 = tmp19 + tmp22
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp14, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp13, tmp25)
tl.store(out_ptr0 + x2, tmp26, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 8, 4), (32, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4,
4, 4), (32, 4, 1), 0), primals_2, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (4, 4, 1), (4, 1, 1))
buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4,
4, 4), (32, 4, 1), 16), primals_4, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf1, (4, 4, 1), (4, 1, 1))
buf2 = empty_strided_cuda((4, 8, 1), (8, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](buf0, primals_3, buf1, primals_5,
buf2, 32, XBLOCK=32, num_warps=1, num_stages=1)
del buf0
del buf1
del primals_3
del primals_5
return buf2, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4,
4), (32, 4, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (32, 4,
1), 16)
class ComplexConvNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(ComplexConvNew, self).__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else
'cpu')
self.padding = padding
self.conv_re = nn.Conv1d(in_channel, out_channel, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.conv_im = nn.Conv1d(in_channel, out_channel, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
def forward(self, input_0):
primals_2 = self.conv_re.weight
primals_3 = self.conv_re.bias
primals_4 = self.conv_im.weight
primals_5 = self.conv_im.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
iseeklin/Electromagnetic-Signal-Recognition-Using-Deep-Learning
|
ComplexConv
| false | 10,211 |
[
"Apache-2.0"
] | 0 |
be78a2d966f33fd90567b21295cda1c1d472e14a
|
https://github.com/iseeklin/Electromagnetic-Signal-Recognition-Using-Deep-Learning/tree/be78a2d966f33fd90567b21295cda1c1d472e14a
|
NsSymKlCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/m3/cm3oyfplxv4jfq4lzivy2ytiixh7r3jdutou2fi3p7bnl5g734sl.py
# Topologically Sorted Source Nodes: [log_softmax, log_softmax_3], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# log_softmax_3 => amax_3, sub_9
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax_3), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dc/cdcsseiicjcgc6sqlyyouett3fn2xszalsbnt3viybno45khl7l3.py
# Topologically Sorted Source Nodes: [log_softmax, p, add, truediv, sub, add_1, log, rp, log_softmax_1, y, add_2, truediv_1, sub_1, add_3, log_1, ry, sub_2, mul, mul_1, sum_1, truediv_2, log_softmax_2, p_1, add_4, truediv_3, sub_3, add_5, log_2, rp_1, log_softmax_3, y_1, add_6, truediv_4, sub_4, add_7, log_3, ry_1, sub_5, mul_2, mul_3, sum_2, truediv_5, loss, loss_1], Original ATen: [aten._log_softmax, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.sub, aten.log, aten.neg, aten.sum, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# add_7 => add_7
# log => log_2
# log_1 => log_3
# log_2 => log_6
# log_3 => log_7
# log_softmax => exp, log, sub_1, sum_1
# log_softmax_1 => exp_2, log_1, sub_3, sum_2
# log_softmax_2 => exp_4, log_4, sub_8, sum_4
# log_softmax_3 => exp_6, log_5, sub_10, sum_5
# loss => add_8
# loss_1 => mul_8
# mul => mul_2
# mul_1 => mul_3
# mul_2 => mul_6
# mul_3 => mul_7
# p => exp_1
# p_1 => exp_5
# rp => neg
# rp_1 => neg_2
# ry => neg_1
# ry_1 => neg_3
# sub => sub_4
# sub_1 => sub_5
# sub_2 => sub_6
# sub_3 => sub_11
# sub_4 => sub_12
# sub_5 => sub_13
# sum_1 => sum_3
# sum_2 => sum_6
# truediv => mul, reciprocal
# truediv_1 => mul_1, reciprocal_1
# truediv_2 => div
# truediv_3 => mul_4, reciprocal_2
# truediv_4 => mul_5, reciprocal_3
# truediv_5 => div_1
# y => exp_3
# y_1 => exp_7
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, 1e-06), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_4, 1e-06), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_2,), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %log_1), kwargs = {})
# %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_3, 1e-06), kwargs = {})
# %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 1.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_5, 1e-06), kwargs = {})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_3,), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg, %neg_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %sub_6), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, 2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 64), kwargs = {})
# %exp_4 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_7,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_4, [1], True), kwargs = {})
# %log_4 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_7, %log_4), kwargs = {})
# %exp_5 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_8,), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_5, 1e-06), kwargs = {})
# %reciprocal_2 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_4,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_2, 1.0), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, 1), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_11, 1e-06), kwargs = {})
# %log_6 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_5,), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_6,), kwargs = {})
# %exp_6 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_9,), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_6, [1], True), kwargs = {})
# %log_5 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_5,), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_9, %log_5), kwargs = {})
# %exp_7 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_10,), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_7, 1e-06), kwargs = {})
# %reciprocal_3 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_6,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_3, 1.0), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 1), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_12, 1e-06), kwargs = {})
# %log_7 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_7,), kwargs = {})
# %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_7,), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_2, %neg_3), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_5, %sub_13), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, 2), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_7,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, 64), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 1.0), kwargs = {})
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1 = async_compile.triton('triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp52 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp102 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp25 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp26 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp34 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp54 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp55 = tl.load(in_ptr2 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.load(in_ptr2 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp60 = tl.load(in_ptr2 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp63 = tl.load(in_ptr2 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr3 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr3 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp79 = tl.load(in_ptr3 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.load(in_ptr3 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr3 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tl.full([1, 1], 1, tl.int32)
tmp18 = tmp17 / tmp16
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tmp21 = tmp20 - tmp19
tmp22 = tmp21 + tmp15
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp39 + tmp15
tmp41 = tmp17 / tmp40
tmp42 = tmp41 * tmp19
tmp43 = tmp42 - tmp19
tmp44 = tmp43 + tmp15
tmp45 = tl_math.log(tmp44)
tmp46 = -tmp45
tmp47 = tmp24 - tmp46
tmp48 = tmp14 * tmp47
tmp49 = 2.0
tmp50 = tmp48 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = _tmp52 + tmp51
_tmp52 = tl.where(rmask, tmp53, _tmp52)
tmp56 = tl_math.exp(tmp55)
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp59 + tmp61
tmp64 = tl_math.exp(tmp63)
tmp65 = tmp62 + tmp64
tmp66 = tl_math.log(tmp65)
tmp67 = tmp54 - tmp66
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 + tmp15
tmp70 = tmp17 / tmp69
tmp71 = tmp70 * tmp19
tmp72 = tmp71 - tmp19
tmp73 = tmp72 + tmp15
tmp74 = tl_math.log(tmp73)
tmp75 = -tmp74
tmp78 = tl_math.exp(tmp77)
tmp80 = tl_math.exp(tmp79)
tmp81 = tmp78 + tmp80
tmp83 = tl_math.exp(tmp82)
tmp84 = tmp81 + tmp83
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp84 + tmp86
tmp88 = tl_math.log(tmp87)
tmp89 = tmp76 - tmp88
tmp90 = tl_math.exp(tmp89)
tmp91 = tmp90 + tmp15
tmp92 = tmp17 / tmp91
tmp93 = tmp92 * tmp19
tmp94 = tmp93 - tmp19
tmp95 = tmp94 + tmp15
tmp96 = tl_math.log(tmp95)
tmp97 = -tmp96
tmp98 = tmp75 - tmp97
tmp99 = tmp68 * tmp98
tmp100 = tmp99 * tmp49
tmp101 = tl.broadcast_to(tmp100, [XBLOCK, RBLOCK])
tmp103 = _tmp102 + tmp101
_tmp102 = tl.where(rmask, tmp103, _tmp102)
tmp52 = tl.sum(_tmp52, 1)[:, None]
tmp102 = tl.sum(_tmp102, 1)[:, None]
tmp104 = 0.015625
tmp105 = tmp52 * tmp104
tmp106 = tmp102 * tmp104
tmp107 = tmp105 + tmp106
tmp108 = 1.0
tmp109 = tmp107 * tmp108
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp109, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax, log_softmax_3], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, buf7, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax_1, log_softmax_2], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_0.run(arg1_1, buf2, buf5, 256, grid=grid(256), stream=stream0)
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf10 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [log_softmax, p, add, truediv, sub, add_1, log, rp, log_softmax_1, y, add_2, truediv_1, sub_1, add_3, log_1, ry, sub_2, mul, mul_1, sum_1, truediv_2, log_softmax_2, p_1, add_4, truediv_3, sub_3, add_5, log_2, rp_1, log_softmax_3, y_1, add_6, truediv_4, sub_4, add_7, log_3, ry_1, sub_5, mul_2, mul_3, sum_2, truediv_5, loss, loss_1], Original ATen: [aten._log_softmax, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.sub, aten.log, aten.neg, aten.sum, aten.div]
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1.run(buf10, buf0, buf2, buf5, buf7, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
del buf5
del buf7
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
def stable_kl(logit, target, epsilon=1e-06, reduce=True):
logit = logit.view(-1, logit.size(-1)).float()
target = target.view(-1, target.size(-1)).float()
bs = logit.size(0)
p = F.log_softmax(logit, 1).exp()
y = F.log_softmax(target, 1).exp()
rp = -(1.0 / (p + epsilon) - 1 + epsilon).detach().log()
ry = -(1.0 / (y + epsilon) - 1 + epsilon).detach().log()
if reduce:
return (p * (rp - ry) * 2).sum() / bs
else:
return (p * (rp - ry) * 2).sum()
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class NsSymKlCriterion(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""input/target: logits
"""
input = input.float()
target = target.float()
loss = stable_kl(input, target.detach()) + stable_kl(target, input.
detach())
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
@triton.jit
def triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp52 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp102 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp9 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp26 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp31 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp34 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp54 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp55 = tl.load(in_ptr2 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp57 = tl.load(in_ptr2 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp60 = tl.load(in_ptr2 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp63 = tl.load(in_ptr2 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp76 = tl.load(in_ptr3 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp77 = tl.load(in_ptr3 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp79 = tl.load(in_ptr3 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp82 = tl.load(in_ptr3 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp85 = tl.load(in_ptr3 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tl.full([1, 1], 1, tl.int32)
tmp18 = tmp17 / tmp16
tmp19 = 1.0
tmp20 = tmp18 * tmp19
tmp21 = tmp20 - tmp19
tmp22 = tmp21 + tmp15
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp39 + tmp15
tmp41 = tmp17 / tmp40
tmp42 = tmp41 * tmp19
tmp43 = tmp42 - tmp19
tmp44 = tmp43 + tmp15
tmp45 = tl_math.log(tmp44)
tmp46 = -tmp45
tmp47 = tmp24 - tmp46
tmp48 = tmp14 * tmp47
tmp49 = 2.0
tmp50 = tmp48 * tmp49
tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK])
tmp53 = _tmp52 + tmp51
_tmp52 = tl.where(rmask, tmp53, _tmp52)
tmp56 = tl_math.exp(tmp55)
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp59 + tmp61
tmp64 = tl_math.exp(tmp63)
tmp65 = tmp62 + tmp64
tmp66 = tl_math.log(tmp65)
tmp67 = tmp54 - tmp66
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 + tmp15
tmp70 = tmp17 / tmp69
tmp71 = tmp70 * tmp19
tmp72 = tmp71 - tmp19
tmp73 = tmp72 + tmp15
tmp74 = tl_math.log(tmp73)
tmp75 = -tmp74
tmp78 = tl_math.exp(tmp77)
tmp80 = tl_math.exp(tmp79)
tmp81 = tmp78 + tmp80
tmp83 = tl_math.exp(tmp82)
tmp84 = tmp81 + tmp83
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp84 + tmp86
tmp88 = tl_math.log(tmp87)
tmp89 = tmp76 - tmp88
tmp90 = tl_math.exp(tmp89)
tmp91 = tmp90 + tmp15
tmp92 = tmp17 / tmp91
tmp93 = tmp92 * tmp19
tmp94 = tmp93 - tmp19
tmp95 = tmp94 + tmp15
tmp96 = tl_math.log(tmp95)
tmp97 = -tmp96
tmp98 = tmp75 - tmp97
tmp99 = tmp68 * tmp98
tmp100 = tmp99 * tmp49
tmp101 = tl.broadcast_to(tmp100, [XBLOCK, RBLOCK])
tmp103 = _tmp102 + tmp101
_tmp102 = tl.where(rmask, tmp103, _tmp102)
tmp52 = tl.sum(_tmp52, 1)[:, None]
tmp102 = tl.sum(_tmp102, 1)[:, None]
tmp104 = 0.015625
tmp105 = tmp52 * tmp104
tmp106 = tmp102 * tmp104
tmp107 = tmp105 + tmp106
tmp108 = 1.0
tmp109 = tmp107 * tmp108
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp109, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, buf7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf2, buf5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf10 = buf4
del buf4
triton_red_fused__log_softmax_add_div_exp_log_mul_neg_reciprocal_sub_sum_1[
grid(1)](buf10, buf0, buf2, buf5, buf7, 1, 256, XBLOCK=1,
RBLOCK=256, num_warps=8, num_stages=1)
del buf0
del buf2
del buf5
del buf7
return buf10,
def stable_kl(logit, target, epsilon=1e-06, reduce=True):
logit = logit.view(-1, logit.size(-1)).float()
target = target.view(-1, target.size(-1)).float()
bs = logit.size(0)
p = F.log_softmax(logit, 1).exp()
y = F.log_softmax(target, 1).exp()
rp = -(1.0 / (p + epsilon) - 1 + epsilon).detach().log()
ry = -(1.0 / (y + epsilon) - 1 + epsilon).detach().log()
if reduce:
return (p * (rp - ry) * 2).sum() / bs
else:
return (p * (rp - ry) * 2).sum()
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class NsSymKlCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
NsSymKlCriterion
| false | 10,212 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
Pooling
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ji/cji4hxxpm6hsn75kd2crjzu4er5k356aqcslauo4gbevbrw7m2ca.py
# Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.avg_pool2d, aten.add]
# Source node to ATen node mapping:
# x => avg_pool2d
# x_2 => add
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [4, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 0), kwargs = {})
triton_poi_fused_add_avg_pool2d_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_avg_pool2d_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = 0.0
tmp34 = tmp32 + tmp33
tl.store(in_out_ptr0 + (x0), tmp34, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.avg_pool2d, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_0.run(buf1, arg0_1, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class Pooling(nn.Module):
def __init__(self, pooling_type=['GAP']):
super(Pooling, self).__init__()
self.pooling = []
for method in pooling_type:
if method == 'GAP':
self.pooling.append(F.avg_pool2d)
elif method == 'GMP':
self.pooling.append(F.max_pool2d)
def forward(self, input_tensor):
adaptiveAvgPoolWidth = input_tensor.shape[2]
x_list = []
for pooling in self.pooling:
x = pooling(input_tensor, kernel_size=adaptiveAvgPoolWidth)
x = x.view(x.size(0), -1)
x_list.append(x)
x = sum(x_list)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_avg_pool2d_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = 0.0
tmp34 = tmp32 + tmp33
tl.store(in_out_ptr0 + x0, tmp34, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_0[grid(16)](buf1, arg0_1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf1,
class PoolingNew(nn.Module):
def __init__(self, pooling_type=['GAP']):
super(PoolingNew, self).__init__()
self.pooling = []
for method in pooling_type:
if method == 'GAP':
self.pooling.append(F.avg_pool2d)
elif method == 'GMP':
self.pooling.append(F.max_pool2d)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
heebinYoo/proxy-synthesis-confidence-control-new
|
Pooling
| false | 10,213 |
[
"Apache-2.0"
] | 0 |
c591cdffc30cf933bd242ba5646d2436a42a3181
|
https://github.com/heebinYoo/proxy-synthesis-confidence-control-new/tree/c591cdffc30cf933bd242ba5646d2436a42a3181
|
SymKlCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wv/cwvti54lsojjpkh6f73xsvv55wjtno2rrmtjgaznlsjst37yn74a.py
# Topologically Sorted Source Nodes: [softmax, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax_1 => amax_2, sub_4
# softmax => amax_1, exp_1, sub_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_2), kwargs = {})
triton_poi_fused__log_softmax__softmax_0 = async_compile.triton('triton_poi_fused__log_softmax__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7m/c7m62lqyfgv73n2cb7qnzr2xodmurvv7yy6z2m7nhu5m3pfdjjxe.py
# Topologically Sorted Source Nodes: [log_softmax, softmax_1], Original ATen: [aten._log_softmax, aten._softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# softmax_1 => amax_3, exp_3, sub_6
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_3), kwargs = {})
# %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_6,), kwargs = {})
triton_poi_fused__log_softmax__softmax_1 = async_compile.triton('triton_poi_fused__log_softmax__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7u/c7udesn7p5qs3jrwgyf3hzg46tjjmy4azf3ycyya63euoc5gcym5.py
# Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax, softmax_1, kl_div_1, log_softmax_1, loss, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div, aten.add]
# Source node to ATen node mapping:
# kl_div => div_1, eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub_3, sum_3, where, where_1
# kl_div_1 => div_3, eq_1, full_default_2, full_default_3, isnan_1, log_3, mul_2, mul_3, sub_7, sum_6, where_2, where_3
# log_softmax => exp, log, sub_1, sum_1
# log_softmax_1 => exp_2, log_2, sub_5, sum_4
# loss => add
# loss_1 => mul_4
# softmax => div, sum_2
# softmax_1 => div_2, sum_5
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [-1], True), kwargs = {})
# %div_2 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_5), kwargs = {})
# %isnan_1 : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div_2,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div_2, 0), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %log_3), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_2, %mul_3), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan_1, %full_default_3, %where_2), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [-1], True), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %sub_5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %mul_2), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_7,), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, %div_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1.0), kwargs = {})
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2 = async_compile.triton('triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp34 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp68 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr0 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp18 = tl.load(in_ptr1 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr1 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp26 = tl.load(in_ptr1 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp36 = tl.load(in_ptr2 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp37 = tl.load(in_ptr2 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr2 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr2 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp42 = tl.load(in_ptr2 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp51 = tl.load(in_ptr3 + (r2), rmask, eviction_policy='evict_first', other=0.0)
tmp52 = tl.load(in_ptr3 + (4*r1), rmask, eviction_policy='evict_last', other=0.0)
tmp54 = tl.load(in_ptr3 + (1 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.load(in_ptr3 + (2 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp60 = tl.load(in_ptr3 + (3 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float("nan")
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = _tmp34 + tmp33
_tmp34 = tl.where(rmask, tmp35, _tmp34)
tmp39 = tmp37 + tmp38
tmp41 = tmp39 + tmp40
tmp43 = tmp41 + tmp42
tmp44 = tmp36 / tmp43
tmp45 = libdevice.isnan(tmp44).to(tl.int1)
tmp46 = tmp44 == tmp10
tmp47 = tl_math.log(tmp44)
tmp48 = tmp44 * tmp47
tmp49 = tl.where(tmp46, tmp10, tmp48)
tmp50 = tl.where(tmp45, tmp15, tmp49)
tmp53 = tl_math.exp(tmp52)
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp53 + tmp55
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp59 + tmp61
tmp63 = tl_math.log(tmp62)
tmp64 = tmp51 - tmp63
tmp65 = tmp44 * tmp64
tmp66 = tmp50 - tmp65
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = _tmp68 + tmp67
_tmp68 = tl.where(rmask, tmp69, _tmp68)
tmp34 = tl.sum(_tmp34, 1)[:, None]
tmp68 = tl.sum(_tmp68, 1)[:, None]
tmp70 = 0.25
tmp71 = tmp34 * tmp70
tmp72 = tmp68 * tmp70
tmp73 = tmp71 + tmp72
tmp74 = 1.0
tmp75 = tmp73 * tmp74
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp75, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, log_softmax_1], Original ATen: [aten._softmax, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0.run(arg1_1, buf0, buf6, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax, softmax_1], Original ATen: [aten._log_softmax, aten._softmax]
triton_poi_fused__log_softmax__softmax_1.run(arg0_1, buf2, buf4, 256, grid=grid(256), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax, kl_div, log_softmax, softmax_1, kl_div_1, log_softmax_1, loss, loss_1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div, aten.add]
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2.run(buf8, buf0, buf2, buf4, buf6, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
del buf4
del buf6
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class SymKlCriterion(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1,
reduction='batchmean'):
"""input/target: logits
"""
input = input.float()
target = target.float()
loss = F.kl_div(F.log_softmax(input, dim=-1, dtype=torch.float32),
F.softmax(target.detach(), dim=-1, dtype=torch.float32),
reduction=reduction) + F.kl_div(F.log_softmax(target, dim=-1,
dtype=torch.float32), F.softmax(input.detach(), dim=-1, dtype=
torch.float32), reduction=reduction)
loss = loss * self.alpha
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
from torch.optim.lr_scheduler import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax__softmax_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp9, xmask)
@triton.jit
def triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp34 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp68 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp18 = tl.load(in_ptr1 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.load(in_ptr1 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp23 = tl.load(in_ptr1 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp26 = tl.load(in_ptr1 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp36 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp37 = tl.load(in_ptr2 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp38 = tl.load(in_ptr2 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp40 = tl.load(in_ptr2 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr2 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp51 = tl.load(in_ptr3 + r2, rmask, eviction_policy='evict_first',
other=0.0)
tmp52 = tl.load(in_ptr3 + 4 * r1, rmask, eviction_policy=
'evict_last', other=0.0)
tmp54 = tl.load(in_ptr3 + (1 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp57 = tl.load(in_ptr3 + (2 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp60 = tl.load(in_ptr3 + (3 + 4 * r1), rmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float('nan')
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = _tmp34 + tmp33
_tmp34 = tl.where(rmask, tmp35, _tmp34)
tmp39 = tmp37 + tmp38
tmp41 = tmp39 + tmp40
tmp43 = tmp41 + tmp42
tmp44 = tmp36 / tmp43
tmp45 = libdevice.isnan(tmp44).to(tl.int1)
tmp46 = tmp44 == tmp10
tmp47 = tl_math.log(tmp44)
tmp48 = tmp44 * tmp47
tmp49 = tl.where(tmp46, tmp10, tmp48)
tmp50 = tl.where(tmp45, tmp15, tmp49)
tmp53 = tl_math.exp(tmp52)
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp53 + tmp55
tmp58 = tl_math.exp(tmp57)
tmp59 = tmp56 + tmp58
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp59 + tmp61
tmp63 = tl_math.log(tmp62)
tmp64 = tmp51 - tmp63
tmp65 = tmp44 * tmp64
tmp66 = tmp50 - tmp65
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = _tmp68 + tmp67
_tmp68 = tl.where(rmask, tmp69, _tmp68)
tmp34 = tl.sum(_tmp34, 1)[:, None]
tmp68 = tl.sum(_tmp68, 1)[:, None]
tmp70 = 0.25
tmp71 = tmp34 * tmp70
tmp72 = tmp68 * tmp70
tmp73 = tmp71 + tmp72
tmp74 = 1.0
tmp75 = tmp73 * tmp74
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp75, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax__softmax_0[grid(256)](arg1_1, buf0,
buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax__softmax_1[grid(256)](arg0_1, buf2,
buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf8 = buf3
del buf3
triton_red_fused__log_softmax__softmax_add_div_mul_sub_sum_xlogy_2[grid
(1)](buf8, buf0, buf2, buf4, buf6, 1, 256, XBLOCK=1, RBLOCK=256,
num_warps=8, num_stages=1)
del buf0
del buf2
del buf4
del buf6
return buf8,
class Criterion(_Loss):
def __init__(self, alpha=1.0, name='criterion'):
super().__init__()
"""Alpha is used to weight each loss term
"""
self.alpha = alpha
self.name = name
def forward(self, input, target, weight=None, ignore_index=-1):
"""weight: sample weight
"""
return
class SymKlCriterionNew(Criterion):
def __init__(self, alpha=1.0, name='KL Div Criterion'):
super().__init__()
self.alpha = alpha
self.name = name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
chunhuililili/mt_dnn
|
SymKlCriterion
| false | 10,214 |
[
"MIT"
] | 0 |
4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
https://github.com/chunhuililili/mt_dnn/tree/4c6efaf21724c7b8103a05e46b5b44d7b246225e
|
Feedforward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/m6/cm6nixhuxyf76p5x5wtskqwfrb5kdl2bfda4t34yltftpilyxauy.py
# Topologically Sorted Source Nodes: [inp], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# inp => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (64*((-4) + x1))), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ow/cowe67anxreez4toyyqf662mlqiithr7fgdvoihceoifbly2hc4v.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/aj/cajrg52z57wyh2izr245yxqora6gw2izo4h7lecftzupjn6tbagi.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# output_1 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (100, 4), (4, 1))
assert_size_stride(primals_4, (100, ), (1, ))
assert_size_stride(primals_5, (1, 100), (100, 1))
assert_size_stride(primals_6, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inp], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 100), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (8, 4, 4, 100), (1600, 400, 100, 1), 0); del buf1 # reuse
buf5 = empty_strided_cuda((8, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf5, 12800, grid=grid(12800), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (128, 100), (100, 1), 0), reinterpret_tensor(primals_5, (100, 1), (1, 100), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (8, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf4, primals_6, 128, grid=grid(128), stream=stream0)
del primals_6
return (buf4, reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(buf2, (128, 100), (100, 1), 0), buf4, primals_5, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class Feedforward(torch.nn.Module):
def __init__(self, input_size, hidden_size=100):
super(Feedforward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(self.hidden_size, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x, y):
inp = torch.vstack([x, y])
hidden = self.fc1(inp)
relu = self.relu(hidden)
output = self.fc2(relu)
output = self.sigmoid(output)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 64 * (-4 + x1)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (100, 4), (4, 1))
assert_size_stride(primals_4, (100,), (1,))
assert_size_stride(primals_5, (1, 100), (100, 1))
assert_size_stride(primals_6, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 100), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (8, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf1
buf5 = empty_strided_cuda((8, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(12800)](buf2,
primals_4, buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (128, 100), (100, 1), 0),
reinterpret_tensor(primals_5, (100, 1), (1, 100), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (8, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_sigmoid_2[grid(128)](buf4, primals_6, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_6
return buf4, reinterpret_tensor(buf0, (128, 4), (4, 1), 0
), reinterpret_tensor(buf2, (128, 100), (100, 1), 0
), buf4, primals_5, buf5
class FeedforwardNew(torch.nn.Module):
def __init__(self, input_size, hidden_size=100):
super(FeedforwardNew, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(self.hidden_size, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
jacob-parnell-rozetta/longformer_coverage
|
Feedforward
| false | 10,215 |
[
"Apache-2.0"
] | 0 |
59268bc7ae7eeb962c43080e524eaf1e62100b6c
|
https://github.com/jacob-parnell-rozetta/longformer_coverage/tree/59268bc7ae7eeb962c43080e524eaf1e62100b6c
|
ToMono
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2c/c2caasuan6xkydnq2bvliamlyid6cl5fcz5kcz2mnyns45wtxqbs.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ToMono(nn.Module):
def forward(self, waveform: 'torch.Tensor') ->torch.Tensor:
return torch.mean(waveform, dim=0, keepdim=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class ToMonoNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
icyda17/very-deep-CNNs
|
ToMono
| false | 10,216 |
[
"Apache-2.0"
] | 0 |
c275ef222d50dae90e508345ec3be5adfa5e33ce
|
https://github.com/icyda17/very-deep-CNNs/tree/c275ef222d50dae90e508345ec3be5adfa5e33ce
|
VAE_genes
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/g3/cg3el2gn3jo2uczn6kvxebxonhlsgf4gykdxpouwhsyjf55b5gdg.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/d7/cd7rilnjd42cirsc5dhnnwlficmjz5omrtsdfojgouhplcpynn4n.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h2 => relu_1
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {})
# %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ex/cexwuc6up4cv5uxb46cafc3eelvzsyfhdhsot7lgpz5xv7tenoc2.py
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# std => exp
# z => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_3, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %addmm_2), kwargs = {})
triton_poi_fused_add_exp_mul_2 = async_compile.triton('triton_poi_fused_add_exp_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tmp7 = tmp5 + tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vi/cvil5wapkv4i6x23roc23ppu6hrxwtoanlup7tzw5srvw23sealm.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3628
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 907
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 907), (907, 1))
assert_size_stride(primals_2, (500, 907), (907, 1))
assert_size_stride(primals_3, (500, ), (1, ))
assert_size_stride(primals_4, (100, 500), (500, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (5, 100), (100, 1))
assert_size_stride(primals_7, (5, ), (1, ))
assert_size_stride(primals_8, (5, 100), (100, 1))
assert_size_stride(primals_9, (5, ), (1, ))
assert_size_stride(primals_10, (100, 5), (5, 1))
assert_size_stride(primals_11, (100, ), (1, ))
assert_size_stride(primals_12, (500, 100), (100, 1))
assert_size_stride(primals_13, (500, ), (1, ))
assert_size_stride(primals_14, (907, 500), (500, 1))
assert_size_stride(primals_15, (907, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (907, 500), (1, 907), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 2000, grid=grid(2000), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 100), (1, 500), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 400, grid=grid(400), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5)
del primals_9
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
triton_poi_fused_add_exp_mul_2.run(buf7, buf5, buf4, buf8, 20, grid=grid(20), stream=stream0)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1, 5), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_11, 400, grid=grid(400), stream=stream0)
del primals_11
buf11 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 500), (1, 100), 0), out=buf11)
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [h4], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf12, primals_13, 2000, grid=grid(2000), stream=stream0)
del primals_13
buf13 = empty_strided_cuda((4, 907), (907, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (500, 907), (1, 500), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf14, primals_15, 3628, grid=grid(3628), stream=stream0)
del primals_15
return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8, buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 907), (907, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((500, 907), (907, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((100, 5), (5, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((500, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((907, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((907, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
class VAE_genes(nn.Module):
def __init__(self):
super(VAE_genes, self).__init__()
self.input_linear = nn.Linear(907, 500)
self.enc_middle = nn.Linear(500, 100)
self.enc_1 = nn.Linear(100, 5)
self.enc_2 = nn.Linear(100, 5)
self.dec_0 = nn.Linear(5, 100)
self.dec_middle = nn.Linear(100, 500)
self.output_linear = nn.Linear(500, 907)
def encode(self, x):
h1 = F.relu(self.input_linear(x))
h2 = F.relu(self.enc_middle(h1))
return self.enc_1(h2), self.enc_2(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.dec_0(z))
h4 = F.relu(self.dec_middle(h3))
return torch.sigmoid(self.output_linear(h4))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 907))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 907])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tmp7 = tmp5 + tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 3628
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 907
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 907), (907, 1))
assert_size_stride(primals_2, (500, 907), (907, 1))
assert_size_stride(primals_3, (500,), (1,))
assert_size_stride(primals_4, (100, 500), (500, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (5, 100), (100, 1))
assert_size_stride(primals_7, (5,), (1,))
assert_size_stride(primals_8, (5, 100), (100, 1))
assert_size_stride(primals_9, (5,), (1,))
assert_size_stride(primals_10, (100, 5), (5, 1))
assert_size_stride(primals_11, (100,), (1,))
assert_size_stride(primals_12, (500, 100), (100, 1))
assert_size_stride(primals_13, (500,), (1,))
assert_size_stride(primals_14, (907, 500), (500, 1))
assert_size_stride(primals_15, (907,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (907,
500), (1, 907), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(2000)](buf1, primals_3, 2000, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 100), (
1, 500), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(400)](buf3, primals_5, 400, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
triton_poi_fused_add_exp_mul_2[grid(20)](buf7, buf5, buf4, buf8, 20,
XBLOCK=32, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1,
5), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(400)](buf10, primals_11, 400, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_11
buf11 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 500),
(1, 100), 0), out=buf11)
buf12 = buf11
del buf11
triton_poi_fused_relu_0[grid(2000)](buf12, primals_13, 2000, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_13
buf13 = empty_strided_cuda((4, 907), (907, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (500, 907),
(1, 500), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_sigmoid_3[grid(3628)](buf14, primals_15, 3628,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8,
buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8,
primals_6, primals_4)
class VAE_genesNew(nn.Module):
def __init__(self):
super(VAE_genesNew, self).__init__()
self.input_linear = nn.Linear(907, 500)
self.enc_middle = nn.Linear(500, 100)
self.enc_1 = nn.Linear(100, 5)
self.enc_2 = nn.Linear(100, 5)
self.dec_0 = nn.Linear(5, 100)
self.dec_middle = nn.Linear(100, 500)
self.output_linear = nn.Linear(500, 907)
def encode(self, x):
h1 = F.relu(self.input_linear(x))
h2 = F.relu(self.enc_middle(h1))
return self.enc_1(h2), self.enc_2(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.dec_0(z))
h4 = F.relu(self.dec_middle(h3))
return torch.sigmoid(self.output_linear(h4))
def forward(self, input_0):
primals_2 = self.input_linear.weight
primals_3 = self.input_linear.bias
primals_4 = self.enc_middle.weight
primals_5 = self.enc_middle.bias
primals_6 = self.enc_1.weight
primals_7 = self.enc_1.bias
primals_8 = self.enc_2.weight
primals_9 = self.enc_2.bias
primals_10 = self.dec_0.weight
primals_11 = self.dec_0.bias
primals_12 = self.dec_middle.weight
primals_13 = self.dec_middle.bias
primals_14 = self.output_linear.weight
primals_15 = self.output_linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
|
helenaandres/adversarial-generation-of-gene-expression-data
|
VAE_genes
| false | 10,217 |
[
"MIT"
] | 0 |
9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
|
https://github.com/helenaandres/adversarial-generation-of-gene-expression-data/tree/9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
|
Normalize
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/au/cauoqsg2cv2zjgirqxzbpuecwen54i554wu3e7y5ryzy3krptidd.py
# Topologically Sorted Source Nodes: [mean, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
# Source node to ATen node mapping:
# mean => mean
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1,), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp1, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 255.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0.run(arg0_1, buf4, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Normalize(nn.Module):
def forward(self, waveform: 'torch.Tensor') ->torch.Tensor:
return (waveform - waveform.mean()) / waveform.std()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp1, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 255.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp22, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0[grid(1)](arg0_1, buf4, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf4,
class NormalizeNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
icyda17/very-deep-CNNs
|
Normalize
| false | 10,218 |
[
"Apache-2.0"
] | 0 |
c275ef222d50dae90e508345ec3be5adfa5e33ce
|
https://github.com/icyda17/very-deep-CNNs/tree/c275ef222d50dae90e508345ec3be5adfa5e33ce
|
Pad
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/4m/c4m5w4y7qnqrt7o32xjvwkhlxdmbadwmibuly55v4t4jrg6szca5.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [0, 0], 4.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Pad(nn.Module):
def __init__(self, value: 'float', size: 'int'):
super().__init__()
self.value = value
self.size = size
def forward(self, waveform: 'torch.Tensor') ->torch.Tensor:
return F.pad(waveform, (0, self.size - max(waveform.shape)),
'constant', self.value)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'value': 4, 'size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PadNew(nn.Module):
def __init__(self, value: 'float', size: 'int'):
super().__init__()
self.value = value
self.size = size
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
icyda17/very-deep-CNNs
|
Pad
| false | 10,219 |
[
"Apache-2.0"
] | 0 |
c275ef222d50dae90e508345ec3be5adfa5e33ce
|
https://github.com/icyda17/very-deep-CNNs/tree/c275ef222d50dae90e508345ec3be5adfa5e33ce
|
SeeInDark
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ef/ceftracrmerrbemjjdhh7djkqjczvpuee7nri7hosphedyfg4qun.py
# Topologically Sorted Source Nodes: [conv2d, mul, outt], Original ATen: [aten.convolution, aten.mul, aten.maximum]
# Source node to ATen node mapping:
# conv2d => convolution
# mul => mul
# outt => maximum
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %convolution), kwargs = {})
triton_poi_fused_convolution_maximum_mul_0 = async_compile.triton('triton_poi_fused_convolution_maximum_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_maximum_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/36/c36goqekbheqmzqx63ibehvw5xzi6nve5f33bertb3dmpfgep4fh.py
# Topologically Sorted Source Nodes: [pool1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# pool1 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/op/cop5rjn3v7lha5wdtulxqjcsubv55pvwiymxzcm62e6coonrliwx.py
# Topologically Sorted Source Nodes: [conv2d_2, mul_2, outt_2], Original ATen: [aten.convolution, aten.mul, aten.maximum]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# mul_2 => mul_2
# outt_2 => maximum_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %maximum_2 : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%mul_2, %convolution_2), kwargs = {})
triton_poi_fused_convolution_maximum_mul_2 = async_compile.triton('triton_poi_fused_convolution_maximum_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_maximum_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gq/cgqvpghyzwkbypvbvlyig6ohuplw6qvhn73hkwj6auj5e2m5mqio.py
# Topologically Sorted Source Nodes: [pool2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# pool2 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6l/c6lesexdwr5nm6d7lsdkgo4l566e3scq6zxgfqxi47wmtf4kto7r.py
# Topologically Sorted Source Nodes: [conv2d_4, mul_4, outt_4], Original ATen: [aten.convolution, aten.mul, aten.maximum]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# mul_4 => mul_4
# outt_4 => maximum_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.2), kwargs = {})
# %maximum_4 : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%mul_4, %convolution_4), kwargs = {})
triton_poi_fused_convolution_maximum_mul_4 = async_compile.triton('triton_poi_fused_convolution_maximum_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_maximum_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/sa/csaftzx2wizpjlh3kfhvehexsbodntymkhlieviiunpbabb3qdpw.py
# Topologically Sorted Source Nodes: [pool3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# pool3 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5g/c5gabmoosr2vahlotqfnxbwjnu33tmpcwuvsws5hasjyjdottuvk.py
# Topologically Sorted Source Nodes: [conv2d_6, mul_6, outt_6], Original ATen: [aten.convolution, aten.mul, aten.maximum]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# mul_6 => mul_6
# outt_6 => maximum_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.2), kwargs = {})
# %maximum_6 : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%mul_6, %convolution_6), kwargs = {})
triton_poi_fused_convolution_maximum_mul_6 = async_compile.triton('triton_poi_fused_convolution_maximum_mul_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_maximum_mul_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/v4/cv4bgr5ihpscky5gololr6sh7rfrpysfa3a6blhdfz537nybxcot.py
# Topologically Sorted Source Nodes: [pool4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# pool4 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zu/czurhuw2o4whoaspnnjlxyoahd4og2ffmx4mgjiohvfvsfoewn7r.py
# Topologically Sorted Source Nodes: [conv2d_8, mul_8, outt_8], Original ATen: [aten.convolution, aten.mul, aten.maximum]
# Source node to ATen node mapping:
# conv2d_8 => convolution_8
# mul_8 => mul_8
# outt_8 => maximum_8
# Graph fragment:
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.2), kwargs = {})
# %maximum_8 : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%mul_8, %convolution_8), kwargs = {})
triton_poi_fused_convolution_maximum_mul_8 = async_compile.triton('triton_poi_fused_convolution_maximum_mul_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_maximum_mul_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4q/c4q7b54jkvdrigbh2hhwfdixd3omegnlfydgs7vrdotzztryz2d4.py
# Topologically Sorted Source Nodes: [up6_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# up6_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_10, %maximum_7], 1), kwargs = {})
triton_poi_fused_cat_9 = async_compile.triton('triton_poi_fused_cat_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 512
x0 = xindex % 64
x2 = (xindex // 32768)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 512, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + (x0 + (64*((-256) + x1)) + (16384*x2)), tmp10, other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x3), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ij/cija3olw6cr62rftfqhakzgcme3krfny32x734h6puwoynmn36e3.py
# Topologically Sorted Source Nodes: [up7_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# up7_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_13, %maximum_5], 1), kwargs = {})
triton_poi_fused_cat_10 = async_compile.triton('triton_poi_fused_cat_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 256) % 256
x0 = xindex % 256
x2 = (xindex // 65536)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 256, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + (x0 + (256*((-128) + x1)) + (32768*x2)), tmp10, other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x3), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/n7/cn72godhzk2nf2qoevmkpkh7utghrsdupxxpx6bnjekioqeej2cz.py
# Topologically Sorted Source Nodes: [up8_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# up8_1 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_16, %maximum_3], 1), kwargs = {})
triton_poi_fused_cat_11 = async_compile.triton('triton_poi_fused_cat_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 1024) % 128
x0 = xindex % 1024
x2 = (xindex // 131072)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 128, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + (x0 + (1024*((-64) + x1)) + (65536*x2)), tmp10, other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x3), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/el/cely3mvdjhv7xihjloi6dtillfxfr2cgcvve2nzawetqs4vi5xjq.py
# Topologically Sorted Source Nodes: [up9_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# up9_1 => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_19, %maximum_1], 1), kwargs = {})
triton_poi_fused_cat_12 = async_compile.triton('triton_poi_fused_cat_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 64
x0 = xindex % 4096
x2 = (xindex // 262144)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 64, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + (x0 + (4096*((-32) + x1)) + (131072*x2)), tmp10, other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x3), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wn/cwn3n6pc3p5yfpg2qoyin6heoasg375jez7odcopiodaao5bowrc.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.pixel_shuffle]
# Source node to ATen node mapping:
# out => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_pixel_shuffle_13 = async_compile.triton('triton_poi_fused_pixel_shuffle_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 2], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pixel_shuffle_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pixel_shuffle_13(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 98304
xnumel = 2
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x5 = xindex
y0 = yindex % 64
y1 = (yindex // 64) % 2
y2 = (yindex // 128) % 64
y6 = (yindex // 8192)
y3 = (yindex // 8192) % 3
y7 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (64*y2) + (4096*x5) + (8192*y1) + (16384*y6)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + (2*y1) + (4*y3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x5 + (2*y7)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47 = args
args.clear()
assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256, ), (1, ))
assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (512, ), (1, ))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 256, 2, 2), (1024, 4, 2, 1))
assert_size_stride(primals_23, (256, ), (1, ))
assert_size_stride(primals_24, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (256, ), (1, ))
assert_size_stride(primals_26, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_27, (256, ), (1, ))
assert_size_stride(primals_28, (256, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_29, (128, ), (1, ))
assert_size_stride(primals_30, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (128, ), (1, ))
assert_size_stride(primals_32, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_33, (128, ), (1, ))
assert_size_stride(primals_34, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_35, (64, ), (1, ))
assert_size_stride(primals_36, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_37, (64, ), (1, ))
assert_size_stride(primals_38, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_39, (64, ), (1, ))
assert_size_stride(primals_40, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_41, (32, ), (1, ))
assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (32, ), (1, ))
assert_size_stride(primals_44, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_45, (32, ), (1, ))
assert_size_stride(primals_46, (12, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_47, (12, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, mul, outt], Original ATen: [aten.convolution, aten.mul, aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_maximum_mul_0.run(buf1, primals_2, buf2, 524288, grid=grid(524288), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, mul_1, outt_1], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_0.run(buf4, primals_5, buf5, 524288, grid=grid(524288), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [pool1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf5, buf6, buf7, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf9 = buf8; del buf8 # reuse
buf10 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, mul_2, outt_2], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_2.run(buf9, primals_7, buf10, 262144, grid=grid(262144), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf12 = buf11; del buf11 # reuse
buf13 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, mul_3, outt_3], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_2.run(buf12, primals_9, buf13, 262144, grid=grid(262144), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32)
buf15 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [pool2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf13, buf14, buf15, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 128, 16, 16), (32768, 256, 16, 1))
buf17 = buf16; del buf16 # reuse
buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, mul_4, outt_4], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_4.run(buf17, primals_11, buf18, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf20 = buf19; del buf19 # reuse
buf21 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, mul_5, outt_5], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_4.run(buf20, primals_13, buf21, 131072, grid=grid(131072), stream=stream0)
del primals_13
buf22 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32)
buf23 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [pool3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf21, buf22, buf23, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1))
buf25 = buf24; del buf24 # reuse
buf26 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_6, mul_6, outt_6], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_6.run(buf25, primals_15, buf26, 65536, grid=grid(65536), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 256, 8, 8), (16384, 64, 8, 1))
buf28 = buf27; del buf27 # reuse
buf29 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_7, mul_7, outt_7], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_6.run(buf28, primals_17, buf29, 65536, grid=grid(65536), stream=stream0)
del primals_17
buf30 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32)
buf31 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.int8)
# Topologically Sorted Source Nodes: [pool4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_7.run(buf29, buf30, buf31, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf32 = extern_kernels.convolution(buf30, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf32, (4, 512, 4, 4), (8192, 16, 4, 1))
buf33 = buf32; del buf32 # reuse
buf34 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_8, mul_8, outt_8], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_8.run(buf33, primals_19, buf34, 32768, grid=grid(32768), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 4, 4), (8192, 16, 4, 1))
buf36 = buf35; del buf35 # reuse
buf37 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_9, mul_9, outt_9], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_8.run(buf36, primals_21, buf37, 32768, grid=grid(32768), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [up6], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_22, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 256, 8, 8), (16384, 64, 8, 1))
buf39 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [up6_1], Original ATen: [aten.cat]
triton_poi_fused_cat_9.run(buf38, primals_23, buf29, buf39, 131072, grid=grid(131072), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 256, 8, 8), (16384, 64, 8, 1))
buf41 = buf40; del buf40 # reuse
buf42 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [conv2d_10, mul_10, outt_10], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_6.run(buf41, primals_25, buf42, 65536, grid=grid(65536), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf42, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 256, 8, 8), (16384, 64, 8, 1))
buf44 = buf43; del buf43 # reuse
buf45 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_11, mul_11, outt_11], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_6.run(buf44, primals_27, buf45, 65536, grid=grid(65536), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [up7], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, primals_28, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 128, 16, 16), (32768, 256, 16, 1))
buf47 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [up7_1], Original ATen: [aten.cat]
triton_poi_fused_cat_10.run(buf46, primals_29, buf21, buf47, 262144, grid=grid(262144), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf48 = extern_kernels.convolution(buf47, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1))
buf49 = buf48; del buf48 # reuse
buf50 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [conv2d_12, mul_12, outt_12], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_4.run(buf49, primals_31, buf50, 131072, grid=grid(131072), stream=stream0)
del primals_31
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf51 = extern_kernels.convolution(buf50, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 128, 16, 16), (32768, 256, 16, 1))
buf52 = buf51; del buf51 # reuse
buf53 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_13, mul_13, outt_13], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_4.run(buf52, primals_33, buf53, 131072, grid=grid(131072), stream=stream0)
del primals_33
# Topologically Sorted Source Nodes: [up8], Original ATen: [aten.convolution]
buf54 = extern_kernels.convolution(buf53, primals_34, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf55 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [up8_1], Original ATen: [aten.cat]
triton_poi_fused_cat_11.run(buf54, primals_35, buf13, buf55, 524288, grid=grid(524288), stream=stream0)
del primals_35
# Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution]
buf56 = extern_kernels.convolution(buf55, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf57 = buf56; del buf56 # reuse
buf58 = buf54; del buf54 # reuse
# Topologically Sorted Source Nodes: [conv2d_14, mul_14, outt_14], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_2.run(buf57, primals_37, buf58, 262144, grid=grid(262144), stream=stream0)
del primals_37
# Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution]
buf59 = extern_kernels.convolution(buf58, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf60 = buf59; del buf59 # reuse
buf61 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_15, mul_15, outt_15], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_2.run(buf60, primals_39, buf61, 262144, grid=grid(262144), stream=stream0)
del primals_39
# Topologically Sorted Source Nodes: [up9], Original ATen: [aten.convolution]
buf62 = extern_kernels.convolution(buf61, primals_40, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf62, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf63 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [up9_1], Original ATen: [aten.cat]
triton_poi_fused_cat_12.run(buf62, primals_41, buf5, buf63, 1048576, grid=grid(1048576), stream=stream0)
del primals_41
# Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution]
buf64 = extern_kernels.convolution(buf63, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf65 = buf64; del buf64 # reuse
buf66 = buf62; del buf62 # reuse
# Topologically Sorted Source Nodes: [conv2d_16, mul_16, outt_16], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_0.run(buf65, primals_43, buf66, 524288, grid=grid(524288), stream=stream0)
del primals_43
# Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution]
buf67 = extern_kernels.convolution(buf66, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf68 = buf67; del buf67 # reuse
buf69 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_17, mul_17, outt_17], Original ATen: [aten.convolution, aten.mul, aten.maximum]
triton_poi_fused_convolution_maximum_mul_0.run(buf68, primals_45, buf69, 524288, grid=grid(524288), stream=stream0)
del primals_45
# Topologically Sorted Source Nodes: [conv10], Original ATen: [aten.convolution]
buf70 = extern_kernels.convolution(buf69, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 12, 64, 64), (49152, 4096, 64, 1))
buf71 = empty_strided_cuda((4, 3, 64, 2, 64, 2), (49152, 16384, 256, 128, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.pixel_shuffle]
triton_poi_fused_pixel_shuffle_13.run(buf70, primals_47, buf71, 98304, 2, grid=grid(98304, 2), stream=stream0)
del buf70
del primals_47
return (reinterpret_tensor(buf71, (4, 3, 128, 128), (49152, 16384, 128, 1), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15, buf17, buf18, buf20, buf21, buf22, buf23, buf25, buf26, buf28, buf29, buf30, buf31, buf33, buf34, buf36, buf37, buf39, buf41, buf42, buf44, buf45, buf47, buf49, buf50, buf52, buf53, buf55, buf57, buf58, buf60, buf61, buf63, buf65, buf66, buf68, buf69, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 256, 2, 2), (1024, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((64, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((12, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SeeInDark(nn.Module):
def __init__(self, num_classes=10):
super(SeeInDark, self).__init__()
self.conv1_1 = nn.Conv2d(4, 32, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2_1 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.conv4_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2)
self.conv5_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.upv6 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv6_1 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1)
self.conv6_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.upv7 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv7_1 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv7_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.upv8 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv8_1 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
self.conv8_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.upv9 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.conv9_1 = nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1)
self.conv9_2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
self.conv10_1 = nn.Conv2d(32, 12, kernel_size=1, stride=1)
def forward(self, x):
conv1 = self.lrelu(self.conv1_1(x))
conv1 = self.lrelu(self.conv1_2(conv1))
pool1 = self.pool1(conv1)
conv2 = self.lrelu(self.conv2_1(pool1))
conv2 = self.lrelu(self.conv2_2(conv2))
pool2 = self.pool1(conv2)
conv3 = self.lrelu(self.conv3_1(pool2))
conv3 = self.lrelu(self.conv3_2(conv3))
pool3 = self.pool1(conv3)
conv4 = self.lrelu(self.conv4_1(pool3))
conv4 = self.lrelu(self.conv4_2(conv4))
pool4 = self.pool1(conv4)
conv5 = self.lrelu(self.conv5_1(pool4))
conv5 = self.lrelu(self.conv5_2(conv5))
up6 = self.upv6(conv5)
up6 = torch.cat([up6, conv4], 1)
conv6 = self.lrelu(self.conv6_1(up6))
conv6 = self.lrelu(self.conv6_2(conv6))
up7 = self.upv7(conv6)
up7 = torch.cat([up7, conv3], 1)
conv7 = self.lrelu(self.conv7_1(up7))
conv7 = self.lrelu(self.conv7_2(conv7))
up8 = self.upv8(conv7)
up8 = torch.cat([up8, conv2], 1)
conv8 = self.lrelu(self.conv8_1(up8))
conv8 = self.lrelu(self.conv8_2(conv8))
up9 = self.upv9(conv8)
up9 = torch.cat([up9, conv1], 1)
conv9 = self.lrelu(self.conv9_1(up9))
conv9 = self.lrelu(self.conv9_2(conv9))
conv10 = self.conv10_1(conv9)
out = nn.functional.pixel_shuffle(conv10, 2)
return out
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.normal_(0.0, 0.02)
if isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0.0, 0.02)
def lrelu(self, x):
outt = torch.max(0.2 * x, x)
return outt
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_maximum_mul_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_6(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), None, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_maximum_mul_8(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp5 = triton_helpers.maximum(tmp4, tmp2)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp5, None)
@triton.jit
def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 512
x0 = xindex % 64
x2 = xindex // 32768
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 512, tl.int64)
tmp13 = tl.load(in_ptr2 + (x0 + 64 * (-256 + x1) + 16384 * x2), tmp10,
other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x3, tmp14, None)
@triton.jit
def triton_poi_fused_cat_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 256 % 256
x0 = xindex % 256
x2 = xindex // 65536
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp13 = tl.load(in_ptr2 + (x0 + 256 * (-128 + x1) + 32768 * x2), tmp10,
other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x3, tmp14, None)
@triton.jit
def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 1024 % 128
x0 = xindex % 1024
x2 = xindex // 131072
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp13 = tl.load(in_ptr2 + (x0 + 1024 * (-64 + x1) + 65536 * x2), tmp10,
other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x3, tmp14, None)
@triton.jit
def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 64
x0 = xindex % 4096
x2 = xindex // 262144
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 64, tl.int64)
tmp13 = tl.load(in_ptr2 + (x0 + 4096 * (-32 + x1) + 131072 * x2), tmp10,
other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x3, tmp14, None)
@triton.jit
def triton_poi_fused_pixel_shuffle_13(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 2
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x5 = xindex
y0 = yindex % 64
y1 = yindex // 64 % 2
y2 = yindex // 128 % 64
y6 = yindex // 8192
y3 = yindex // 8192 % 3
y7 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 64 * y2 + 4096 * x5 + 8192 * y1 + 16384 *
y6), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + 2 * y1 + 4 * y3), xmask, eviction_policy
='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x5 + 2 * y7), tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256,), (1,))
assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 256, 2, 2), (1024, 4, 2, 1))
assert_size_stride(primals_23, (256,), (1,))
assert_size_stride(primals_24, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (256,), (1,))
assert_size_stride(primals_26, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_27, (256,), (1,))
assert_size_stride(primals_28, (256, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_29, (128,), (1,))
assert_size_stride(primals_30, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (128,), (1,))
assert_size_stride(primals_32, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_33, (128,), (1,))
assert_size_stride(primals_34, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_35, (64,), (1,))
assert_size_stride(primals_36, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_37, (64,), (1,))
assert_size_stride(primals_38, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_39, (64,), (1,))
assert_size_stride(primals_40, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_41, (32,), (1,))
assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (32,), (1,))
assert_size_stride(primals_44, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_45, (32,), (1,))
assert_size_stride(primals_46, (12, 32, 1, 1), (32, 1, 1, 1))
assert_size_stride(primals_47, (12,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_maximum_mul_0[grid(524288)](buf1,
primals_2, buf2, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_0[grid(524288)](buf4,
primals_5, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(131072)](buf5, buf6,
buf7, 131072, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf9 = buf8
del buf8
buf10 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_2[grid(262144)](buf9,
primals_7, buf10, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_2[grid(262144)](buf12,
primals_9, buf13, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.float32)
buf15 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(65536)](buf13,
buf14, buf15, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf16 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 128, 16, 16), (32768, 256, 16, 1))
buf17 = buf16
del buf16
buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_4[grid(131072)](buf17,
primals_11, buf18, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_11
buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf20 = buf19
del buf19
buf21 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_4[grid(131072)](buf20,
primals_13, buf21, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_13
buf22 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.
float32)
buf23 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.int8
)
triton_poi_fused_max_pool2d_with_indices_5[grid(32768)](buf21,
buf22, buf23, 32768, XBLOCK=128, num_warps=4, num_stages=1)
buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1))
buf25 = buf24
del buf24
buf26 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.float32)
triton_poi_fused_convolution_maximum_mul_6[grid(65536)](buf25,
primals_15, buf26, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_15
buf27 = extern_kernels.convolution(buf26, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 256, 8, 8), (16384, 64, 8, 1))
buf28 = buf27
del buf27
buf29 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.float32)
triton_poi_fused_convolution_maximum_mul_6[grid(65536)](buf28,
primals_17, buf29, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_17
buf30 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.
float32)
buf31 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.int8
)
triton_poi_fused_max_pool2d_with_indices_7[grid(16384)](buf29,
buf30, buf31, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf32 = extern_kernels.convolution(buf30, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf32, (4, 512, 4, 4), (8192, 16, 4, 1))
buf33 = buf32
del buf32
buf34 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.
float32)
triton_poi_fused_convolution_maximum_mul_8[grid(32768)](buf33,
primals_19, buf34, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_19
buf35 = extern_kernels.convolution(buf34, primals_20, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 512, 4, 4), (8192, 16, 4, 1))
buf36 = buf35
del buf35
buf37 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.
float32)
triton_poi_fused_convolution_maximum_mul_8[grid(32768)](buf36,
primals_21, buf37, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_21
buf38 = extern_kernels.convolution(buf37, primals_22, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 256, 8, 8), (16384, 64, 8, 1))
buf39 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch
.float32)
triton_poi_fused_cat_9[grid(131072)](buf38, primals_23, buf29,
buf39, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_23
buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 256, 8, 8), (16384, 64, 8, 1))
buf41 = buf40
del buf40
buf42 = buf38
del buf38
triton_poi_fused_convolution_maximum_mul_6[grid(65536)](buf41,
primals_25, buf42, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_25
buf43 = extern_kernels.convolution(buf42, primals_26, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 256, 8, 8), (16384, 64, 8, 1))
buf44 = buf43
del buf43
buf45 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.float32)
triton_poi_fused_convolution_maximum_mul_6[grid(65536)](buf44,
primals_27, buf45, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_27
buf46 = extern_kernels.convolution(buf45, primals_28, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 128, 16, 16), (32768, 256, 16, 1))
buf47 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.float32)
triton_poi_fused_cat_10[grid(262144)](buf46, primals_29, buf21,
buf47, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_29
buf48 = extern_kernels.convolution(buf47, primals_30, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1))
buf49 = buf48
del buf48
buf50 = buf46
del buf46
triton_poi_fused_convolution_maximum_mul_4[grid(131072)](buf49,
primals_31, buf50, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_31
buf51 = extern_kernels.convolution(buf50, primals_32, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 128, 16, 16), (32768, 256, 16, 1))
buf52 = buf51
del buf51
buf53 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_4[grid(131072)](buf52,
primals_33, buf53, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_33
buf54 = extern_kernels.convolution(buf53, primals_34, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf55 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1),
torch.float32)
triton_poi_fused_cat_11[grid(524288)](buf54, primals_35, buf13,
buf55, 524288, XBLOCK=512, num_warps=8, num_stages=1)
del primals_35
buf56 = extern_kernels.convolution(buf55, primals_36, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf57 = buf56
del buf56
buf58 = buf54
del buf54
triton_poi_fused_convolution_maximum_mul_2[grid(262144)](buf57,
primals_37, buf58, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_37
buf59 = extern_kernels.convolution(buf58, primals_38, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf60 = buf59
del buf59
buf61 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_2[grid(262144)](buf60,
primals_39, buf61, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_39
buf62 = extern_kernels.convolution(buf61, primals_40, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf62, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf63 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_12[grid(1048576)](buf62, primals_41, buf5,
buf63, 1048576, XBLOCK=512, num_warps=8, num_stages=1)
del primals_41
buf64 = extern_kernels.convolution(buf63, primals_42, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf65 = buf64
del buf64
buf66 = buf62
del buf62
triton_poi_fused_convolution_maximum_mul_0[grid(524288)](buf65,
primals_43, buf66, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_43
buf67 = extern_kernels.convolution(buf66, primals_44, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf68 = buf67
del buf67
buf69 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_maximum_mul_0[grid(524288)](buf68,
primals_45, buf69, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_45
buf70 = extern_kernels.convolution(buf69, primals_46, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 12, 64, 64), (49152, 4096, 64, 1))
buf71 = empty_strided_cuda((4, 3, 64, 2, 64, 2), (49152, 16384, 256,
128, 2, 1), torch.float32)
triton_poi_fused_pixel_shuffle_13[grid(98304, 2)](buf70, primals_47,
buf71, 98304, 2, XBLOCK=2, YBLOCK=512, num_warps=4, num_stages=1)
del buf70
del primals_47
return (reinterpret_tensor(buf71, (4, 3, 128, 128), (49152, 16384, 128,
1), 0), primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, primals_28,
primals_30, primals_32, primals_34, primals_36, primals_38,
primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4,
buf5, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15, buf17,
buf18, buf20, buf21, buf22, buf23, buf25, buf26, buf28, buf29,
buf30, buf31, buf33, buf34, buf36, buf37, buf39, buf41, buf42,
buf44, buf45, buf47, buf49, buf50, buf52, buf53, buf55, buf57,
buf58, buf60, buf61, buf63, buf65, buf66, buf68, buf69)
class SeeInDarkNew(nn.Module):
def __init__(self, num_classes=10):
super(SeeInDarkNew, self).__init__()
self.conv1_1 = nn.Conv2d(4, 32, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2_1 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.conv4_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2)
self.conv5_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.upv6 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv6_1 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1)
self.conv6_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.upv7 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv7_1 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv7_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.upv8 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv8_1 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
self.conv8_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.upv9 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.conv9_1 = nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1)
self.conv9_2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
self.conv10_1 = nn.Conv2d(32, 12, kernel_size=1, stride=1)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.normal_(0.0, 0.02)
if isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0.0, 0.02)
def lrelu(self, x):
outt = torch.max(0.2 * x, x)
return outt
def forward(self, input_0):
primals_1 = self.conv1_1.weight
primals_2 = self.conv1_1.bias
primals_4 = self.conv1_2.weight
primals_5 = self.conv1_2.bias
primals_6 = self.conv2_1.weight
primals_7 = self.conv2_1.bias
primals_8 = self.conv2_2.weight
primals_9 = self.conv2_2.bias
primals_10 = self.conv3_1.weight
primals_11 = self.conv3_1.bias
primals_12 = self.conv3_2.weight
primals_13 = self.conv3_2.bias
primals_14 = self.conv4_1.weight
primals_15 = self.conv4_1.bias
primals_16 = self.conv4_2.weight
primals_17 = self.conv4_2.bias
primals_18 = self.conv5_1.weight
primals_19 = self.conv5_1.bias
primals_20 = self.conv5_2.weight
primals_21 = self.conv5_2.bias
primals_22 = self.upv6.weight
primals_23 = self.upv6.bias
primals_24 = self.conv6_1.weight
primals_25 = self.conv6_1.bias
primals_26 = self.conv6_2.weight
primals_27 = self.conv6_2.bias
primals_28 = self.upv7.weight
primals_29 = self.upv7.bias
primals_30 = self.conv7_1.weight
primals_31 = self.conv7_1.bias
primals_32 = self.conv7_2.weight
primals_33 = self.conv7_2.bias
primals_34 = self.upv8.weight
primals_35 = self.upv8.bias
primals_36 = self.conv8_1.weight
primals_37 = self.conv8_1.bias
primals_38 = self.conv8_2.weight
primals_39 = self.conv8_2.bias
primals_40 = self.upv9.weight
primals_41 = self.upv9.bias
primals_42 = self.conv9_1.weight
primals_43 = self.conv9_1.bias
primals_44 = self.conv9_2.weight
primals_45 = self.conv9_2.bias
primals_46 = self.conv10_1.weight
primals_47 = self.conv10_1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47])
return output[0]
|
hyeokjae-choi/pytorch-Learning-to-See-in-the-Dark
|
SeeInDark
| false | 10,220 |
[
"MIT"
] | 0 |
b32bf991072decb3aea348d8cd59acbf34d5da2c
|
https://github.com/hyeokjae-choi/pytorch-Learning-to-See-in-the-Dark/tree/b32bf991072decb3aea348d8cd59acbf34d5da2c
|
HardtanhBoundToPOTNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/gk/cgkuacyg67ax6cn7dvso4vxfaggi56wy2cy6kvl4rdwv4oaicpmx.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => clamp_max, clamp_min
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convolution, 0.0), kwargs = {})
# %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%convolution, 0.0), kwargs = {})
# %ge_3 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%convolution, 6.0), kwargs = {})
# %bitwise_or_3 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_4, %ge_3), kwargs = {})
triton_poi_fused_convolution_hardtanh_hardtanh_backward_0 = async_compile.triton('triton_poi_fused_convolution_hardtanh_hardtanh_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardtanh_hardtanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7t/c7thipsuxejpdhfqhgxxoz3i72ctiepm6n5e45wy4oj7j27wj3sd.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%clamp_max, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2n/c2nyodo6u3mtlqksgttia3n2cnb4psn5qjzm3rjctdlkz2zjkyl5.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
# Source node to ATen node mapping:
# x_3 => convolution_2
# x_4 => clamp_max_1, clamp_min_1
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convolution_2, -2.0), kwargs = {})
# %clamp_max_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 6.0), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%convolution_2, -2.0), kwargs = {})
# %ge_2 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%convolution_2, 6.0), kwargs = {})
# %bitwise_or_2 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_3, %ge_2), kwargs = {})
triton_poi_fused_convolution_hardtanh_hardtanh_backward_2 = async_compile.triton('triton_poi_fused_convolution_hardtanh_hardtanh_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardtanh_hardtanh_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -2.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dt/cdtmu5coxf6a6z6a7qbu62uondg6byo3xrxzschwxd2u25cbfnvy.py
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
# Source node to ATen node mapping:
# x_10 => clamp_max_3, clamp_min_3
# x_9 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convolution_6, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 4.0), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%convolution_6, 0.0), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%convolution_6, 4.0), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_1, %ge), kwargs = {})
triton_poi_fused_convolution_hardtanh_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_convolution_hardtanh_hardtanh_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_hardtanh_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 4.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/za/czawibcnybpf6z2ppwursqentvf7fhekh5skfgse6p4sezyfuulo.py
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_12 => convolution_8
# x_13 => relu
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_7, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_5, (3, ), (1, ))
assert_size_stride(primals_6, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_7, (3, ), (1, ))
assert_size_stride(primals_8, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_9, (3, ), (1, ))
assert_size_stride(primals_10, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_11, (3, ), (1, ))
assert_size_stride(primals_12, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_13, (3, ), (1, ))
assert_size_stride(primals_14, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_15, (3, ), (1, ))
assert_size_stride(primals_16, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_17, (3, ), (1, ))
assert_size_stride(primals_18, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_19, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
buf22 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_hardtanh_hardtanh_backward_0.run(buf0, primals_2, buf1, buf22, 49152, grid=grid(49152), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 49152, grid=grid(49152), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = buf0; del buf0 # reuse
buf21 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
triton_poi_fused_convolution_hardtanh_hardtanh_backward_2.run(buf4, primals_7, buf5, buf21, 49152, grid=grid(49152), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf7, primals_9, 49152, grid=grid(49152), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf9 = buf4; del buf4 # reuse
buf20 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
triton_poi_fused_convolution_hardtanh_hardtanh_backward_0.run(buf8, primals_11, buf9, buf20, 49152, grid=grid(49152), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf11, primals_13, 49152, grid=grid(49152), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf13 = buf8; del buf8 # reuse
buf19 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.hardtanh, aten.hardtanh_backward]
triton_poi_fused_convolution_hardtanh_hardtanh_backward_3.run(buf12, primals_15, buf13, buf19, 49152, grid=grid(49152), stream=stream0)
del buf12
del primals_15
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf15, primals_17, 49152, grid=grid(49152), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf17 = buf16; del buf16 # reuse
buf18 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_4.run(buf17, primals_19, buf18, 49152, grid=grid(49152), stream=stream0)
del primals_19
return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf18, buf19, buf20, buf21, buf22, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.nn import Conv2d
from torch.nn import Hardtanh
from torch.nn.functional import relu
from torch.nn.functional import hardtanh
import torch.nn.functional
class HardtanhBoundToPOTNet(torch.nn.Module):
def __init__(self):
super(HardtanhBoundToPOTNet, self).__init__()
self.conv1 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh1 = Hardtanh(min_val=0.0, max_val=6.0)
self.conv2 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv3 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh2 = Hardtanh(min_val=-2.0, max_val=6.0)
self.conv4 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv5 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv6 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv7 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh3 = Hardtanh(min_val=0.0, max_val=4.0)
self.conv8 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv9 = Conv2d(3, 3, kernel_size=1, stride=1)
def forward(self, inp):
x = self.conv1(inp)
x = self.hardtanh1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.hardtanh2(x)
x = self.conv4(x)
x = self.conv5(x)
x = hardtanh(x, min_val=0.0, max_val=6.0)
x = self.conv6(x)
x = self.conv7(x)
x = self.hardtanh3(x)
x = self.conv8(x)
x = self.conv9(x)
x = relu(x)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Conv2d
from torch.nn import Hardtanh
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_0(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp9, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_2(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -2.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp9, None)
@triton.jit
def triton_poi_fused_convolution_hardtanh_hardtanh_backward_3(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 4.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 <= tmp3
tmp8 = tmp2 >= tmp5
tmp9 = tmp7 | tmp8
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp9, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_5, (3,), (1,))
assert_size_stride(primals_6, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_7, (3,), (1,))
assert_size_stride(primals_8, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_9, (3,), (1,))
assert_size_stride(primals_10, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_11, (3,), (1,))
assert_size_stride(primals_12, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_13, (3,), (1,))
assert_size_stride(primals_14, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_15, (3,), (1,))
assert_size_stride(primals_16, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_17, (3,), (1,))
assert_size_stride(primals_18, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_19, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
buf22 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_hardtanh_hardtanh_backward_0[grid(49152)](
buf0, primals_2, buf1, buf22, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(49152)](buf3, primals_5, 49152,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = buf0
del buf0
buf21 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_hardtanh_hardtanh_backward_2[grid(49152)](
buf4, primals_7, buf5, buf21, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_1[grid(49152)](buf7, primals_9, 49152,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf9 = buf4
del buf4
buf20 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_hardtanh_hardtanh_backward_0[grid(49152)](
buf8, primals_11, buf9, buf20, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_1[grid(49152)](buf11, primals_13,
49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_13
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf13 = buf8
del buf8
buf19 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_hardtanh_hardtanh_backward_3[grid(49152)](
buf12, primals_15, buf13, buf19, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del buf12
del primals_15
buf14 = extern_kernels.convolution(buf13, primals_16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf15 = buf14
del buf14
triton_poi_fused_convolution_1[grid(49152)](buf15, primals_17,
49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_17
buf16 = extern_kernels.convolution(buf15, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf17 = buf16
del buf16
buf18 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_4[grid(49152)](
buf17, primals_19, buf18, 49152, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_19
return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18, buf1,
buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf18, buf19, buf20,
buf21, buf22)
class HardtanhBoundToPOTNetNew(torch.nn.Module):
def __init__(self):
super(HardtanhBoundToPOTNetNew, self).__init__()
self.conv1 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh1 = Hardtanh(min_val=0.0, max_val=6.0)
self.conv2 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv3 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh2 = Hardtanh(min_val=-2.0, max_val=6.0)
self.conv4 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv5 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv6 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv7 = Conv2d(3, 3, kernel_size=1, stride=1)
self.hardtanh3 = Hardtanh(min_val=0.0, max_val=4.0)
self.conv8 = Conv2d(3, 3, kernel_size=1, stride=1)
self.conv9 = Conv2d(3, 3, kernel_size=1, stride=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_12 = self.conv6.weight
primals_13 = self.conv6.bias
primals_14 = self.conv7.weight
primals_15 = self.conv7.bias
primals_16 = self.conv8.weight
primals_17 = self.conv8.bias
primals_18 = self.conv9.weight
primals_19 = self.conv9.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
|
isabella232/model_optimization
|
HardtanhBoundToPOTNet
| false | 10,221 |
[
"Apache-2.0"
] | 0 |
074d1dfd8b4d18e57c6186c0ec5e49eb17a0fc7a
|
https://github.com/isabella232/model_optimization/tree/074d1dfd8b4d18e57c6186c0ec5e49eb17a0fc7a
|
Unet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2m/c2mwdf64imuljijtd53jyy22jmby3trx2gvbjen2dgwlh3cmrogd.py
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x0 => convolution
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16777216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 65536) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jx/cjxc7n2c2qftkuoyjgqkrtipbmedojcryw46meeo2l4brbghgofz.py
# Topologically Sorted Source Nodes: [conv2d_1, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 33032192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64516) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/x4/cx4atkmein2etossw3h3yntx5pgwur3fhs3v3me3zacbhadxzzwd.py
# Topologically Sorted Source Nodes: [conv2d_2, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_1 => relu_1
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32514048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 63504) % 128
x0 = xindex % 63504
x4 = (xindex // 63504)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (63520*x4)), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2y/c2ymfwfwccjwieeycyyuw4hakntpg7spghweswcwbgg3luk7lvgl.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x1 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8128512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 126
x1 = (xindex // 126) % 126
x2 = (xindex // 15876)
x3 = xindex % 15876
tmp0 = tl.load(in_ptr0 + ((2*x0) + (504*x1) + (63520*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (504*x1) + (63520*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (252 + (2*x0) + (504*x1) + (63520*x2)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (253 + (2*x0) + (504*x1) + (63520*x2)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + (15904*x2)), tmp6, None)
tl.store(out_ptr1 + (x3 + (16000*x2)), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2w/c2wyw57bn3lj5bprc2w5lfz4esfjux6eykgf6f7tpchh3wfn52c3.py
# Topologically Sorted Source Nodes: [conv2d_3, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_2 => relu_2
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 15745024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 15376) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/g2/cg27b3cldqn2pktgcgwkn6bhtvvz2l4o6352tltcsw34o3b2v347.py
# Topologically Sorted Source Nodes: [conv2d_4, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_3 => relu_3
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 15241216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 14884) % 256
x0 = xindex % 14884
x4 = (xindex // 14884)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (14912*x4)), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7k/c7kyvzhgks53stlmbqm3nvt66lvr3ua3nvqh42nzvr5ahgnl7ngk.py
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x2 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 3810304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 61
x1 = (xindex // 61) % 61
x2 = (xindex // 3721)
x3 = xindex % 3721
tmp0 = tl.load(in_ptr0 + ((2*x0) + (244*x1) + (14912*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (244*x1) + (14912*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (122 + (2*x0) + (244*x1) + (14912*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (123 + (2*x0) + (244*x1) + (14912*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + (3744*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x3 + (3840*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yl/cylprii3tymutljog6hgf2lhr336pibwctoxtfiafi2pgkx6grqx.py
# Topologically Sorted Source Nodes: [conv2d_5, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# x_4 => relu_4
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7129088
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3481) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jg/cjg3tcflq5lpynuzcay73tqom5egacupheubg3mdhme3oypxjrmz.py
# Topologically Sorted Source Nodes: [conv2d_6, x_5], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# x_5 => relu_5
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6653952
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3249) % 512
x0 = xindex % 3249
x4 = (xindex // 3249)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3264*x4)), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/74/c74eg2jsx6eq7gpmva5dbgb4nw2rq7cbz2aol7k7wqalccrixnbx.py
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x3 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1605632
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 28
x1 = (xindex // 28) % 28
x2 = (xindex // 784)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (114*x1) + (3264*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (114*x1) + (3264*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (57 + (2*x0) + (114*x1) + (3264*x2)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (58 + (2*x0) + (114*x1) + (3264*x2)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lw/clw4r3v6kgmknyimlru6icw7vq2zpydzxfleqrvnyuzcxyt2tbfb.py
# Topologically Sorted Source Nodes: [conv2d_7, x_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# x_6 => relu_6
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2768896
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 676) % 1024
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6n/c6nql2xqcjwzvj7fwnghziaku6pz5bkd6yc3g6m6j7i5usxkl42g.py
# Topologically Sorted Source Nodes: [conv2d_8, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_8 => convolution_8
# x_7 => relu_7
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {})
triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2359296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 576) % 1024
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fv/cfv7cvlie7bm4hhp53sgv2tcymuivbnlot2lr5s6326qobukz4fr.py
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x4 => getitem_7
# Graph fragment:
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 589824
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hw/chwn2yjtf6olmjz6ha33eiw5qpgdpvig432t3xx3en6owpgs2xal.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_8 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_13 = async_compile.triton('triton_poi_fused__to_copy_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3h3d26wolkgujjglu2owjyged3zb5julk4m77ep4cz7coezxh4.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_8 => add, clamp_max
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 11), kwargs = {})
triton_poi_fused_add_clamp_14 = async_compile.triton('triton_poi_fused_add_clamp_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 11, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xv/cxvib6tvr6x22kntxgj24mtmwft3yiexpre6v3x4jxda45x4a36c.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_8 => clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (24,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.4782608695652174), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_15 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yj/cyj3biurj7ixh2rddwm6e2qdlvq5hpx3na4lugr7c2524eqwlpvp.py
# Topologically Sorted Source Nodes: [x4, x_8], Original ATen: [aten.max_pool2d_with_indices, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# x4 => _low_memory_max_pool2d_with_offsets_3
# x_8 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, mul_2, mul_3, mul_4, sub_1, sub_2, sub_4
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_7, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_6, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_6, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_6, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_6, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16 = async_compile.triton('triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*i64', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, xnumel, XBLOCK : tl.constexpr):
xnumel = 2359296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 24) % 24
x0 = xindex % 24
x2 = (xindex // 576)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp53 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 12, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + ((2*tmp8) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + (2*tmp8) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.load(in_ptr2 + (24 + (2*tmp8) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.load(in_ptr2 + (25 + (2*tmp8) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + ((2*tmp8) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (1 + (2*tmp8) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp23 = tl.load(in_ptr2 + (24 + (2*tmp8) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp25 = tl.load(in_ptr2 + (25 + (2*tmp8) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = tmp27 + tmp1
tmp29 = tmp27 < 0
tmp30 = tl.where(tmp29, tmp28, tmp27)
tmp31 = tl.load(in_ptr2 + ((2*tmp30) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1 + (2*tmp30) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp33 = triton_helpers.maximum(tmp32, tmp31)
tmp34 = tl.load(in_ptr2 + (24 + (2*tmp30) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp35 = triton_helpers.maximum(tmp34, tmp33)
tmp36 = tl.load(in_ptr2 + (25 + (2*tmp30) + (48*tmp19) + (576*x2)), None, eviction_policy='evict_last')
tmp37 = triton_helpers.maximum(tmp36, tmp35)
tmp38 = tmp37 - tmp26
tmp40 = tmp38 * tmp39
tmp41 = tmp26 + tmp40
tmp42 = tl.load(in_ptr2 + ((2*tmp30) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr2 + (1 + (2*tmp30) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp45 = tl.load(in_ptr2 + (24 + (2*tmp30) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp47 = tl.load(in_ptr2 + (25 + (2*tmp30) + (48*tmp4) + (576*x2)), None, eviction_policy='evict_last')
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tmp49 = tmp48 - tmp15
tmp50 = tmp49 * tmp39
tmp51 = tmp15 + tmp50
tmp52 = tmp51 - tmp41
tmp54 = tmp52 * tmp53
tmp55 = tmp41 + tmp54
tl.store(in_out_ptr1 + (x4), tmp55, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tf/ctfd4tfhre2htxndzu4bpjzosx5oj4yooma3u75m553it7aschoi.py
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_10 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_4, %convolution_9], 1), kwargs = {})
triton_poi_fused_cat_17 = async_compile.triton('triton_poi_fused_cat_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2166784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 529) % 1024
x0 = xindex % 23
x1 = (xindex // 23) % 23
x3 = (xindex // 541696)
x4 = xindex % 529
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (87 + x0 + (28*x1) + (784*x2) + (401408*x3)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 1024, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x4 + (529*((-512) + x2)) + (270848*x3)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-512) + x2), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x5), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/on/conr2sudxacy5il2ma633r4pnt6wtwr3q5ec63jng6ggljdfwv2n.py
# Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_11 => convolution_10
# x_12 => relu_8
# Graph fragment:
# %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {})
triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 903168
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 441) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3j/c3jb774iqqdz2p3sg7y5czdq627qsrdrnzzifbsu4y73zgpctzk3.py
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_14 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_19 = async_compile.triton('triton_poi_fused__to_copy_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_19(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gg/cggtdprorym62f6ywtdets3rljai47k2t3u4alrnxdy5pxltjfv2.py
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_14 => add_5, clamp_max_4
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 18), kwargs = {})
triton_poi_fused_add_clamp_20 = async_compile.triton('triton_poi_fused_add_clamp_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_20(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 18, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yj/cyjdtrthvyamlcdmzhzgl5mgtowpjzyhnjwy6r5hsgye6xv2hems.py
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_14 => clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_5, sub_5
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (38,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_4, 0.4864864864864865), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_5, 0.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_21 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_21(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/k6/ck6mwx4fz77ge46mallseejfelurqagf2qfovdyod65sta6jnr3j.py
# Topologically Sorted Source Nodes: [x_13, x5, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# x5 => relu_9
# x_13 => convolution_11
# x_14 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_7, add_8, add_9, mul_7, mul_8, mul_9, sub_6, sub_7, sub_9
# Graph fragment:
# %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_9 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_6), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_6), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_7), kwargs = {})
# %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_9), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 2957312
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 38) % 38
x0 = xindex % 38
x5 = (xindex // 1444)
x2 = (xindex // 1444) % 512
x4 = xindex % 1444
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 19, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (19*tmp4) + (361*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + (19*tmp4) + (361*x5)), None, eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + (19*tmp28) + (361*x5)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + (19*tmp28) + (361*x5)), None, eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + (x6), tmp41, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nh/cnhgz7i3n54ujzvl5kid7v74xxqvukolcu37jdkvifnxnft3uqas.py
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_16 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_8, %convolution_12], 1), kwargs = {})
triton_poi_fused_cat_23 = async_compile.triton('triton_poi_fused_cat_23', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2803712
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 1369) % 512
x0 = xindex % 37
x1 = (xindex // 37) % 37
x3 = (xindex // 700928)
x4 = xindex % 1369
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (744 + x0 + (61*x1) + (3744*x2) + (958464*x3)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 512, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x4 + (1369*((-256) + x2)) + (350464*x3)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-256) + x2), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x5), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6q/c6qr4zr2k5ipho4u2xdornqef6axbetoglshkgtr5rbwpafyewqy.py
# Topologically Sorted Source Nodes: [x_17, x_18], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_17 => convolution_13
# x_18 => relu_10
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {})
triton_poi_fused_convolution_relu_24 = async_compile.triton('triton_poi_fused_convolution_relu_24', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_24', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_24(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1254400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1225) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fb/cfb6qwktpwkzuucdy5mu24xl5oqwwxsqn2k4dcbrflxe7zksttse.py
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_20 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_25 = async_compile.triton('triton_poi_fused__to_copy_25', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_25(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5u/c5uialgvew2id65whlokoehgct3oy63hbbecjgrkzowuui3zs4v6.py
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_20 => add_10, clamp_max_8
# Graph fragment:
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_10, 32), kwargs = {})
triton_poi_fused_add_clamp_26 = async_compile.triton('triton_poi_fused_add_clamp_26', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_26(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 32, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qc/cqc4sze4op62jq3aaiysuqvsvzutbngdxfuayebx2sntjfk26tv7.py
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_20 => clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, iota_4, mul_10, sub_10
# Graph fragment:
# %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (66,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_4, torch.float32), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_8, 0.49230769230769234), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_10, 0.0), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_10, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_27 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_27', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_27(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ay/cayke6phmc5ruf64l7c2fxvrssqa65zdqwvokzzsq56lm5tieb37.py
# Topologically Sorted Source Nodes: [x_19, x6, x_20], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# x6 => relu_11
# x_19 => convolution_14
# x_20 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_12, add_13, add_14, mul_12, mul_13, mul_14, sub_11, sub_12, sub_14
# Graph fragment:
# %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_11 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_10), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_12), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_10), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_13), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_11), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_14), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 4460544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 66) % 66
x0 = xindex % 66
x5 = (xindex // 4356)
x2 = (xindex // 4356) % 256
x4 = xindex % 4356
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 33, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (33*tmp4) + (1089*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + (33*tmp4) + (1089*x5)), None, eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + (33*tmp28) + (1089*x5)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + (33*tmp28) + (1089*x5)), None, eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + (x6), tmp41, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bv/cbvofiwshtn2ilsjcfqbxjulbgi57jsffzalavgps4p5jxyrux5n.py
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_22 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_12, %convolution_15], 1), kwargs = {})
triton_poi_fused_cat_29 = async_compile.triton('triton_poi_fused_cat_29', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4326400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4225) % 256
x0 = xindex % 65
x1 = (xindex // 65) % 65
x3 = (xindex // 1081600)
x4 = xindex % 4225
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (3937 + x0 + (126*x1) + (15904*x2) + (2035712*x3)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 256, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x4 + (4225*((-128) + x2)) + (540800*x3)), tmp6 & xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-128) + x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x5), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/b3/cb3hjpgy6vwvm3yslwxbk7whvi5itjamklpvrk2rtuqdfldix3iu.py
# Topologically Sorted Source Nodes: [x_23, x_24], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_23 => convolution_16
# x_24 => relu_12
# Graph fragment:
# %convolution_16 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_34, %primals_35, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_16,), kwargs = {})
triton_poi_fused_convolution_relu_30 = async_compile.triton('triton_poi_fused_convolution_relu_30', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_30', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_30(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2032128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3969) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zz/czzfeqovk6o67sidpdqeitbmmqewekpjeccszeh5iyiwv2txqgiy.py
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_26 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_31 = async_compile.triton('triton_poi_fused__to_copy_31', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_31(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gg/cggv2otvxeif2lhukmsds57uzturzpucyt6njwgarjcx7dljvmeb.py
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_26 => add_15, clamp_max_12
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 60), kwargs = {})
triton_poi_fused_add_clamp_32 = async_compile.triton('triton_poi_fused_add_clamp_32', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_32(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 60, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4g/c4ghrkbjg7ns4pmhuqril4htj6shswlmwllposcgqw43xlrzmjc4.py
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# x_26 => clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, iota_6, mul_15, sub_15
# Graph fragment:
# %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (122,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_6, torch.float32), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_12, 0.49586776859504134), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_15, 0.0), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_33 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_33', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_33', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_33(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ec/cecry7owhi2totr44b4dpmcxjl24xyb2kp7e62cm4qojaodksvfz.py
# Topologically Sorted Source Nodes: [x_25, x7, x_26], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# x7 => relu_13
# x_25 => convolution_17
# x_26 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_17, add_18, add_19, mul_17, mul_18, mul_19, sub_16, sub_17, sub_19
# Graph fragment:
# %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_12, %primals_36, %primals_37, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_13 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_17,), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_14), kwargs = {})
# %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_17), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_14), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_18), kwargs = {})
# %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %clamp_max_15), kwargs = {})
# %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_19), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 7620608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 122) % 122
x0 = xindex % 122
x5 = (xindex // 14884)
x2 = (xindex // 14884) % 128
x4 = xindex % 14884
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 61, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (61*tmp4) + (3721*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + (61*tmp4) + (3721*x5)), None, eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + (61*tmp28) + (3721*x5)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + (61*tmp28) + (3721*x5)), None, eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + (x6), tmp41, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/42/c422optynwcjab3762iylxhsctfppyldgwvyc7zcbj26fixwo6rs.py
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_28 => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_16, %convolution_18], 1), kwargs = {})
triton_poi_fused_cat_35 = async_compile.triton('triton_poi_fused_cat_35', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7496192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 14641) % 128
x0 = xindex % 121
x1 = (xindex // 121) % 121
x3 = (xindex // 1874048)
x4 = xindex % 14641
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (17476 + x0 + (256*x1) + (65536*x2) + (4194304*x3)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 128, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x4 + (14641*((-64) + x2)) + (937024*x3)), tmp6 & xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-64) + x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x5), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/p7/cp7wl5talmcgbtgcvqx7mdmxi3amg2b7urkr6rpkmstlue7whb33.py
# Topologically Sorted Source Nodes: [x_29, x_30], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_29 => convolution_19
# x_30 => relu_14
# Graph fragment:
# %convolution_19 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_40, %primals_41, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_19,), kwargs = {})
triton_poi_fused_convolution_relu_36 = async_compile.triton('triton_poi_fused_convolution_relu_36', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_36', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_36(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3625216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 14161) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pp/cppyhkmzi7gre5zajamdclp4rjklyo6kmnmokugu4wutyydqtcto.py
# Topologically Sorted Source Nodes: [x_31, x8], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x8 => relu_15
# x_31 => convolution_20
# Graph fragment:
# %convolution_20 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_14, %primals_42, %primals_43, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_20,), kwargs = {})
triton_poi_fused_convolution_relu_37 = async_compile.triton('triton_poi_fused_convolution_relu_37', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_37', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_37(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3504384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 13689) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/e6/ce6sqlqj4je5yw66cw2fng6k3db7jmerlkwisdwopqx3yqx5o57p.py
# Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_21 => convolution_21
# Graph fragment:
# %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_15, %primals_44, %primals_45, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_38 = async_compile.triton('triton_poi_fused_convolution_38', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_38', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 219024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 13689) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cn/ccnipirggi5fycaqhkfzu3v3ofw53wdpzlcu33td25pkablcsjbk.py
# Topologically Sorted Source Nodes: [x_25, x7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x7 => relu_13
# x_25 => convolution_17
# Graph fragment:
# %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_12, %primals_36, %primals_37, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_13 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_17,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_13, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_39 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_39', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_39', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_39(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1905152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3721) % 128
x0 = xindex % 3721
x4 = (xindex // 3721)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (3840*x4)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bj/cbjw6tqdnrpub4rhjcujvw4d2ebhzkwkcw7qw3t2fk2e7bjlyxm6.py
# Topologically Sorted Source Nodes: [x_19, x6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x6 => relu_11
# x_19 => convolution_14
# Graph fragment:
# %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_11 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_40 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_40', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1089) % 256
x0 = xindex % 1089
x4 = (xindex // 1089)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (1152*x4)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jm/cjmqugdti4xnjenshb2rdtv5pnp2wowzw724r36w6s36e3e4gbru.py
# Topologically Sorted Source Nodes: [x_13, x5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x5 => relu_9
# x_13 => convolution_11
# Graph fragment:
# %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_9 : [num_users=5] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {})
# %le_6 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_41 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_41', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_41(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 739328
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 361) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 256, 256), (262144, 65536, 256, 1))
assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (512, ), (1, ))
assert_size_stride(primals_14, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_15, (512, ), (1, ))
assert_size_stride(primals_16, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_17, (1024, ), (1, ))
assert_size_stride(primals_18, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_19, (1024, ), (1, ))
assert_size_stride(primals_20, (512, 1024, 2, 2), (4096, 4, 2, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (256, 512, 2, 2), (2048, 4, 2, 1))
assert_size_stride(primals_27, (256, ), (1, ))
assert_size_stride(primals_28, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (256, ), (1, ))
assert_size_stride(primals_30, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (256, ), (1, ))
assert_size_stride(primals_32, (128, 256, 2, 2), (1024, 4, 2, 1))
assert_size_stride(primals_33, (128, ), (1, ))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128, ), (1, ))
assert_size_stride(primals_36, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_37, (128, ), (1, ))
assert_size_stride(primals_38, (64, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_39, (64, ), (1, ))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64, ), (1, ))
assert_size_stride(primals_42, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (64, ), (1, ))
assert_size_stride(primals_44, (4, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_45, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 256, 256), (4194304, 65536, 256, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16777216, grid=grid(16777216), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 254, 254), (8258048, 64516, 254, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 33032192, grid=grid(33032192), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 252, 252), (8128512, 63504, 252, 1))
buf5 = empty_strided_cuda((4, 128, 252, 252), (8130560, 63520, 252, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_7, buf5, 32514048, grid=grid(32514048), stream=stream0)
del buf4
del primals_7
buf6 = empty_strided_cuda((4, 128, 126, 126), (2035712, 15904, 126, 1), torch.float32)
buf7 = empty_strided_cuda((4, 128, 126, 126), (2048000, 16000, 126, 1), torch.int8)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 8128512, grid=grid(8128512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 124, 124), (3936256, 15376, 124, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_9, 15745024, grid=grid(15745024), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 122, 122), (3810304, 14884, 122, 1))
buf11 = empty_strided_cuda((4, 256, 122, 122), (3817472, 14912, 122, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf10, primals_11, buf11, 15241216, grid=grid(15241216), stream=stream0)
del buf10
del primals_11
buf12 = empty_strided_cuda((4, 256, 61, 61), (958464, 3744, 61, 1), torch.float32)
buf13 = empty_strided_cuda((4, 256, 61, 61), (983040, 3840, 61, 1), torch.int8)
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_6.run(buf11, buf12, buf13, 3810304, grid=grid(3810304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 512, 59, 59), (1782272, 3481, 59, 1))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf15, primals_13, 7129088, grid=grid(7129088), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 512, 57, 57), (1663488, 3249, 57, 1))
buf17 = empty_strided_cuda((4, 512, 57, 57), (1671168, 3264, 57, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_6, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf16, primals_15, buf17, 6653952, grid=grid(6653952), stream=stream0)
del buf16
del primals_15
buf18 = empty_strided_cuda((4, 512, 28, 28), (401408, 784, 28, 1), torch.float32)
buf19 = empty_strided_cuda((4, 512, 28, 28), (401408, 784, 28, 1), torch.int8)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_9.run(buf17, buf18, buf19, 1605632, grid=grid(1605632), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 1024, 26, 26), (692224, 676, 26, 1))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, x_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf21, primals_17, 2768896, grid=grid(2768896), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 1024, 24, 24), (589824, 576, 24, 1))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_11.run(buf23, primals_19, 2359296, grid=grid(2359296), stream=stream0)
del primals_19
buf24 = empty_strided_cuda((4, 1024, 12, 12), (147456, 144, 12, 1), torch.int8)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_12.run(buf23, buf24, 589824, grid=grid(589824), stream=stream0)
buf25 = empty_strided_cuda((24, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_13.run(buf25, 24, grid=grid(24), stream=stream0)
buf26 = empty_strided_cuda((24, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_14.run(buf26, 24, grid=grid(24), stream=stream0)
buf27 = empty_strided_cuda((24, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_13.run(buf27, 24, grid=grid(24), stream=stream0)
buf28 = empty_strided_cuda((24, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_14.run(buf28, 24, grid=grid(24), stream=stream0)
buf31 = empty_strided_cuda((24, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_15.run(buf31, 24, grid=grid(24), stream=stream0)
buf33 = empty_strided_cuda((24, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_15.run(buf33, 24, grid=grid(24), stream=stream0)
buf30 = empty_strided_cuda((4, 1024, 24, 24), (589824, 576, 24, 1), torch.float32)
buf34 = buf30; del buf30 # reuse
buf35 = buf34; del buf34 # reuse
# Topologically Sorted Source Nodes: [x4, x_8], Original ATen: [aten.max_pool2d_with_indices, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16.run(buf35, buf26, buf27, buf23, buf25, buf28, buf31, buf33, 2359296, grid=grid(2359296), stream=stream0)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf35, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 23, 23), (270848, 529, 23, 1))
buf37 = empty_strided_cuda((4, 1024, 23, 23), (541696, 529, 23, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.cat]
triton_poi_fused_cat_17.run(buf18, buf36, primals_21, buf37, 2166784, grid=grid(2166784), stream=stream0)
del buf36
del primals_21
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 21, 21), (225792, 441, 21, 1))
buf39 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf39, primals_23, 903168, grid=grid(903168), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution]
buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 512, 19, 19), (184832, 361, 19, 1))
buf41 = empty_strided_cuda((38, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_19.run(buf41, 38, grid=grid(38), stream=stream0)
buf42 = empty_strided_cuda((38, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_20.run(buf42, 38, grid=grid(38), stream=stream0)
buf43 = empty_strided_cuda((38, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_19.run(buf43, 38, grid=grid(38), stream=stream0)
buf44 = empty_strided_cuda((38, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_20.run(buf44, 38, grid=grid(38), stream=stream0)
buf45 = empty_strided_cuda((38, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_21.run(buf45, 38, grid=grid(38), stream=stream0)
buf47 = empty_strided_cuda((38, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_21.run(buf47, 38, grid=grid(38), stream=stream0)
buf49 = empty_strided_cuda((4, 512, 38, 38), (739328, 1444, 38, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_13, x5, x_14], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22.run(buf41, buf43, buf40, primals_25, buf44, buf45, buf42, buf47, buf49, 2957312, grid=grid(2957312), stream=stream0)
# Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.convolution]
buf50 = extern_kernels.convolution(buf49, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 256, 37, 37), (350464, 1369, 37, 1))
buf51 = empty_strided_cuda((4, 512, 37, 37), (700928, 1369, 37, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.cat]
triton_poi_fused_cat_23.run(buf12, buf50, primals_27, buf51, 2803712, grid=grid(2803712), stream=stream0)
del buf50
del primals_27
# Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.convolution]
buf52 = extern_kernels.convolution(buf51, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf52, (4, 256, 35, 35), (313600, 1225, 35, 1))
buf53 = buf52; del buf52 # reuse
# Topologically Sorted Source Nodes: [x_17, x_18], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_24.run(buf53, primals_29, 1254400, grid=grid(1254400), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.convolution]
buf54 = extern_kernels.convolution(buf53, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 256, 33, 33), (278784, 1089, 33, 1))
buf55 = empty_strided_cuda((66, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_25.run(buf55, 66, grid=grid(66), stream=stream0)
buf56 = empty_strided_cuda((66, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_26.run(buf56, 66, grid=grid(66), stream=stream0)
buf57 = empty_strided_cuda((66, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_25.run(buf57, 66, grid=grid(66), stream=stream0)
buf58 = empty_strided_cuda((66, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_26.run(buf58, 66, grid=grid(66), stream=stream0)
buf59 = empty_strided_cuda((66, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_27.run(buf59, 66, grid=grid(66), stream=stream0)
buf61 = empty_strided_cuda((66, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_27.run(buf61, 66, grid=grid(66), stream=stream0)
buf63 = empty_strided_cuda((4, 256, 66, 66), (1115136, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_19, x6, x_20], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28.run(buf55, buf57, buf54, primals_31, buf58, buf59, buf56, buf61, buf63, 4460544, grid=grid(4460544), stream=stream0)
# Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.convolution]
buf64 = extern_kernels.convolution(buf63, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 128, 65, 65), (540800, 4225, 65, 1))
buf65 = empty_strided_cuda((4, 256, 65, 65), (1081600, 4225, 65, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.cat]
triton_poi_fused_cat_29.run(buf6, buf64, primals_33, buf65, 4326400, grid=grid(4326400), stream=stream0)
del buf64
del primals_33
# Topologically Sorted Source Nodes: [x_23], Original ATen: [aten.convolution]
buf66 = extern_kernels.convolution(buf65, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf66, (4, 128, 63, 63), (508032, 3969, 63, 1))
buf67 = buf66; del buf66 # reuse
# Topologically Sorted Source Nodes: [x_23, x_24], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_30.run(buf67, primals_35, 2032128, grid=grid(2032128), stream=stream0)
del primals_35
# Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.convolution]
buf68 = extern_kernels.convolution(buf67, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf68, (4, 128, 61, 61), (476288, 3721, 61, 1))
buf69 = empty_strided_cuda((122, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_31.run(buf69, 122, grid=grid(122), stream=stream0)
buf70 = empty_strided_cuda((122, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_32.run(buf70, 122, grid=grid(122), stream=stream0)
buf71 = empty_strided_cuda((122, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_31.run(buf71, 122, grid=grid(122), stream=stream0)
buf72 = empty_strided_cuda((122, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_32.run(buf72, 122, grid=grid(122), stream=stream0)
buf73 = empty_strided_cuda((122, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_33.run(buf73, 122, grid=grid(122), stream=stream0)
buf75 = empty_strided_cuda((122, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_33.run(buf75, 122, grid=grid(122), stream=stream0)
buf77 = empty_strided_cuda((4, 128, 122, 122), (1905152, 14884, 122, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_25, x7, x_26], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34.run(buf69, buf71, buf68, primals_37, buf72, buf73, buf70, buf75, buf77, 7620608, grid=grid(7620608), stream=stream0)
# Topologically Sorted Source Nodes: [x_27], Original ATen: [aten.convolution]
buf78 = extern_kernels.convolution(buf77, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf78, (4, 64, 121, 121), (937024, 14641, 121, 1))
buf79 = empty_strided_cuda((4, 128, 121, 121), (1874048, 14641, 121, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.cat]
triton_poi_fused_cat_35.run(buf1, buf78, primals_39, buf79, 7496192, grid=grid(7496192), stream=stream0)
del buf78
del primals_39
# Topologically Sorted Source Nodes: [x_29], Original ATen: [aten.convolution]
buf80 = extern_kernels.convolution(buf79, primals_40, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf80, (4, 64, 119, 119), (906304, 14161, 119, 1))
buf81 = buf80; del buf80 # reuse
# Topologically Sorted Source Nodes: [x_29, x_30], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_36.run(buf81, primals_41, 3625216, grid=grid(3625216), stream=stream0)
del primals_41
# Topologically Sorted Source Nodes: [x_31], Original ATen: [aten.convolution]
buf82 = extern_kernels.convolution(buf81, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf82, (4, 64, 117, 117), (876096, 13689, 117, 1))
buf83 = buf82; del buf82 # reuse
# Topologically Sorted Source Nodes: [x_31, x8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_37.run(buf83, primals_43, 3504384, grid=grid(3504384), stream=stream0)
del primals_43
# Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution]
buf84 = extern_kernels.convolution(buf83, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 4, 117, 117), (54756, 13689, 117, 1))
buf85 = buf84; del buf84 # reuse
# Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution]
triton_poi_fused_convolution_38.run(buf85, primals_45, 219024, grid=grid(219024), stream=stream0)
del primals_45
buf86 = empty_strided_cuda((4, 128, 61, 61), (491520, 3840, 61, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_25, x7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_39.run(buf68, primals_37, buf86, 1905152, grid=grid(1905152), stream=stream0)
del buf68
del primals_37
buf87 = empty_strided_cuda((4, 256, 33, 33), (294912, 1152, 33, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_19, x6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_40.run(buf54, primals_31, buf87, 1115136, grid=grid(1115136), stream=stream0)
del buf54
del primals_31
buf88 = empty_strided_cuda((4, 512, 19, 19), (184832, 361, 19, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_13, x5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_41.run(buf40, primals_25, buf88, 739328, grid=grid(739328), stream=stream0)
del buf40
del primals_25
return (buf85, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, buf1, buf3, buf5, buf6, buf7, buf9, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf24, buf25, buf26, buf27, buf28, buf31, buf33, buf35, buf37, buf39, buf41, buf42, buf43, buf44, buf45, buf47, buf49, buf51, buf53, buf55, buf56, buf57, buf58, buf59, buf61, buf63, buf65, buf67, buf69, buf70, buf71, buf72, buf73, buf75, buf77, buf79, buf81, buf83, buf86, buf87, buf88, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 256, 256), (262144, 65536, 256, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 1024, 2, 2), (4096, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((256, 512, 2, 2), (2048, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((128, 256, 2, 2), (1024, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((64, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((4, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def crop(image, new_shape):
plus_h, plus_w = 0, 0
if new_shape[2] % 2 != 0:
plus_h = 1
if new_shape[3] % 2 != 0:
plus_w = 1
middle_height = image.shape[2] // 2
middle_weight = image.shape[3] // 2
go_height = new_shape[2] // 2
go_weight = new_shape[3] // 2
cropped_image = image[:, :, middle_height - go_height:middle_height +
go_height + plus_h, middle_weight - go_weight:middle_weight +
go_weight + plus_w]
return cropped_image
class ContractingBlock(nn.Module):
def __init__(self, input_channel):
super(ContractingBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=input_channel, out_channels=
input_channel * 2, kernel_size=(3, 3))
self.conv2 = nn.Conv2d(input_channel * 2, input_channel * 2,
kernel_size=(3, 3))
self.maxpool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.activation = nn.ReLU()
def forward(self, x):
x = self.activation(self.conv1(x))
x = self.activation(self.conv2(x))
return self.maxpool(x)
class ExpandingBlock(nn.Module):
def __init__(self, input_channels):
super(ExpandingBlock, self).__init__()
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=True)
self.conv1 = nn.Conv2d(input_channels, input_channels // 2,
kernel_size=(2, 2))
self.conv2 = nn.Conv2d(input_channels, input_channels // 2,
kernel_size=(3, 3))
self.conv3 = nn.Conv2d(input_channels // 2, input_channels // 2,
kernel_size=(3, 3))
self.activation = nn.ReLU()
def forward(self, skip_con_x, x):
x = self.upsample(x)
x = self.conv1(x)
skip_con_x = crop(skip_con_x, x.shape)
x = torch.cat([skip_con_x, x], axis=1)
x = self.conv2(x)
x = self.activation(x)
x = self.conv3(x)
return self.activation(x)
class FeatureMapBlock(nn.Module):
def __init__(self, input_channels, output_channels):
super(FeatureMapBlock, self).__init__()
self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=
(1, 1))
def forward(self, x):
return self.conv(x)
class Unet(nn.Module):
def __init__(self, input_channels, output_channels, hidden_channels=64):
super(Unet, self).__init__()
self.upfeature = FeatureMapBlock(input_channels, hidden_channels)
self.contract1 = ContractingBlock(hidden_channels)
self.contract2 = ContractingBlock(hidden_channels * 2)
self.contract3 = ContractingBlock(hidden_channels * 4)
self.contract4 = ContractingBlock(hidden_channels * 8)
self.expanding1 = ExpandingBlock(hidden_channels * 16)
self.expanding2 = ExpandingBlock(hidden_channels * 8)
self.expanding3 = ExpandingBlock(hidden_channels * 4)
self.expanding4 = ExpandingBlock(hidden_channels * 2)
self.downfeature = FeatureMapBlock(hidden_channels, output_channels)
def forward(self, x):
x0 = self.upfeature(x)
x1 = self.contract1(x0)
x2 = self.contract2(x1)
x3 = self.contract3(x2)
x4 = self.contract4(x3)
x5 = self.expanding1(skip_con_x=x3, x=x4)
x6 = self.expanding2(skip_con_x=x2, x=x5)
x7 = self.expanding3(skip_con_x=x1, x=x6)
x8 = self.expanding4(skip_con_x=x0, x=x7)
return self.downfeature(x8)
def get_inputs():
return [torch.rand([4, 4, 256, 256])]
def get_init_inputs():
return [[], {'input_channels': 4, 'output_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 65536 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64516 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 63504 % 128
x0 = xindex % 63504
x4 = xindex // 63504
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 63520 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 126
x1 = xindex // 126 % 126
x2 = xindex // 15876
x3 = xindex % 15876
tmp0 = tl.load(in_ptr0 + (2 * x0 + 504 * x1 + 63520 * x2), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 504 * x1 + 63520 * x2), None,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (252 + 2 * x0 + 504 * x1 + 63520 * x2), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (253 + 2 * x0 + 504 * x1 + 63520 * x2), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 15904 * x2), tmp6, None)
tl.store(out_ptr1 + (x3 + 16000 * x2), tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 15376 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 14884 % 256
x0 = xindex % 14884
x4 = xindex // 14884
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 14912 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 3810304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 61
x1 = xindex // 61 % 61
x2 = xindex // 3721
x3 = xindex % 3721
tmp0 = tl.load(in_ptr0 + (2 * x0 + 244 * x1 + 14912 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 244 * x1 + 14912 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (122 + 2 * x0 + 244 * x1 + 14912 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (123 + 2 * x0 + 244 * x1 + 14912 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 3744 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x3 + 3840 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3481 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3249 % 512
x0 = xindex % 3249
x4 = xindex // 3249
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3264 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 28
x1 = xindex // 28 % 28
x2 = xindex // 784
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 114 * x1 + 3264 * x2), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 114 * x1 + 3264 * x2), None,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (57 + 2 * x0 + 114 * x1 + 3264 * x2), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (58 + 2 * x0 + 114 * x1 + 3264 * x2), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 676 % 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 576 % 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x1), None, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x1), None, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, None)
@triton.jit
def triton_poi_fused__to_copy_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 11, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_15(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 24
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4782608695652174
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 24 % 24
x0 = xindex % 24
x2 = xindex // 576
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp53 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 12, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (2 * tmp8 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + 2 * tmp8 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.load(in_ptr2 + (24 + 2 * tmp8 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.load(in_ptr2 + (25 + 2 * tmp8 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (2 * tmp8 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (1 + 2 * tmp8 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp23 = tl.load(in_ptr2 + (24 + 2 * tmp8 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp25 = tl.load(in_ptr2 + (25 + 2 * tmp8 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = tmp27 + tmp1
tmp29 = tmp27 < 0
tmp30 = tl.where(tmp29, tmp28, tmp27)
tmp31 = tl.load(in_ptr2 + (2 * tmp30 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1 + 2 * tmp30 + 48 * tmp19 + 576 * x2), None,
eviction_policy='evict_last')
tmp33 = triton_helpers.maximum(tmp32, tmp31)
tmp34 = tl.load(in_ptr2 + (24 + 2 * tmp30 + 48 * tmp19 + 576 * x2),
None, eviction_policy='evict_last')
tmp35 = triton_helpers.maximum(tmp34, tmp33)
tmp36 = tl.load(in_ptr2 + (25 + 2 * tmp30 + 48 * tmp19 + 576 * x2),
None, eviction_policy='evict_last')
tmp37 = triton_helpers.maximum(tmp36, tmp35)
tmp38 = tmp37 - tmp26
tmp40 = tmp38 * tmp39
tmp41 = tmp26 + tmp40
tmp42 = tl.load(in_ptr2 + (2 * tmp30 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp43 = tl.load(in_ptr2 + (1 + 2 * tmp30 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp45 = tl.load(in_ptr2 + (24 + 2 * tmp30 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp47 = tl.load(in_ptr2 + (25 + 2 * tmp30 + 48 * tmp4 + 576 * x2), None,
eviction_policy='evict_last')
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tmp49 = tmp48 - tmp15
tmp50 = tmp49 * tmp39
tmp51 = tmp15 + tmp50
tmp52 = tmp51 - tmp41
tmp54 = tmp52 * tmp53
tmp55 = tmp41 + tmp54
tl.store(in_out_ptr1 + x4, tmp55, None)
@triton.jit
def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 529 % 1024
x0 = xindex % 23
x1 = xindex // 23 % 23
x3 = xindex // 541696
x4 = xindex % 529
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (87 + x0 + 28 * x1 + 784 * x2 + 401408 * x3),
tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 1024, tl.int64)
tmp9 = tl.load(in_ptr1 + (x4 + 529 * (-512 + x2) + 270848 * x3), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-512 + x2), tmp6, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x5, tmp14, None)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 441 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_19(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_20(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 18, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_21(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 38
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4864864864864865
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 38 % 38
x0 = xindex % 38
x5 = xindex // 1444
x2 = xindex // 1444 % 512
xindex % 1444
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 19, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 19 * tmp4 + 361 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + 19 * tmp4 + 361 * x5), None,
eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + 19 * tmp28 + 361 * x5), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + 19 * tmp28 + 361 * x5), None,
eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + x6, tmp41, None)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 1369 % 512
x0 = xindex % 37
x1 = xindex // 37 % 37
x3 = xindex // 700928
x4 = xindex % 1369
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (744 + x0 + 61 * x1 + 3744 * x2 + 958464 * x3),
tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 512, tl.int64)
tmp9 = tl.load(in_ptr1 + (x4 + 1369 * (-256 + x2) + 350464 * x3), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-256 + x2), tmp6, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x5, tmp14, None)
@triton.jit
def triton_poi_fused_convolution_relu_24(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1254400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1225 % 256
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused__to_copy_25(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_26(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 32, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_27(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 66
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49230769230769234
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 66 % 66
x0 = xindex % 66
x5 = xindex // 4356
x2 = xindex // 4356 % 256
xindex % 4356
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 33, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 33 * tmp4 + 1089 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + 33 * tmp4 + 1089 * x5), None,
eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + 33 * tmp28 + 1089 * x5), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + 33 * tmp28 + 1089 * x5), None,
eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + x6, tmp41, None)
@triton.jit
def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4326400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4225 % 256
x0 = xindex % 65
x1 = xindex // 65 % 65
x3 = xindex // 1081600
x4 = xindex % 4225
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (3937 + x0 + 126 * x1 + 15904 * x2 + 2035712 *
x3), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp9 = tl.load(in_ptr1 + (x4 + 4225 * (-128 + x2) + 540800 * x3), tmp6 &
xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + (-128 + x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x5, tmp14, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_30(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2032128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3969 % 128
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused__to_copy_31(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_32(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 60, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_33(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 122
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49586776859504134
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 122 % 122
x0 = xindex % 122
x5 = xindex // 14884
x2 = xindex // 14884 % 128
xindex % 14884
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 61, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 61 * tmp4 + 3721 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp15 = tmp14 + tmp1
tmp16 = tmp14 < 0
tmp17 = tl.where(tmp16, tmp15, tmp14)
tmp18 = tl.load(in_ptr2 + (tmp17 + 61 * tmp4 + 3721 * x5), None,
eviction_policy='evict_last')
tmp19 = tmp18 + tmp10
tmp20 = triton_helpers.maximum(tmp12, tmp19)
tmp21 = tmp20 - tmp13
tmp23 = tmp21 * tmp22
tmp24 = tmp13 + tmp23
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp8 + 61 * tmp28 + 3721 * x5), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp10
tmp31 = triton_helpers.maximum(tmp12, tmp30)
tmp32 = tl.load(in_ptr2 + (tmp17 + 61 * tmp28 + 3721 * x5), None,
eviction_policy='evict_last')
tmp33 = tmp32 + tmp10
tmp34 = triton_helpers.maximum(tmp12, tmp33)
tmp35 = tmp34 - tmp31
tmp36 = tmp35 * tmp22
tmp37 = tmp31 + tmp36
tmp38 = tmp37 - tmp24
tmp40 = tmp38 * tmp39
tmp41 = tmp24 + tmp40
tl.store(out_ptr2 + x6, tmp41, None)
@triton.jit
def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 7496192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 14641 % 128
x0 = xindex % 121
x1 = xindex // 121 % 121
x3 = xindex // 1874048
x4 = xindex % 14641
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (17476 + x0 + 256 * x1 + 65536 * x2 + 4194304 *
x3), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp9 = tl.load(in_ptr1 + (x4 + 14641 * (-64 + x2) + 937024 * x3), tmp6 &
xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + (-64 + x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x5, tmp14, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_36(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 3625216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 14161 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_37(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 3504384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 13689 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 219024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 13689 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_39(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1905152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3721 % 128
x0 = xindex % 3721
x4 = xindex // 3721
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 3840 * x4), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_40(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1089 % 256
x0 = xindex % 1089
x4 = xindex // 1089
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 1152 * x4), tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_41(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 361 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 256, 256), (262144, 65536, 256, 1))
assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (512,), (1,))
assert_size_stride(primals_14, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_15, (512,), (1,))
assert_size_stride(primals_16, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_17, (1024,), (1,))
assert_size_stride(primals_18, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_19, (1024,), (1,))
assert_size_stride(primals_20, (512, 1024, 2, 2), (4096, 4, 2, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (256, 512, 2, 2), (2048, 4, 2, 1))
assert_size_stride(primals_27, (256,), (1,))
assert_size_stride(primals_28, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (256,), (1,))
assert_size_stride(primals_30, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_31, (256,), (1,))
assert_size_stride(primals_32, (128, 256, 2, 2), (1024, 4, 2, 1))
assert_size_stride(primals_33, (128,), (1,))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128,), (1,))
assert_size_stride(primals_36, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_37, (128,), (1,))
assert_size_stride(primals_38, (64, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_39, (64,), (1,))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64,), (1,))
assert_size_stride(primals_42, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_43, (64,), (1,))
assert_size_stride(primals_44, (4, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_45, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 256, 256), (4194304, 65536, 256, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16777216)](buf1, primals_2,
16777216, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 254, 254), (8258048, 64516, 254, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(33032192)](buf3, primals_5,
33032192, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 252, 252), (8128512, 63504, 252, 1))
buf5 = empty_strided_cuda((4, 128, 252, 252), (8130560, 63520, 252,
1), torch.float32)
triton_poi_fused_convolution_relu_2[grid(32514048)](buf4, primals_7,
buf5, 32514048, XBLOCK=512, num_warps=8, num_stages=1)
del buf4
del primals_7
buf6 = empty_strided_cuda((4, 128, 126, 126), (2035712, 15904, 126,
1), torch.float32)
buf7 = empty_strided_cuda((4, 128, 126, 126), (2048000, 16000, 126,
1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(8128512)](buf5,
buf6, buf7, 8128512, XBLOCK=1024, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 124, 124), (3936256, 15376, 124, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(15745024)](buf9, primals_9,
15745024, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 122, 122), (3810304, 14884, 122, 1))
buf11 = empty_strided_cuda((4, 256, 122, 122), (3817472, 14912, 122,
1), torch.float32)
triton_poi_fused_convolution_relu_5[grid(15241216)](buf10,
primals_11, buf11, 15241216, XBLOCK=1024, num_warps=4, num_stages=1
)
del buf10
del primals_11
buf12 = empty_strided_cuda((4, 256, 61, 61), (958464, 3744, 61, 1),
torch.float32)
buf13 = empty_strided_cuda((4, 256, 61, 61), (983040, 3840, 61, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_6[grid(3810304)](buf11,
buf12, buf13, 3810304, XBLOCK=512, num_warps=8, num_stages=1)
buf14 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 512, 59, 59), (1782272, 3481, 59, 1))
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_7[grid(7129088)](buf15,
primals_13, 7129088, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 512, 57, 57), (1663488, 3249, 57, 1))
buf17 = empty_strided_cuda((4, 512, 57, 57), (1671168, 3264, 57, 1),
torch.float32)
triton_poi_fused_convolution_relu_8[grid(6653952)](buf16,
primals_15, buf17, 6653952, XBLOCK=512, num_warps=8, num_stages=1)
del buf16
del primals_15
buf18 = empty_strided_cuda((4, 512, 28, 28), (401408, 784, 28, 1),
torch.float32)
buf19 = empty_strided_cuda((4, 512, 28, 28), (401408, 784, 28, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_9[grid(1605632)](buf17,
buf18, buf19, 1605632, XBLOCK=512, num_warps=8, num_stages=1)
buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 1024, 26, 26), (692224, 676, 26, 1))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_10[grid(2768896)](buf21,
primals_17, 2768896, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 1024, 24, 24), (589824, 576, 24, 1))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_11[grid(2359296)](buf23,
primals_19, 2359296, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf24 = empty_strided_cuda((4, 1024, 12, 12), (147456, 144, 12, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_12[grid(589824)](buf23,
buf24, 589824, XBLOCK=512, num_warps=8, num_stages=1)
buf25 = empty_strided_cuda((24, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_13[grid(24)](buf25, 24, XBLOCK=32,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((24, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_14[grid(24)](buf26, 24, XBLOCK=32,
num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((24,), (1,), torch.int64)
triton_poi_fused__to_copy_13[grid(24)](buf27, 24, XBLOCK=32,
num_warps=1, num_stages=1)
buf28 = empty_strided_cuda((24,), (1,), torch.int64)
triton_poi_fused_add_clamp_14[grid(24)](buf28, 24, XBLOCK=32,
num_warps=1, num_stages=1)
buf31 = empty_strided_cuda((24,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_15[grid(24)](buf31,
24, XBLOCK=32, num_warps=1, num_stages=1)
buf33 = empty_strided_cuda((24, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_15[grid(24)](buf33,
24, XBLOCK=32, num_warps=1, num_stages=1)
buf30 = empty_strided_cuda((4, 1024, 24, 24), (589824, 576, 24, 1),
torch.float32)
buf34 = buf30
del buf30
buf35 = buf34
del buf34
triton_poi_fused__unsafe_index_add_max_pool2d_with_indices_mul_sub_16[
grid(2359296)](buf35, buf26, buf27, buf23, buf25, buf28, buf31,
buf33, 2359296, XBLOCK=512, num_warps=8, num_stages=1)
buf36 = extern_kernels.convolution(buf35, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 23, 23), (270848, 529, 23, 1))
buf37 = empty_strided_cuda((4, 1024, 23, 23), (541696, 529, 23, 1),
torch.float32)
triton_poi_fused_cat_17[grid(2166784)](buf18, buf36, primals_21,
buf37, 2166784, XBLOCK=1024, num_warps=4, num_stages=1)
del buf36
del primals_21
buf38 = extern_kernels.convolution(buf37, primals_22, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 21, 21), (225792, 441, 21, 1))
buf39 = buf38
del buf38
triton_poi_fused_convolution_relu_18[grid(903168)](buf39,
primals_23, 903168, XBLOCK=512, num_warps=8, num_stages=1)
del primals_23
buf40 = extern_kernels.convolution(buf39, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 512, 19, 19), (184832, 361, 19, 1))
buf41 = empty_strided_cuda((38, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_19[grid(38)](buf41, 38, XBLOCK=64,
num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((38, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_20[grid(38)](buf42, 38, XBLOCK=64,
num_warps=1, num_stages=1)
buf43 = empty_strided_cuda((38,), (1,), torch.int64)
triton_poi_fused__to_copy_19[grid(38)](buf43, 38, XBLOCK=64,
num_warps=1, num_stages=1)
buf44 = empty_strided_cuda((38,), (1,), torch.int64)
triton_poi_fused_add_clamp_20[grid(38)](buf44, 38, XBLOCK=64,
num_warps=1, num_stages=1)
buf45 = empty_strided_cuda((38,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_21[grid(38)](buf45,
38, XBLOCK=64, num_warps=1, num_stages=1)
buf47 = empty_strided_cuda((38, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_21[grid(38)](buf47,
38, XBLOCK=64, num_warps=1, num_stages=1)
buf49 = empty_strided_cuda((4, 512, 38, 38), (739328, 1444, 38, 1),
torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_22[grid
(2957312)](buf41, buf43, buf40, primals_25, buf44, buf45, buf42,
buf47, buf49, 2957312, XBLOCK=1024, num_warps=4, num_stages=1)
buf50 = extern_kernels.convolution(buf49, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 256, 37, 37), (350464, 1369, 37, 1))
buf51 = empty_strided_cuda((4, 512, 37, 37), (700928, 1369, 37, 1),
torch.float32)
triton_poi_fused_cat_23[grid(2803712)](buf12, buf50, primals_27,
buf51, 2803712, XBLOCK=1024, num_warps=4, num_stages=1)
del buf50
del primals_27
buf52 = extern_kernels.convolution(buf51, primals_28, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf52, (4, 256, 35, 35), (313600, 1225, 35, 1))
buf53 = buf52
del buf52
triton_poi_fused_convolution_relu_24[grid(1254400)](buf53,
primals_29, 1254400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_29
buf54 = extern_kernels.convolution(buf53, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 256, 33, 33), (278784, 1089, 33, 1))
buf55 = empty_strided_cuda((66, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_25[grid(66)](buf55, 66, XBLOCK=128,
num_warps=4, num_stages=1)
buf56 = empty_strided_cuda((66, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_26[grid(66)](buf56, 66, XBLOCK=128,
num_warps=4, num_stages=1)
buf57 = empty_strided_cuda((66,), (1,), torch.int64)
triton_poi_fused__to_copy_25[grid(66)](buf57, 66, XBLOCK=128,
num_warps=4, num_stages=1)
buf58 = empty_strided_cuda((66,), (1,), torch.int64)
triton_poi_fused_add_clamp_26[grid(66)](buf58, 66, XBLOCK=128,
num_warps=4, num_stages=1)
buf59 = empty_strided_cuda((66,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_27[grid(66)](buf59,
66, XBLOCK=128, num_warps=4, num_stages=1)
buf61 = empty_strided_cuda((66, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_27[grid(66)](buf61,
66, XBLOCK=128, num_warps=4, num_stages=1)
buf63 = empty_strided_cuda((4, 256, 66, 66), (1115136, 4356, 66, 1),
torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_28[grid
(4460544)](buf55, buf57, buf54, primals_31, buf58, buf59, buf56,
buf61, buf63, 4460544, XBLOCK=1024, num_warps=4, num_stages=1)
buf64 = extern_kernels.convolution(buf63, primals_32, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 128, 65, 65), (540800, 4225, 65, 1))
buf65 = empty_strided_cuda((4, 256, 65, 65), (1081600, 4225, 65, 1),
torch.float32)
triton_poi_fused_cat_29[grid(4326400)](buf6, buf64, primals_33,
buf65, 4326400, XBLOCK=512, num_warps=8, num_stages=1)
del buf64
del primals_33
buf66 = extern_kernels.convolution(buf65, primals_34, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf66, (4, 128, 63, 63), (508032, 3969, 63, 1))
buf67 = buf66
del buf66
triton_poi_fused_convolution_relu_30[grid(2032128)](buf67,
primals_35, 2032128, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_35
buf68 = extern_kernels.convolution(buf67, primals_36, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf68, (4, 128, 61, 61), (476288, 3721, 61, 1))
buf69 = empty_strided_cuda((122, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_31[grid(122)](buf69, 122, XBLOCK=128,
num_warps=4, num_stages=1)
buf70 = empty_strided_cuda((122, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_32[grid(122)](buf70, 122, XBLOCK=128,
num_warps=4, num_stages=1)
buf71 = empty_strided_cuda((122,), (1,), torch.int64)
triton_poi_fused__to_copy_31[grid(122)](buf71, 122, XBLOCK=128,
num_warps=4, num_stages=1)
buf72 = empty_strided_cuda((122,), (1,), torch.int64)
triton_poi_fused_add_clamp_32[grid(122)](buf72, 122, XBLOCK=128,
num_warps=4, num_stages=1)
buf73 = empty_strided_cuda((122,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_33[grid(122)](buf73,
122, XBLOCK=128, num_warps=4, num_stages=1)
buf75 = empty_strided_cuda((122, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_33[grid(122)](buf75,
122, XBLOCK=128, num_warps=4, num_stages=1)
buf77 = empty_strided_cuda((4, 128, 122, 122), (1905152, 14884, 122,
1), torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_relu_sub_34[grid
(7620608)](buf69, buf71, buf68, primals_37, buf72, buf73, buf70,
buf75, buf77, 7620608, XBLOCK=1024, num_warps=4, num_stages=1)
buf78 = extern_kernels.convolution(buf77, primals_38, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf78, (4, 64, 121, 121), (937024, 14641, 121, 1))
buf79 = empty_strided_cuda((4, 128, 121, 121), (1874048, 14641, 121,
1), torch.float32)
triton_poi_fused_cat_35[grid(7496192)](buf1, buf78, primals_39,
buf79, 7496192, XBLOCK=1024, num_warps=4, num_stages=1)
del buf78
del primals_39
buf80 = extern_kernels.convolution(buf79, primals_40, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf80, (4, 64, 119, 119), (906304, 14161, 119, 1))
buf81 = buf80
del buf80
triton_poi_fused_convolution_relu_36[grid(3625216)](buf81,
primals_41, 3625216, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_41
buf82 = extern_kernels.convolution(buf81, primals_42, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf82, (4, 64, 117, 117), (876096, 13689, 117, 1))
buf83 = buf82
del buf82
triton_poi_fused_convolution_relu_37[grid(3504384)](buf83,
primals_43, 3504384, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_43
buf84 = extern_kernels.convolution(buf83, primals_44, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 4, 117, 117), (54756, 13689, 117, 1))
buf85 = buf84
del buf84
triton_poi_fused_convolution_38[grid(219024)](buf85, primals_45,
219024, XBLOCK=512, num_warps=8, num_stages=1)
del primals_45
buf86 = empty_strided_cuda((4, 128, 61, 61), (491520, 3840, 61, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_39[grid(1905152)](
buf68, primals_37, buf86, 1905152, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf68
del primals_37
buf87 = empty_strided_cuda((4, 256, 33, 33), (294912, 1152, 33, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_40[grid(1115136)](
buf54, primals_31, buf87, 1115136, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf54
del primals_31
buf88 = empty_strided_cuda((4, 512, 19, 19), (184832, 361, 19, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_41[grid(739328)](
buf40, primals_25, buf88, 739328, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf40
del primals_25
return (buf85, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, primals_28,
primals_30, primals_32, primals_34, primals_36, primals_38,
primals_40, primals_42, primals_44, buf1, buf3, buf5, buf6, buf7,
buf9, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23,
buf24, buf25, buf26, buf27, buf28, buf31, buf33, buf35, buf37,
buf39, buf41, buf42, buf43, buf44, buf45, buf47, buf49, buf51,
buf53, buf55, buf56, buf57, buf58, buf59, buf61, buf63, buf65,
buf67, buf69, buf70, buf71, buf72, buf73, buf75, buf77, buf79,
buf81, buf83, buf86, buf87, buf88)
def crop(image, new_shape):
plus_h, plus_w = 0, 0
if new_shape[2] % 2 != 0:
plus_h = 1
if new_shape[3] % 2 != 0:
plus_w = 1
middle_height = image.shape[2] // 2
middle_weight = image.shape[3] // 2
go_height = new_shape[2] // 2
go_weight = new_shape[3] // 2
cropped_image = image[:, :, middle_height - go_height:middle_height +
go_height + plus_h, middle_weight - go_weight:middle_weight +
go_weight + plus_w]
return cropped_image
class ContractingBlock(nn.Module):
def __init__(self, input_channel):
super(ContractingBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels=input_channel, out_channels=
input_channel * 2, kernel_size=(3, 3))
self.conv2 = nn.Conv2d(input_channel * 2, input_channel * 2,
kernel_size=(3, 3))
self.maxpool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.activation = nn.ReLU()
def forward(self, x):
x = self.activation(self.conv1(x))
x = self.activation(self.conv2(x))
return self.maxpool(x)
class ExpandingBlock(nn.Module):
def __init__(self, input_channels):
super(ExpandingBlock, self).__init__()
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=True)
self.conv1 = nn.Conv2d(input_channels, input_channels // 2,
kernel_size=(2, 2))
self.conv2 = nn.Conv2d(input_channels, input_channels // 2,
kernel_size=(3, 3))
self.conv3 = nn.Conv2d(input_channels // 2, input_channels // 2,
kernel_size=(3, 3))
self.activation = nn.ReLU()
def forward(self, skip_con_x, x):
x = self.upsample(x)
x = self.conv1(x)
skip_con_x = crop(skip_con_x, x.shape)
x = torch.cat([skip_con_x, x], axis=1)
x = self.conv2(x)
x = self.activation(x)
x = self.conv3(x)
return self.activation(x)
class FeatureMapBlock(nn.Module):
def __init__(self, input_channels, output_channels):
super(FeatureMapBlock, self).__init__()
self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=
(1, 1))
def forward(self, x):
return self.conv(x)
class UnetNew(nn.Module):
def __init__(self, input_channels, output_channels, hidden_channels=64):
super(UnetNew, self).__init__()
self.upfeature = FeatureMapBlock(input_channels, hidden_channels)
self.contract1 = ContractingBlock(hidden_channels)
self.contract2 = ContractingBlock(hidden_channels * 2)
self.contract3 = ContractingBlock(hidden_channels * 4)
self.contract4 = ContractingBlock(hidden_channels * 8)
self.expanding1 = ExpandingBlock(hidden_channels * 16)
self.expanding2 = ExpandingBlock(hidden_channels * 8)
self.expanding3 = ExpandingBlock(hidden_channels * 4)
self.expanding4 = ExpandingBlock(hidden_channels * 2)
self.downfeature = FeatureMapBlock(hidden_channels, output_channels)
def forward(self, input_0):
primals_1 = self.upfeature.conv.weight
primals_2 = self.upfeature.conv.bias
primals_4 = self.contract1.conv1.weight
primals_5 = self.contract1.conv1.bias
primals_6 = self.contract1.conv2.weight
primals_7 = self.contract1.conv2.bias
primals_8 = self.contract2.conv1.weight
primals_9 = self.contract2.conv1.bias
primals_10 = self.contract2.conv2.weight
primals_11 = self.contract2.conv2.bias
primals_12 = self.contract3.conv1.weight
primals_13 = self.contract3.conv1.bias
primals_14 = self.contract3.conv2.weight
primals_15 = self.contract3.conv2.bias
primals_16 = self.contract4.conv1.weight
primals_17 = self.contract4.conv1.bias
primals_18 = self.contract4.conv2.weight
primals_19 = self.contract4.conv2.bias
primals_20 = self.expanding1.conv1.weight
primals_21 = self.expanding1.conv1.bias
primals_22 = self.expanding1.conv2.weight
primals_23 = self.expanding1.conv2.bias
primals_24 = self.expanding1.conv3.weight
primals_25 = self.expanding1.conv3.bias
primals_26 = self.expanding2.conv1.weight
primals_27 = self.expanding2.conv1.bias
primals_28 = self.expanding2.conv2.weight
primals_29 = self.expanding2.conv2.bias
primals_30 = self.expanding2.conv3.weight
primals_31 = self.expanding2.conv3.bias
primals_32 = self.expanding3.conv1.weight
primals_33 = self.expanding3.conv1.bias
primals_34 = self.expanding3.conv2.weight
primals_35 = self.expanding3.conv2.bias
primals_36 = self.expanding3.conv3.weight
primals_37 = self.expanding3.conv3.bias
primals_38 = self.expanding4.conv1.weight
primals_39 = self.expanding4.conv1.bias
primals_40 = self.expanding4.conv2.weight
primals_41 = self.expanding4.conv2.bias
primals_42 = self.expanding4.conv3.weight
primals_43 = self.expanding4.conv3.bias
primals_44 = self.downfeature.conv.weight
primals_45 = self.downfeature.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45])
return output[0]
|
furkannturkmen/pytorch-CNN-architecture
|
Unet
| false | 10,222 |
[
"MIT"
] | 0 |
6a864811f51409c1526224c288fe608010e0c888
|
https://github.com/furkannturkmen/pytorch-CNN-architecture/tree/6a864811f51409c1526224c288fe608010e0c888
|
Fusion
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwapf4spszv7xrakefo7xfxxiomqve2jhc3fgichvmsioyx2bqg.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# z => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %mul, %sub], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tmp21 = tl.full([1], 16, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 16), (16, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
return (buf2, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Fusion(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(Fusion, self).__init__()
self.linear = nn.Linear(input_dim * 4, hidden_dim, bias=True)
self.tanh = nn.Tanh()
def forward(self, x, y):
z = torch.cat([x, y, x * y, x - y], dim=2)
return self.tanh(self.linear(z))
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'hidden_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 16), (16, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_tanh_1[grid(64)](buf2, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
return buf2, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), buf2
class FusionNew(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(FusionNew, self).__init__()
self.linear = nn.Linear(input_dim * 4, hidden_dim, bias=True)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1):
primals_3 = self.linear.weight
primals_4 = self.linear.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
hgrhgy/NumSeq2SQL
|
Fusion
| false | 10,223 |
[
"MIT"
] | 0 |
6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
https://github.com/hgrhgy/NumSeq2SQL/tree/6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
CRF
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2b/c2bkqvv3w46os3y2jfp7zebz4v4e3jusxayajeubp3hevuxzgzn6.py
# Topologically Sorted Source Nodes: [add_1, max_1], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_1 => add_1
# max_1 => max_1
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_2, %unsqueeze_1), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_1, 1), kwargs = {})
triton_poi_fused_add_max_0 = async_compile.triton('triton_poi_fused_add_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (16*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (16*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (16*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (16*x1)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3))
tmp22 = tl.broadcast_to(tmp21, [XBLOCK])
tmp24 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tmp9 = tmp6 + tmp8
tmp11 = tmp9 + tmp10
tmp12 = triton_helpers.maximum(tmp5, tmp11)
tmp16 = tmp13 + tmp15
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp23 = tmp20 + tmp22
tmp25 = tmp23 + tmp24
tmp26 = triton_helpers.maximum(tmp19, tmp25)
tmp27 = tmp5 > tmp11
tmp28 = tmp5 == tmp11
tmp29 = tmp5 != tmp5
tmp30 = tmp11 != tmp11
tmp31 = tmp29 > tmp30
tmp32 = tmp27 | tmp31
tmp33 = tmp29 & tmp30
tmp34 = tmp28 | tmp33
tmp35 = tl.full([1], 0, tl.int64)
tmp36 = tl.full([1], 1, tl.int64)
tmp37 = tmp35 < tmp36
tmp38 = tmp34 & tmp37
tmp39 = tmp32 | tmp38
tmp40 = tl.where(tmp39, tmp5, tmp11)
tmp41 = tl.where(tmp39, tmp35, tmp36)
tmp42 = tmp40 > tmp18
tmp43 = tmp40 == tmp18
tmp44 = tmp40 != tmp40
tmp45 = tmp18 != tmp18
tmp46 = tmp44 > tmp45
tmp47 = tmp42 | tmp46
tmp48 = tmp44 & tmp45
tmp49 = tmp43 | tmp48
tmp50 = tl.full([1], 2, tl.int64)
tmp51 = tmp41 < tmp50
tmp52 = tmp49 & tmp51
tmp53 = tmp47 | tmp52
tmp54 = tl.where(tmp53, tmp40, tmp18)
tmp55 = tl.where(tmp53, tmp41, tmp50)
tmp56 = tmp54 > tmp25
tmp57 = tmp54 == tmp25
tmp58 = tmp54 != tmp54
tmp59 = tmp25 != tmp25
tmp60 = tmp58 > tmp59
tmp61 = tmp56 | tmp60
tmp62 = tmp58 & tmp59
tmp63 = tmp57 | tmp62
tmp64 = tl.full([1], 3, tl.int64)
tmp65 = tmp55 < tmp64
tmp66 = tmp63 & tmp65
tmp67 = tmp61 | tmp66
tmp68 = tl.where(tmp67, tmp54, tmp25)
tmp69 = tl.where(tmp67, tmp55, tmp64)
tl.store(out_ptr0 + (x2), tmp26, xmask)
tl.store(out_ptr1 + (x2), tmp69, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dy/cdy673rrkjiv3qikoqrlvr3x4djhltg5txuuelkcf3bbizc3xryu.py
# Topologically Sorted Source Nodes: [add_3, max_2], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_3 => add_3
# max_2 => max_2
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_3, %unsqueeze_1), kwargs = {})
# %max_2 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_3, 1), kwargs = {})
triton_poi_fused_add_max_1 = async_compile.triton('triton_poi_fused_add_max_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + (16*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (5 + (16*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (6 + (16*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (7 + (16*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 > tmp9
tmp24 = tmp4 == tmp9
tmp25 = tmp4 != tmp4
tmp26 = tmp9 != tmp9
tmp27 = tmp25 > tmp26
tmp28 = tmp23 | tmp27
tmp29 = tmp25 & tmp26
tmp30 = tmp24 | tmp29
tmp31 = tl.full([1], 0, tl.int64)
tmp32 = tl.full([1], 1, tl.int64)
tmp33 = tmp31 < tmp32
tmp34 = tmp30 & tmp33
tmp35 = tmp28 | tmp34
tmp36 = tl.where(tmp35, tmp4, tmp9)
tmp37 = tl.where(tmp35, tmp31, tmp32)
tmp38 = tmp36 > tmp15
tmp39 = tmp36 == tmp15
tmp40 = tmp36 != tmp36
tmp41 = tmp15 != tmp15
tmp42 = tmp40 > tmp41
tmp43 = tmp38 | tmp42
tmp44 = tmp40 & tmp41
tmp45 = tmp39 | tmp44
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp37 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp43 | tmp48
tmp50 = tl.where(tmp49, tmp36, tmp15)
tmp51 = tl.where(tmp49, tmp37, tmp46)
tmp52 = tmp50 > tmp21
tmp53 = tmp50 == tmp21
tmp54 = tmp50 != tmp50
tmp55 = tmp21 != tmp21
tmp56 = tmp54 > tmp55
tmp57 = tmp52 | tmp56
tmp58 = tmp54 & tmp55
tmp59 = tmp53 | tmp58
tmp60 = tl.full([1], 3, tl.int64)
tmp61 = tmp51 < tmp60
tmp62 = tmp59 & tmp61
tmp63 = tmp57 | tmp62
tmp64 = tl.where(tmp63, tmp50, tmp21)
tmp65 = tl.where(tmp63, tmp51, tmp60)
tl.store(out_ptr0 + (x2), tmp22, xmask)
tl.store(out_ptr1 + (x2), tmp65, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/y6/cy6aidx4xjpi7w6qjmhugi7jyuzpadheqvm6f3ovuoln3kiyejvo.py
# Topologically Sorted Source Nodes: [add_5, max_3], Original ATen: [aten.add, aten.max]
# Source node to ATen node mapping:
# add_5 => add_5
# max_3 => max_3
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_4, %unsqueeze_1), kwargs = {})
# %max_3 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%add_5, 1), kwargs = {})
triton_poi_fused_add_max_2 = async_compile.triton('triton_poi_fused_add_max_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (8 + (16*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (9 + (16*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (10 + (16*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (11 + (16*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 > tmp9
tmp24 = tmp4 == tmp9
tmp25 = tmp4 != tmp4
tmp26 = tmp9 != tmp9
tmp27 = tmp25 > tmp26
tmp28 = tmp23 | tmp27
tmp29 = tmp25 & tmp26
tmp30 = tmp24 | tmp29
tmp31 = tl.full([1], 0, tl.int64)
tmp32 = tl.full([1], 1, tl.int64)
tmp33 = tmp31 < tmp32
tmp34 = tmp30 & tmp33
tmp35 = tmp28 | tmp34
tmp36 = tl.where(tmp35, tmp4, tmp9)
tmp37 = tl.where(tmp35, tmp31, tmp32)
tmp38 = tmp36 > tmp15
tmp39 = tmp36 == tmp15
tmp40 = tmp36 != tmp36
tmp41 = tmp15 != tmp15
tmp42 = tmp40 > tmp41
tmp43 = tmp38 | tmp42
tmp44 = tmp40 & tmp41
tmp45 = tmp39 | tmp44
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp37 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp43 | tmp48
tmp50 = tl.where(tmp49, tmp36, tmp15)
tmp51 = tl.where(tmp49, tmp37, tmp46)
tmp52 = tmp50 > tmp21
tmp53 = tmp50 == tmp21
tmp54 = tmp50 != tmp50
tmp55 = tmp21 != tmp21
tmp56 = tmp54 > tmp55
tmp57 = tmp52 | tmp56
tmp58 = tmp54 & tmp55
tmp59 = tmp53 | tmp58
tmp60 = tl.full([1], 3, tl.int64)
tmp61 = tmp51 < tmp60
tmp62 = tmp59 & tmp61
tmp63 = tmp57 | tmp62
tmp64 = tl.where(tmp63, tmp50, tmp21)
tmp65 = tl.where(tmp63, tmp51, tmp60)
tl.store(out_ptr0 + (x2), tmp22, xmask)
tl.store(out_ptr1 + (x2), tmp65, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pz/cpzuxuwhwbn22vaq3ndvkouqpztabhutjiktjp3d5vxwx3ptniiy.py
# Topologically Sorted Source Nodes: [v_6, add_7, max_4, tag_1, tag_2, tag_3], Original ATen: [aten.add, aten.max, aten.gather]
# Source node to ATen node mapping:
# add_7 => add_7
# max_4 => max_4
# tag_1 => gather
# tag_2 => gather_1
# tag_3 => gather_2
# v_6 => add_6
# Graph fragment:
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %select_3), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %unsqueeze_5), kwargs = {})
# %max_4 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%add_7, 1, True), kwargs = {})
# %gather : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_5, 1, %getitem_7), kwargs = {})
# %gather_1 : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_3, 1, %gather), kwargs = {})
# %gather_2 : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%getitem_1, 1, %gather_1), kwargs = {})
triton_poi_fused_add_gather_max_3 = async_compile.triton('triton_poi_fused_add_gather_max_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i64', 4: '*i64', 5: '*i64', 6: '*i64', 7: '*i64', 8: '*i64', 9: '*i64', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gather_max_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gather_max_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (1))
tmp10 = tl.broadcast_to(tmp9, [XBLOCK])
tmp27 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (2))
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp47 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (3))
tmp51 = tl.broadcast_to(tmp50, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp5 = tmp2 + tmp4
tmp8 = tmp6 + tmp7
tmp11 = tmp8 + tmp10
tmp12 = tmp5 > tmp11
tmp13 = tmp5 == tmp11
tmp14 = tmp5 != tmp5
tmp15 = tmp11 != tmp11
tmp16 = tmp14 > tmp15
tmp17 = tmp12 | tmp16
tmp18 = tmp14 & tmp15
tmp19 = tmp13 | tmp18
tmp20 = tl.full([1], 0, tl.int64)
tmp21 = tl.full([1], 1, tl.int64)
tmp22 = tmp20 < tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 | tmp23
tmp25 = tl.where(tmp24, tmp5, tmp11)
tmp26 = tl.where(tmp24, tmp20, tmp21)
tmp29 = tmp27 + tmp28
tmp32 = tmp29 + tmp31
tmp33 = tmp25 > tmp32
tmp34 = tmp25 == tmp32
tmp35 = tmp25 != tmp25
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 2, tl.int64)
tmp42 = tmp26 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp25, tmp32)
tmp46 = tl.where(tmp44, tmp26, tmp41)
tmp49 = tmp47 + tmp48
tmp52 = tmp49 + tmp51
tmp53 = tmp45 > tmp52
tmp54 = tmp45 == tmp52
tmp55 = tmp45 != tmp45
tmp56 = tmp52 != tmp52
tmp57 = tmp55 > tmp56
tmp58 = tmp53 | tmp57
tmp59 = tmp55 & tmp56
tmp60 = tmp54 | tmp59
tmp61 = tl.full([1], 3, tl.int64)
tmp62 = tmp46 < tmp61
tmp63 = tmp60 & tmp62
tmp64 = tmp58 | tmp63
tmp65 = tl.where(tmp64, tmp45, tmp52)
tmp66 = tl.where(tmp64, tmp46, tmp61)
tmp67 = tl.full([XBLOCK], 4, tl.int32)
tmp68 = tmp66 + tmp67
tmp69 = tmp66 < 0
tmp70 = tl.where(tmp69, tmp68, tmp66)
tl.device_assert(((0 <= tmp70) & (tmp70 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp70 < 4")
tmp72 = tl.load(in_ptr3 + (tmp70 + (4*x0)), xmask, eviction_policy='evict_last')
tmp73 = tmp72 + tmp67
tmp74 = tmp72 < 0
tmp75 = tl.where(tmp74, tmp73, tmp72)
tl.device_assert(((0 <= tmp75) & (tmp75 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp75 < 4")
tmp77 = tl.load(in_ptr4 + (tmp75 + (4*x0)), xmask, eviction_policy='evict_last')
tmp78 = tmp77 + tmp67
tmp79 = tmp77 < 0
tmp80 = tl.where(tmp79, tmp78, tmp77)
tl.device_assert(((0 <= tmp80) & (tmp80 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp80 < 4")
tmp82 = tl.load(in_ptr5 + (tmp80 + (4*x0)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (4*x0), tmp66, xmask)
tl.store(out_ptr1 + (4*x0), tmp82, xmask)
tl.store(out_ptr2 + (4*x0), tmp77, xmask)
tl.store(out_ptr3 + (4*x0), tmp72, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_1, max_1], Original ATen: [aten.add, aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_add_max_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, 16, grid=grid(16), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_3, max_2], Original ATen: [aten.add, aten.max]
triton_poi_fused_add_max_1.run(buf0, arg0_1, arg2_1, buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = buf0; del buf0 # reuse
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [add_5, max_3], Original ATen: [aten.add, aten.max]
triton_poi_fused_add_max_2.run(buf2, arg0_1, arg2_1, buf4, buf5, 16, grid=grid(16), stream=stream0)
del arg2_1
del buf2
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf6 = reinterpret_tensor(buf10, (4, 1), (4, 1), 3) # alias
buf7 = reinterpret_tensor(buf10, (4, 1), (4, 1), 0) # alias
buf8 = reinterpret_tensor(buf10, (4, 1), (4, 1), 1) # alias
buf9 = reinterpret_tensor(buf10, (4, 1), (4, 1), 2) # alias
# Topologically Sorted Source Nodes: [v_6, add_7, max_4, tag_1, tag_2, tag_3], Original ATen: [aten.add, aten.max, aten.gather]
triton_poi_fused_add_gather_max_3.run(buf4, arg0_1, arg3_1, buf5, buf3, buf1, buf6, buf7, buf8, buf9, 4, grid=grid(4), stream=stream0)
del arg0_1
del arg3_1
del buf1
del buf3
del buf4
del buf5
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class CRF(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super(CRF, self).__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def forward(self, feats):
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
return self._viterbi(feats)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape)
)
if feats.shape[:2] != tags.shape:
raise ValueError(
'First two dimensions of feats and tags must match ', feats
.shape, tags.shape)
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
feats.shape[0]
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1
)
tags_pairs = tags.unfold(1, 2, 1)
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1)
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1)
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1)
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
v = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
paths = []
for i in range(1, seq_size):
feat = feats[:, i]
v, idx = (v.unsqueeze(-1) + transitions).max(1)
paths.append(idx)
v = v + feat
v, tag = (v + self.stop_transitions.unsqueeze(0)).max(1, True)
tags = [tag]
for idx in reversed(paths):
tag = idx.gather(1, tag)
tags.append(tag)
tags.reverse()
return torch.cat(tags, 1)
def _log_sum_exp(self, logits, dim):
"""
Computes log-sum-exp in a stable way
"""
max_val, _ = logits.max(dim)
return max_val + (logits - max_val.unsqueeze(dim)).exp().sum(dim).log()
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_tags': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_max_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr1 + 1)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp10 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + 2)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr1 + 3)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK])
tmp24 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tmp9 = tmp6 + tmp8
tmp11 = tmp9 + tmp10
tmp12 = triton_helpers.maximum(tmp5, tmp11)
tmp16 = tmp13 + tmp15
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp12, tmp18)
tmp23 = tmp20 + tmp22
tmp25 = tmp23 + tmp24
tmp26 = triton_helpers.maximum(tmp19, tmp25)
tmp27 = tmp5 > tmp11
tmp28 = tmp5 == tmp11
tmp29 = tmp5 != tmp5
tmp30 = tmp11 != tmp11
tmp31 = tmp29 > tmp30
tmp32 = tmp27 | tmp31
tmp33 = tmp29 & tmp30
tmp34 = tmp28 | tmp33
tmp35 = tl.full([1], 0, tl.int64)
tmp36 = tl.full([1], 1, tl.int64)
tmp37 = tmp35 < tmp36
tmp38 = tmp34 & tmp37
tmp39 = tmp32 | tmp38
tmp40 = tl.where(tmp39, tmp5, tmp11)
tmp41 = tl.where(tmp39, tmp35, tmp36)
tmp42 = tmp40 > tmp18
tmp43 = tmp40 == tmp18
tmp44 = tmp40 != tmp40
tmp45 = tmp18 != tmp18
tmp46 = tmp44 > tmp45
tmp47 = tmp42 | tmp46
tmp48 = tmp44 & tmp45
tmp49 = tmp43 | tmp48
tmp50 = tl.full([1], 2, tl.int64)
tmp51 = tmp41 < tmp50
tmp52 = tmp49 & tmp51
tmp53 = tmp47 | tmp52
tmp54 = tl.where(tmp53, tmp40, tmp18)
tmp55 = tl.where(tmp53, tmp41, tmp50)
tmp56 = tmp54 > tmp25
tmp57 = tmp54 == tmp25
tmp58 = tmp54 != tmp54
tmp59 = tmp25 != tmp25
tmp60 = tmp58 > tmp59
tmp61 = tmp56 | tmp60
tmp62 = tmp58 & tmp59
tmp63 = tmp57 | tmp62
tmp64 = tl.full([1], 3, tl.int64)
tmp65 = tmp55 < tmp64
tmp66 = tmp63 & tmp65
tmp67 = tmp61 | tmp66
tl.where(tmp67, tmp54, tmp25)
tmp69 = tl.where(tmp67, tmp55, tmp64)
tl.store(out_ptr0 + x2, tmp26, xmask)
tl.store(out_ptr1 + x2, tmp69, xmask)
@triton.jit
def triton_poi_fused_add_max_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (5 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (6 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (7 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 > tmp9
tmp24 = tmp4 == tmp9
tmp25 = tmp4 != tmp4
tmp26 = tmp9 != tmp9
tmp27 = tmp25 > tmp26
tmp28 = tmp23 | tmp27
tmp29 = tmp25 & tmp26
tmp30 = tmp24 | tmp29
tmp31 = tl.full([1], 0, tl.int64)
tmp32 = tl.full([1], 1, tl.int64)
tmp33 = tmp31 < tmp32
tmp34 = tmp30 & tmp33
tmp35 = tmp28 | tmp34
tmp36 = tl.where(tmp35, tmp4, tmp9)
tmp37 = tl.where(tmp35, tmp31, tmp32)
tmp38 = tmp36 > tmp15
tmp39 = tmp36 == tmp15
tmp40 = tmp36 != tmp36
tmp41 = tmp15 != tmp15
tmp42 = tmp40 > tmp41
tmp43 = tmp38 | tmp42
tmp44 = tmp40 & tmp41
tmp45 = tmp39 | tmp44
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp37 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp43 | tmp48
tmp50 = tl.where(tmp49, tmp36, tmp15)
tmp51 = tl.where(tmp49, tmp37, tmp46)
tmp52 = tmp50 > tmp21
tmp53 = tmp50 == tmp21
tmp54 = tmp50 != tmp50
tmp55 = tmp21 != tmp21
tmp56 = tmp54 > tmp55
tmp57 = tmp52 | tmp56
tmp58 = tmp54 & tmp55
tmp59 = tmp53 | tmp58
tmp60 = tl.full([1], 3, tl.int64)
tmp61 = tmp51 < tmp60
tmp62 = tmp59 & tmp61
tmp63 = tmp57 | tmp62
tl.where(tmp63, tmp50, tmp21)
tmp65 = tl.where(tmp63, tmp51, tmp60)
tl.store(out_ptr0 + x2, tmp22, xmask)
tl.store(out_ptr1 + x2, tmp65, xmask)
@triton.jit
def triton_poi_fused_add_max_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (8 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (9 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (10 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (11 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = triton_helpers.maximum(tmp10, tmp15)
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp16, tmp21)
tmp23 = tmp4 > tmp9
tmp24 = tmp4 == tmp9
tmp25 = tmp4 != tmp4
tmp26 = tmp9 != tmp9
tmp27 = tmp25 > tmp26
tmp28 = tmp23 | tmp27
tmp29 = tmp25 & tmp26
tmp30 = tmp24 | tmp29
tmp31 = tl.full([1], 0, tl.int64)
tmp32 = tl.full([1], 1, tl.int64)
tmp33 = tmp31 < tmp32
tmp34 = tmp30 & tmp33
tmp35 = tmp28 | tmp34
tmp36 = tl.where(tmp35, tmp4, tmp9)
tmp37 = tl.where(tmp35, tmp31, tmp32)
tmp38 = tmp36 > tmp15
tmp39 = tmp36 == tmp15
tmp40 = tmp36 != tmp36
tmp41 = tmp15 != tmp15
tmp42 = tmp40 > tmp41
tmp43 = tmp38 | tmp42
tmp44 = tmp40 & tmp41
tmp45 = tmp39 | tmp44
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp37 < tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp43 | tmp48
tmp50 = tl.where(tmp49, tmp36, tmp15)
tmp51 = tl.where(tmp49, tmp37, tmp46)
tmp52 = tmp50 > tmp21
tmp53 = tmp50 == tmp21
tmp54 = tmp50 != tmp50
tmp55 = tmp21 != tmp21
tmp56 = tmp54 > tmp55
tmp57 = tmp52 | tmp56
tmp58 = tmp54 & tmp55
tmp59 = tmp53 | tmp58
tmp60 = tl.full([1], 3, tl.int64)
tmp61 = tmp51 < tmp60
tmp62 = tmp59 & tmp61
tmp63 = tmp57 | tmp62
tl.where(tmp63, tmp50, tmp21)
tmp65 = tl.where(tmp63, tmp51, tmp60)
tl.store(out_ptr0 + x2, tmp22, xmask)
tl.store(out_ptr1 + x2, tmp65, xmask)
@triton.jit
def triton_poi_fused_add_gather_max_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr2 + 1)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK])
tmp27 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp28 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr2 + 2)
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp47 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp48 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp50 = tl.load(in_ptr2 + 3)
tmp51 = tl.broadcast_to(tmp50, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp5 = tmp2 + tmp4
tmp8 = tmp6 + tmp7
tmp11 = tmp8 + tmp10
tmp12 = tmp5 > tmp11
tmp13 = tmp5 == tmp11
tmp14 = tmp5 != tmp5
tmp15 = tmp11 != tmp11
tmp16 = tmp14 > tmp15
tmp17 = tmp12 | tmp16
tmp18 = tmp14 & tmp15
tmp19 = tmp13 | tmp18
tmp20 = tl.full([1], 0, tl.int64)
tmp21 = tl.full([1], 1, tl.int64)
tmp22 = tmp20 < tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 | tmp23
tmp25 = tl.where(tmp24, tmp5, tmp11)
tmp26 = tl.where(tmp24, tmp20, tmp21)
tmp29 = tmp27 + tmp28
tmp32 = tmp29 + tmp31
tmp33 = tmp25 > tmp32
tmp34 = tmp25 == tmp32
tmp35 = tmp25 != tmp25
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 2, tl.int64)
tmp42 = tmp26 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp25, tmp32)
tmp46 = tl.where(tmp44, tmp26, tmp41)
tmp49 = tmp47 + tmp48
tmp52 = tmp49 + tmp51
tmp53 = tmp45 > tmp52
tmp54 = tmp45 == tmp52
tmp55 = tmp45 != tmp45
tmp56 = tmp52 != tmp52
tmp57 = tmp55 > tmp56
tmp58 = tmp53 | tmp57
tmp59 = tmp55 & tmp56
tmp60 = tmp54 | tmp59
tmp61 = tl.full([1], 3, tl.int64)
tmp62 = tmp46 < tmp61
tmp63 = tmp60 & tmp62
tmp64 = tmp58 | tmp63
tl.where(tmp64, tmp45, tmp52)
tmp66 = tl.where(tmp64, tmp46, tmp61)
tmp67 = tl.full([XBLOCK], 4, tl.int32)
tmp68 = tmp66 + tmp67
tmp69 = tmp66 < 0
tmp70 = tl.where(tmp69, tmp68, tmp66)
tl.device_assert((0 <= tmp70) & (tmp70 < 4) | ~xmask,
'index out of bounds: 0 <= tmp70 < 4')
tmp72 = tl.load(in_ptr3 + (tmp70 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp73 = tmp72 + tmp67
tmp74 = tmp72 < 0
tmp75 = tl.where(tmp74, tmp73, tmp72)
tl.device_assert((0 <= tmp75) & (tmp75 < 4) | ~xmask,
'index out of bounds: 0 <= tmp75 < 4')
tmp77 = tl.load(in_ptr4 + (tmp75 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp78 = tmp77 + tmp67
tmp79 = tmp77 < 0
tmp80 = tl.where(tmp79, tmp78, tmp77)
tl.device_assert((0 <= tmp80) & (tmp80 < 4) | ~xmask,
'index out of bounds: 0 <= tmp80 < 4')
tmp82 = tl.load(in_ptr5 + (tmp80 + 4 * x0), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + 4 * x0, tmp66, xmask)
tl.store(out_ptr1 + 4 * x0, tmp82, xmask)
tl.store(out_ptr2 + 4 * x0, tmp77, xmask)
tl.store(out_ptr3 + 4 * x0, tmp72, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4,), (1,))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_add_max_0[grid(16)](arg0_1, arg1_1, arg2_1, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_add_max_1[grid(16)](buf0, arg0_1, arg2_1, buf2,
buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf4 = buf0
del buf0
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_add_max_2[grid(16)](buf2, arg0_1, arg2_1, buf4,
buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg2_1
del buf2
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf6 = reinterpret_tensor(buf10, (4, 1), (4, 1), 3)
buf7 = reinterpret_tensor(buf10, (4, 1), (4, 1), 0)
buf8 = reinterpret_tensor(buf10, (4, 1), (4, 1), 1)
buf9 = reinterpret_tensor(buf10, (4, 1), (4, 1), 2)
triton_poi_fused_add_gather_max_3[grid(4)](buf4, arg0_1, arg3_1,
buf5, buf3, buf1, buf6, buf7, buf8, buf9, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
del arg3_1
del buf1
del buf3
del buf4
del buf5
return buf10,
class CRFNew(nn.Module):
"""
Implements Conditional Random Fields that can be trained via
backpropagation.
"""
def __init__(self, num_tags):
super(CRFNew, self).__init__()
self.num_tags = num_tags
self.transitions = nn.Parameter(torch.Tensor(num_tags, num_tags))
self.start_transitions = nn.Parameter(torch.randn(num_tags))
self.stop_transitions = nn.Parameter(torch.randn(num_tags))
nn.init.xavier_normal_(self.transitions)
def loss(self, feats, tags):
"""
Computes negative log likelihood between features and tags.
Essentially difference between individual sequence scores and
sum of all possible sequence scores (partition function)
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns:
Negative log likelihood [a scalar]
"""
if len(feats.shape) != 3:
raise ValueError('feats must be 3-d got {}-d'.format(feats.shape))
if len(tags.shape) != 2:
raise ValueError('tags must be 2-d but got {}-d'.format(tags.shape)
)
if feats.shape[:2] != tags.shape:
raise ValueError(
'First two dimensions of feats and tags must match ', feats
.shape, tags.shape)
sequence_score = self._sequence_score(feats, tags)
partition_function = self._partition_function(feats)
log_probability = sequence_score - partition_function
return -log_probability.mean()
def _sequence_score(self, feats, tags):
"""
Parameters:
feats: Input features [batch size, sequence length, number of tags]
tags: Target tag indices [batch size, sequence length]. Should be between
0 and num_tags
Returns: Sequence score of shape [batch size]
"""
feats.shape[0]
feat_score = feats.gather(2, tags.unsqueeze(-1)).squeeze(-1).sum(dim=-1
)
tags_pairs = tags.unfold(1, 2, 1)
indices = tags_pairs.permute(2, 0, 1).chunk(2)
trans_score = self.transitions[indices].squeeze(0).sum(dim=-1)
start_score = self.start_transitions[tags[:, 0]]
stop_score = self.stop_transitions[tags[:, -1]]
return feat_score + start_score + trans_score + stop_score
def _partition_function(self, feats):
"""
Computes the partitition function for CRF using the forward algorithm.
Basically calculate scores for all possible tag sequences for
the given feature vector sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns:
Total scores of shape [batch size]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
a = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
for i in range(1, seq_size):
feat = feats[:, i].unsqueeze(1)
a = self._log_sum_exp(a.unsqueeze(-1) + transitions + feat, 1)
return self._log_sum_exp(a + self.stop_transitions.unsqueeze(0), 1)
def _viterbi(self, feats):
"""
Uses Viterbi algorithm to predict the best sequence
Parameters:
feats: Input features [batch size, sequence length, number of tags]
Returns: Best tag sequence [batch size, sequence length]
"""
_, seq_size, num_tags = feats.shape
if self.num_tags != num_tags:
raise ValueError('num_tags should be {} but got {}'.format(self
.num_tags, num_tags))
v = feats[:, 0] + self.start_transitions.unsqueeze(0)
transitions = self.transitions.unsqueeze(0)
paths = []
for i in range(1, seq_size):
feat = feats[:, i]
v, idx = (v.unsqueeze(-1) + transitions).max(1)
paths.append(idx)
v = v + feat
v, tag = (v + self.stop_transitions.unsqueeze(0)).max(1, True)
tags = [tag]
for idx in reversed(paths):
tag = idx.gather(1, tag)
tags.append(tag)
tags.reverse()
return torch.cat(tags, 1)
def _log_sum_exp(self, logits, dim):
"""
Computes log-sum-exp in a stable way
"""
max_val, _ = logits.max(dim)
return max_val + (logits - max_val.unsqueeze(dim)).exp().sum(dim).log()
def forward(self, input_0):
arg2_1 = self.transitions
arg1_1 = self.start_transitions
arg3_1 = self.stop_transitions
arg0_1 = input_0
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
jbogensperger/DRUG_CROSSNER
|
CRF
| false | 10,224 |
[
"MIT"
] | 0 |
c82fc4ce6fd6229b48d28bafffe38f5ea3dcd6aa
|
https://github.com/jbogensperger/DRUG_CROSSNER/tree/c82fc4ce6fd6229b48d28bafffe38f5ea3dcd6aa
|
BertLastCLSModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/hf/chfhlbeyguxis6dfw6oxmvepl6oti2drna65mesvwt65iketca7n.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (192 + x0 + (16*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class BertLastCLSModule(nn.Module):
def __init__(self, dropout_prob=0.0):
super().__init__()
self.dropout = nn.Dropout(dropout_prob)
def forward(self, input):
last_hidden = input[-1][:, 0, :]
out = self.dropout(last_hidden)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (192 + x0 + 16 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class BertLastCLSModuleNew(nn.Module):
def __init__(self, dropout_prob=0.0):
super().__init__()
self.dropout = nn.Dropout(dropout_prob)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jdunnmon/emmental-tutorials
|
BertLastCLSModule
| false | 10,225 |
[
"MIT"
] | 0 |
2aa6c86e2e74943fbf75f4df1e70c5b8614c6c49
|
https://github.com/jdunnmon/emmental-tutorials/tree/2aa6c86e2e74943fbf75f4df1e70c5b8614c6c49
|
SelfGating
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/32/c32gpnu7y6kwawwiknabqcyafcipv27fjg22cpx6wzdxmd52bm4o.py
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# spatiotemporal_average => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3, 4]), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/c2/cc26hd4oq32vrxgrqqakqqnzwxv6d6ovzdl26r33utpsmw442x3p.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %primals_1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf2, primals_1, buf3, 1024, grid=grid(1024), stream=stream0)
return (buf3, primals_1, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch as th
import torch.nn as nn
class SelfGating(nn.Module):
def __init__(self, input_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G.
"""
spatiotemporal_average = th.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = th.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_1[grid(1024)](buf2, primals_1, buf3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
return buf3, primals_1, buf1, buf2
class SelfGatingNew(nn.Module):
def __init__(self, input_dim):
super(SelfGatingNew, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
inbalcroitoru/Information-retrieval-Audio-retrieval-with-text-queries
|
SelfGating
| false | 10,226 |
[
"Apache-2.0"
] | 0 |
d98ee159c61a8a9a1c433f0bfed14e7005215d5f
|
https://github.com/inbalcroitoru/Information-retrieval-Audio-retrieval-with-text-queries/tree/d98ee159c61a8a9a1c433f0bfed14e7005215d5f
|
QLinear
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/em/cemxfn6bdnqnwevpuuy2xwvsj3u7tsm43nox4vwe6hoin3yj4ce5.py
# Topologically Sorted Source Nodes: [quantized_weight], Original ATen: [aten.sign, aten.mul]
# Source node to ATen node mapping:
# quantized_weight => mul, sign
# Graph fragment:
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sign), kwargs = {})
triton_poi_fused_mul_sign_0 = async_compile.triton('triton_poi_fused_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sign_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp3 < tmp2
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp2 < tmp3
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp5 - tmp7
tmp9 = tmp8.to(tmp2.dtype)
tmp10 = tmp1 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [quantized_weight], Original ATen: [aten.sign, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sign_0.run(primals_2, primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del buf0
del primals_3
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as A
from torch.autograd.function import once_differentiable
from torch.nn.parameter import Parameter
import torch.nn.parallel
import torch.optim
import torch.utils.data
class WeightQuantization(A.Function):
@staticmethod
def forward(ctx, weight: 'Tensor', alpha: 'Tensor') ->Tensor:
ctx.save_for_backward(weight, alpha)
return alpha * weight.sign()
@staticmethod
@once_differentiable
def backward(ctx, grad_output: 'Tensor') ->Tensor:
weight, alpha = ctx.saved_tensors
grad_input = alpha * grad_output
grad_alpha = grad_output * weight.sign()
grad_alpha.unsqueeze_(0)
return grad_input, grad_alpha
class QLinear(nn.Linear):
def __init__(self, *args, **kwargs) ->None:
super().__init__(*args, **kwargs)
self.alpha = Parameter(torch.ones(1))
def forward(self, input: 'Tensor') ->Tensor:
quantized_weight = WeightQuantization.apply(self.weight, self.alpha)
return F.linear(input, quantized_weight, self.bias)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import Tensor
import torch.nn as nn
import torch.autograd as A
from torch.autograd.function import once_differentiable
from torch.nn.parameter import Parameter
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sign_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp3 < tmp2
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp2 < tmp3
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp5 - tmp7
tmp9 = tmp8.to(tmp2.dtype)
tmp10 = tmp1 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sign_0[grid(16)](primals_2, primals_1, buf0,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del buf0
del primals_3
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, primals_2, reinterpret_tensor(primals_4, (64, 4), (4,
1), 0)
class WeightQuantization(A.Function):
@staticmethod
def forward(ctx, weight: 'Tensor', alpha: 'Tensor') ->Tensor:
ctx.save_for_backward(weight, alpha)
return alpha * weight.sign()
@staticmethod
@once_differentiable
def backward(ctx, grad_output: 'Tensor') ->Tensor:
weight, alpha = ctx.saved_tensors
grad_input = alpha * grad_output
grad_alpha = grad_output * weight.sign()
grad_alpha.unsqueeze_(0)
return grad_input, grad_alpha
class QLinearNew(nn.Linear):
def __init__(self, *args, **kwargs) ->None:
super().__init__(*args, **kwargs)
self.alpha = Parameter(torch.ones(1))
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = self.alpha
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
i207M/pytorch-cifar
|
QLinear
| false | 10,227 |
[
"MIT"
] | 0 |
df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
|
https://github.com/i207M/pytorch-cifar/tree/df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
|
FusionLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwapf4spszv7xrakefo7xfxxiomqve2jhc3fgichvmsioyx2bqg.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# z => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %mul, %sub], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tmp21 = tl.full([1], 16, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/u2/cu2egzqq3ivzxp5v5n7o6veft7jfxb4p5it5arzllbv5rrtioyeh.py
# Topologically Sorted Source Nodes: [gated, fusion, mul_1, sub_1, mul_2, add], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# add => add
# fusion => tanh
# gated => sigmoid
# mul_1 => mul_1
# mul_2 => mul_2
# sub_1 => sub_1
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp7 = tl.load(in_ptr2 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp1 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp1
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (1, 16), (16, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 16), (16, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf3)
del primals_5
del primals_6
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gated, fusion, mul_1, sub_1, mul_2, add], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_rsub_sigmoid_tanh_1.run(buf2, buf3, primals_1, buf4, 64, grid=grid(64), stream=stream0)
return (buf4, primals_1, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), buf2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class FusionLayer(nn.Module):
"""
vector based fusion
m(x, y) = W([x, y, x * y, x - y]) + b
g(x, y) = w([x, y, x * y, x - y]) + b
:returns g(x, y) * m(x, y) + (1 - g(x, y)) * x
"""
def __init__(self, input_dim):
super(FusionLayer, self).__init__()
self.linear_f = nn.Linear(input_dim * 4, input_dim, bias=True)
self.linear_g = nn.Linear(input_dim * 4, 1, bias=True)
self.tanh = nn.Tanh()
self.sigmoid = nn.Sigmoid()
def forward(self, x, y):
z = torch.cat([x, y, x * y, x - y], dim=2)
gated = self.sigmoid(self.linear_g(z))
fusion = self.tanh(self.linear_f(z))
return gated * fusion + (1 - gated) * x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp7 = tl.load(in_ptr2 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp1 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp1
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (1, 16), (16, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 16), (16, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_3, (16, 1), (1, 16), 0),
alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf3)
del primals_5
del primals_6
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_1[grid(64)](buf2, buf3,
primals_1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf4, primals_1, reinterpret_tensor(buf0, (16, 16), (16, 1), 0
), buf2, buf3
class FusionLayerNew(nn.Module):
"""
vector based fusion
m(x, y) = W([x, y, x * y, x - y]) + b
g(x, y) = w([x, y, x * y, x - y]) + b
:returns g(x, y) * m(x, y) + (1 - g(x, y)) * x
"""
def __init__(self, input_dim):
super(FusionLayerNew, self).__init__()
self.linear_f = nn.Linear(input_dim * 4, input_dim, bias=True)
self.linear_g = nn.Linear(input_dim * 4, 1, bias=True)
self.tanh = nn.Tanh()
self.sigmoid = nn.Sigmoid()
def forward(self, input_0, input_1):
primals_5 = self.linear_f.weight
primals_6 = self.linear_f.bias
primals_3 = self.linear_g.weight
primals_4 = self.linear_g.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
hgrhgy/NumSeq2SQL
|
FusionLayer
| false | 10,228 |
[
"MIT"
] | 0 |
6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
https://github.com/hgrhgy/NumSeq2SQL/tree/6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
QConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/y3/cy3t7teiqscujrva4gmc73iumyeulw2nodjzb7uhaqryzuqxboyk.py
# Topologically Sorted Source Nodes: [quantized_weight], Original ATen: [aten.sign, aten.mul]
# Source node to ATen node mapping:
# quantized_weight => mul, sign
# Graph fragment:
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sign), kwargs = {})
triton_poi_fused_mul_sign_0 = async_compile.triton('triton_poi_fused_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sign_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp3 < tmp2
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp2 < tmp3
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp5 - tmp7
tmp9 = tmp8.to(tmp2.dtype)
tmp10 = tmp1 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [quantized_weight], Original ATen: [aten.sign, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sign_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf2, primals_1, primals_2, primals_4, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import Tensor
import torch.nn as nn
import torch.autograd as A
from torch.autograd.function import once_differentiable
from torch.nn.parameter import Parameter
import torch.nn.parallel
import torch.optim
import torch.utils.data
class WeightQuantization(A.Function):
@staticmethod
def forward(ctx, weight: 'Tensor', alpha: 'Tensor') ->Tensor:
ctx.save_for_backward(weight, alpha)
return alpha * weight.sign()
@staticmethod
@once_differentiable
def backward(ctx, grad_output: 'Tensor') ->Tensor:
weight, alpha = ctx.saved_tensors
grad_input = alpha * grad_output
grad_alpha = grad_output * weight.sign()
grad_alpha.unsqueeze_(0)
return grad_input, grad_alpha
class QConv2d(nn.Conv2d):
def __init__(self, *args, **kwargs) ->None:
super().__init__(*args, **kwargs)
self.alpha = Parameter(torch.ones(1))
def forward(self, input: 'Tensor') ->Tensor:
quantized_weight = WeightQuantization.apply(self.weight, self.alpha)
return self._conv_forward(input, quantized_weight, self.bias)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import Tensor
import torch.nn as nn
import torch.autograd as A
from torch.autograd.function import once_differentiable
from torch.nn.parameter import Parameter
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sign_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp3 < tmp2
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp2 < tmp3
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp5 - tmp7
tmp9 = tmp8.to(tmp2.dtype)
tmp10 = tmp1 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sign_0[grid(256)](primals_2, primals_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf2, primals_1, primals_2, primals_4, buf0
class WeightQuantization(A.Function):
@staticmethod
def forward(ctx, weight: 'Tensor', alpha: 'Tensor') ->Tensor:
ctx.save_for_backward(weight, alpha)
return alpha * weight.sign()
@staticmethod
@once_differentiable
def backward(ctx, grad_output: 'Tensor') ->Tensor:
weight, alpha = ctx.saved_tensors
grad_input = alpha * grad_output
grad_alpha = grad_output * weight.sign()
grad_alpha.unsqueeze_(0)
return grad_input, grad_alpha
class QConv2dNew(nn.Conv2d):
def __init__(self, *args, **kwargs) ->None:
super().__init__(*args, **kwargs)
self.alpha = Parameter(torch.ones(1))
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = self.alpha
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
i207M/pytorch-cifar
|
QConv2d
| false | 10,229 |
[
"MIT"
] | 0 |
df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
|
https://github.com/i207M/pytorch-cifar/tree/df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
|
Attention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/bs/cbstxeghddltznr7shuzsnth6ngv6mnftr2w7pqzzm5flm72plbl.py
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# e => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/to/ctohnag3s2my72gfje47knfyigkawenmq4hwyddhmhls6qicb3io.py
# Topologically Sorted Source Nodes: [e, expanded_q, add, tanh], Original ATen: [aten.convolution, aten.repeat, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# e => convolution
# expanded_q => repeat
# tanh => tanh
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [1, 1, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%repeat, %convolution), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_convolution_repeat_tanh_1 = async_compile.triton('triton_poi_fused_add_convolution_repeat_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_repeat_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_repeat_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 4) % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp2
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr0 + (x4), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [e, expanded_q, add, tanh], Original ATen: [aten.convolution, aten.repeat, aten.add, aten.tanh]
triton_poi_fused_add_convolution_repeat_tanh_1.run(buf3, primals_6, buf0, buf4, 64, grid=grid(64), stream=stream0)
del primals_6
buf5 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_7, (4, 1, 4), (0, 0, 1), 0), buf4, out=buf5)
return (buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_4, primals_5, primals_7, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
class Attention(nn.Module):
"""A generic attention module for a decoder in seq2seq"""
def __init__(self, dim, use_tanh=False, C=10):
super(Attention, self).__init__()
self.use_tanh = use_tanh
self.project_query = nn.Linear(dim, dim)
self.project_ref = nn.Conv1d(dim, dim, 1, 1)
self.C = C
self.tanh = nn.Tanh()
self.v = nn.Parameter(torch.FloatTensor(dim))
self.v.data.uniform_(-(1.0 / math.sqrt(dim)), 1.0 / math.sqrt(dim))
def forward(self, query, ref):
"""
Args:
query: is the hidden state of the decoder at the current
time step. batch x dim
ref: the set of hidden states from the encoder.
sourceL x batch x hidden_dim
"""
ref = ref.permute(1, 2, 0)
q = self.project_query(query).unsqueeze(2)
e = self.project_ref(ref)
expanded_q = q.repeat(1, 1, e.size(2))
v_view = self.v.unsqueeze(0).expand(expanded_q.size(0), len(self.v)
).unsqueeze(1)
u = torch.bmm(v_view, self.tanh(expanded_q + e)).squeeze(1)
if self.use_tanh:
logits = self.C * self.tanh(u)
else:
logits = u
return e, logits
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_convolution_repeat_tanh_1(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x3 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp2
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr0 + x4, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(
primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf1, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2
del buf2
buf4 = buf1
del buf1
triton_poi_fused_add_convolution_repeat_tanh_1[grid(64)](buf3,
primals_6, buf0, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_6
buf5 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(primals_7, (4, 1, 4), (0, 0,
1), 0), buf4, out=buf5)
return buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0
), primals_4, primals_5, primals_7, reinterpret_tensor(primals_1, (
4, 4, 4), (4, 1, 16), 0), buf4
class AttentionNew(nn.Module):
"""A generic attention module for a decoder in seq2seq"""
def __init__(self, dim, use_tanh=False, C=10):
super(AttentionNew, self).__init__()
self.use_tanh = use_tanh
self.project_query = nn.Linear(dim, dim)
self.project_ref = nn.Conv1d(dim, dim, 1, 1)
self.C = C
self.tanh = nn.Tanh()
self.v = nn.Parameter(torch.FloatTensor(dim))
self.v.data.uniform_(-(1.0 / math.sqrt(dim)), 1.0 / math.sqrt(dim))
def forward(self, input_0, input_1):
primals_3 = self.v
primals_2 = self.project_query.weight
primals_6 = self.project_query.bias
primals_5 = self.project_ref.weight
primals_7 = self.project_ref.bias
primals_4 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
iamstevepaul/MRTA-Attention
|
Attention
| false | 10,230 |
[
"MIT"
] | 0 |
fc177440f7354212c41ad02ef76fdda43cc0aa57
|
https://github.com/iamstevepaul/MRTA-Attention/tree/fc177440f7354212c41ad02ef76fdda43cc0aa57
|
AugCNN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ur/curzudn4ai4j7lgrmbqwy57jpcw3gylwk4nkg6jt7lqh577w5ku7.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_3, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 49152, grid=grid(49152), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
def apply_init_(modules):
"""
Initialize NN modules
"""
for m in modules:
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class Conv2d_tf(nn.Conv2d):
"""
Conv2d with the padding behavior from TF
"""
def __init__(self, *args, **kwargs):
super(Conv2d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get('padding', 'SAME')
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(0, (out_size - 1) * self.stride[dim] +
effective_filter_size - input_size)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == 'VALID':
return F.conv2d(input, self.weight, self.bias, self.stride,
padding=0, dilation=self.dilation, groups=self.groups)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
cols_odd, padding_cols = self._compute_padding(input, dim=1)
if rows_odd or cols_odd:
input = F.pad(input, [0, cols_odd, 0, rows_odd])
return F.conv2d(input, self.weight, self.bias, self.stride, padding
=(padding_rows // 2, padding_cols // 2), dilation=self.dilation,
groups=self.groups)
class AugCNN(nn.Module):
"""
Convolutional Neural Network used as Augmentation
"""
def __init__(self):
super(AugCNN, self).__init__()
self.aug = Conv2d_tf(3, 3, kernel_size=3)
apply_init_(self.modules())
self.train()
def forward(self, obs):
return self.aug(obs)
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_3, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(49152)](buf1, primals_3, 49152,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_3
return buf1, primals_1, primals_2
def apply_init_(modules):
"""
Initialize NN modules
"""
for m in modules:
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class Conv2d_tf(nn.Conv2d):
"""
Conv2d with the padding behavior from TF
"""
def __init__(self, *args, **kwargs):
super(Conv2d_tf, self).__init__(*args, **kwargs)
self.padding = kwargs.get('padding', 'SAME')
def _compute_padding(self, input, dim):
input_size = input.size(dim + 2)
filter_size = self.weight.size(dim + 2)
effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1
out_size = (input_size + self.stride[dim] - 1) // self.stride[dim]
total_padding = max(0, (out_size - 1) * self.stride[dim] +
effective_filter_size - input_size)
additional_padding = int(total_padding % 2 != 0)
return additional_padding, total_padding
def forward(self, input):
if self.padding == 'VALID':
return F.conv2d(input, self.weight, self.bias, self.stride,
padding=0, dilation=self.dilation, groups=self.groups)
rows_odd, padding_rows = self._compute_padding(input, dim=0)
cols_odd, padding_cols = self._compute_padding(input, dim=1)
if rows_odd or cols_odd:
input = F.pad(input, [0, cols_odd, 0, rows_odd])
return F.conv2d(input, self.weight, self.bias, self.stride, padding
=(padding_rows // 2, padding_cols // 2), dilation=self.dilation,
groups=self.groups)
class AugCNNNew(nn.Module):
"""
Convolutional Neural Network used as Augmentation
"""
def __init__(self):
super(AugCNNNew, self).__init__()
self.aug = Conv2d_tf(3, 3, kernel_size=3)
apply_init_(self.modules())
self.train()
def forward(self, input_0):
primals_2 = self.aug.weight
primals_3 = self.aug.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jajajag/auto-drac
|
AugCNN
| false | 10,231 |
[
"MIT"
] | 0 |
2241f9f5f10a4d863a8b9d198da1d39e5feb59a0
|
https://github.com/jajajag/auto-drac/tree/2241f9f5f10a4d863a8b9d198da1d39e5feb59a0
|
MeanAct
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/pi/cpi2cbijddvm6xxaxvg53d6uvk4igch2jlnfkqsndp2pn2s566k7.py
# Topologically Sorted Source Nodes: [exp, clamp], Original ATen: [aten.exp, aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# exp => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%exp, 1e-05), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1000000.0), kwargs = {})
triton_poi_fused_clamp_exp_0 = async_compile.triton('triton_poi_fused_clamp_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = 1e-05
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 1000000.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, clamp], Original ATen: [aten.exp, aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_exp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class MeanAct(nn.Module):
def __init__(self):
super(MeanAct, self).__init__()
def forward(self, x):
return torch.clamp(torch.exp(x), min=1e-05, max=1000000.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = 1e-05
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 1000000.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_exp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MeanActNew(nn.Module):
def __init__(self):
super(MeanActNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jdasam/scDCC
|
MeanAct
| false | 10,232 |
[
"Apache-2.0"
] | 0 |
8ebaed766db5ad56021983ebc13e9a60b6c7b453
|
https://github.com/jdasam/scDCC/tree/8ebaed766db5ad56021983ebc13e9a60b6c7b453
|
BatchDense
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/b3/cb35lfgojdtaj2fnq2zxtf4ul7ez7i5xdvfuqztkpfoiqg5brilt.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ln/clnksfognfphntlbdomwxccp6uch3hcmogn57h4lfbsscsff2v5a.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out_2 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/s3/cs3qietwuvtilqj2kdtaqahj7mazz7yw5ref32tvvmdaisydiyhq.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose]
# Source node to ATen node mapping:
# Graph fragment:
# %permute_3 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {})
triton_poi_fused_transpose_2 = async_compile.triton('triton_poi_fused_transpose_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_transpose_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_transpose_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.clone, aten.baddbmm]
extern_kernels.bmm(buf0, primals_3, out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_2, buf1, buf2, 64, grid=grid(64), stream=stream0)
del primals_2
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose]
triton_poi_fused_transpose_2.run(buf0, buf3, 64, grid=grid(64), stream=stream0)
del buf0
return (reinterpret_tensor(buf2, (4, 16), (16, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
class BatchDense(nn.Module):
def __init__(self, batch, in_features, out_features, bias_init=None):
super(BatchDense, self).__init__()
self.batch = batch
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(batch, in_features, out_features))
self.bias = Parameter(torch.Tensor(batch, 1, out_features))
self.reset_parameters(bias_init)
def reset_parameters(self, bias_init=None):
stdv = math.sqrt(6.0 / (self.in_features + self.out_features))
self.weight.data.uniform_(-stdv, stdv)
if bias_init is not None:
self.bias.data = torch.from_numpy(bias_init)
else:
self.bias.data.fill_(0)
def forward(self, x):
x.size()
x = x.view(x.size(0), self.batch, -1)
out = x.transpose(0, 1).contiguous()
out = torch.baddbmm(self.bias, out, self.weight)
out = out.transpose(0, 1).contiguous()
out = out.view(x.size(0), -1)
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'batch': 4, 'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_transpose_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, primals_3, out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(64)](primals_2, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0)
del buf1
triton_poi_fused_transpose_2[grid(64)](buf0, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return reinterpret_tensor(buf2, (4, 16), (16, 1), 0), buf3
class BatchDenseNew(nn.Module):
def __init__(self, batch, in_features, out_features, bias_init=None):
super(BatchDenseNew, self).__init__()
self.batch = batch
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(batch, in_features, out_features))
self.bias = Parameter(torch.Tensor(batch, 1, out_features))
self.reset_parameters(bias_init)
def reset_parameters(self, bias_init=None):
stdv = math.sqrt(6.0 / (self.in_features + self.out_features))
self.weight.data.uniform_(-stdv, stdv)
if bias_init is not None:
self.bias.data = torch.from_numpy(bias_init)
else:
self.bias.data.fill_(0)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
iloncka/neurotrees
|
BatchDense
| false | 10,233 |
[
"MIT"
] | 0 |
ddb52dc0e7ac1cf67a426b401ba06149807e03ec
|
https://github.com/iloncka/neurotrees/tree/ddb52dc0e7ac1cf67a426b401ba06149807e03ec
|
VAE
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/fm/cfmlbw5yjdhed6beukq6zpdxc5zldkghuzoad5ynyyrfanj525wd.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = (xindex // 2000)
tmp0 = tl.load(in_out_ptr0 + (x0 + (2016*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x0 + (2016*x1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/d7/cd7rilnjd42cirsc5dhnnwlficmjz5omrtsdfojgouhplcpynn4n.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h2 => relu_1
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {})
# %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ex/cexwuc6up4cv5uxb46cafc3eelvzsyfhdhsot7lgpz5xv7tenoc2.py
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# std => exp
# z => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_3, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %addmm_2), kwargs = {})
triton_poi_fused_add_exp_mul_2 = async_compile.triton('triton_poi_fused_add_exp_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tmp7 = tmp5 + tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mg/cmghe67e45ehrx7vylemnjyumsq7otljf7kg5n7svjfjhvwv6zaa.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 17188
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4297
x1 = (xindex // 4297)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4320*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 4297), (4297, 1))
assert_size_stride(primals_2, (2000, 4297), (4297, 1))
assert_size_stride(primals_3, (2000, ), (1, ))
assert_size_stride(primals_4, (100, 2000), (2000, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (5, 100), (100, 1))
assert_size_stride(primals_7, (5, ), (1, ))
assert_size_stride(primals_8, (5, 100), (100, 1))
assert_size_stride(primals_9, (5, ), (1, ))
assert_size_stride(primals_10, (100, 5), (5, 1))
assert_size_stride(primals_11, (100, ), (1, ))
assert_size_stride(primals_12, (2000, 100), (100, 1))
assert_size_stride(primals_13, (2000, ), (1, ))
assert_size_stride(primals_14, (4297, 2000), (2000, 1))
assert_size_stride(primals_15, (4297, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4297, 2000), (1, 4297), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 8000, grid=grid(8000), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (2000, 100), (1, 2000), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 400, grid=grid(400), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5)
del primals_9
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
triton_poi_fused_add_exp_mul_2.run(buf7, buf5, buf4, buf8, 20, grid=grid(20), stream=stream0)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1, 5), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_11, 400, grid=grid(400), stream=stream0)
del primals_11
buf11 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 2000), (1, 100), 0), out=buf11)
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [h4], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf12, primals_13, 8000, grid=grid(8000), stream=stream0)
del primals_13
buf13 = empty_strided_cuda((4, 4297), (4320, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (2000, 4297), (1, 2000), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4297), (4297, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf13, primals_15, buf14, 17188, grid=grid(17188), stream=stream0)
del buf13
del primals_15
return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8, buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4297), (4297, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2000, 4297), (4297, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 2000), (2000, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((100, 5), (5, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((2000, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((2000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4297, 2000), (2000, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4297, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.input_linear = nn.Linear(4297, 2000)
self.enc_middle = nn.Linear(2000, 100)
self.enc_1 = nn.Linear(100, 5)
self.enc_2 = nn.Linear(100, 5)
self.dec_0 = nn.Linear(5, 100)
self.dec_middle = nn.Linear(100, 2000)
self.output_linear = nn.Linear(2000, 4297)
def encode(self, x):
h1 = F.relu(self.input_linear(x))
h2 = F.relu(self.enc_middle(h1))
return self.enc_1(h2), self.enc_2(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.dec_0(z))
h4 = F.relu(self.dec_middle(h3))
return torch.sigmoid(self.output_linear(h4))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 4297))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 4297])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = xindex // 2000
tmp0 = tl.load(in_out_ptr0 + (x0 + 2016 * x1), xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x0 + 2016 * x1), tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tmp7 = tmp5 + tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 17188
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4297
x1 = xindex // 4297
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4320 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 4297), (4297, 1))
assert_size_stride(primals_2, (2000, 4297), (4297, 1))
assert_size_stride(primals_3, (2000,), (1,))
assert_size_stride(primals_4, (100, 2000), (2000, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (5, 100), (100, 1))
assert_size_stride(primals_7, (5,), (1,))
assert_size_stride(primals_8, (5, 100), (100, 1))
assert_size_stride(primals_9, (5,), (1,))
assert_size_stride(primals_10, (100, 5), (5, 1))
assert_size_stride(primals_11, (100,), (1,))
assert_size_stride(primals_12, (2000, 100), (100, 1))
assert_size_stride(primals_13, (2000,), (1,))
assert_size_stride(primals_14, (4297, 2000), (2000, 1))
assert_size_stride(primals_15, (4297,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4297,
2000), (1, 4297), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(8000)](buf1, primals_3, 8000, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (2000, 100),
(1, 2000), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(400)](buf3, primals_5, 400, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
triton_poi_fused_add_exp_mul_2[grid(20)](buf7, buf5, buf4, buf8, 20,
XBLOCK=32, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1,
5), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(400)](buf10, primals_11, 400, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_11
buf11 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 2000),
(1, 100), 0), out=buf11)
buf12 = buf11
del buf11
triton_poi_fused_relu_0[grid(8000)](buf12, primals_13, 8000, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_13
buf13 = empty_strided_cuda((4, 4297), (4320, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (2000, 4297
), (1, 2000), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4297), (4297, 1), torch.float32)
triton_poi_fused_sigmoid_3[grid(17188)](buf13, primals_15, buf14,
17188, XBLOCK=256, num_warps=4, num_stages=1)
del buf13
del primals_15
return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8,
buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8,
primals_6, primals_4)
class VAENew(nn.Module):
def __init__(self):
super(VAENew, self).__init__()
self.input_linear = nn.Linear(4297, 2000)
self.enc_middle = nn.Linear(2000, 100)
self.enc_1 = nn.Linear(100, 5)
self.enc_2 = nn.Linear(100, 5)
self.dec_0 = nn.Linear(5, 100)
self.dec_middle = nn.Linear(100, 2000)
self.output_linear = nn.Linear(2000, 4297)
def encode(self, x):
h1 = F.relu(self.input_linear(x))
h2 = F.relu(self.enc_middle(h1))
return self.enc_1(h2), self.enc_2(h2)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def decode(self, z):
h3 = F.relu(self.dec_0(z))
h4 = F.relu(self.dec_middle(h3))
return torch.sigmoid(self.output_linear(h4))
def forward(self, input_0):
primals_2 = self.input_linear.weight
primals_3 = self.input_linear.bias
primals_4 = self.enc_middle.weight
primals_5 = self.enc_middle.bias
primals_6 = self.enc_1.weight
primals_7 = self.enc_1.bias
primals_8 = self.enc_2.weight
primals_9 = self.enc_2.bias
primals_10 = self.dec_0.weight
primals_11 = self.dec_0.bias
primals_12 = self.dec_middle.weight
primals_13 = self.dec_middle.bias
primals_14 = self.output_linear.weight
primals_15 = self.output_linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
|
helenaandres/adversarial-generation-of-gene-expression-data
|
VAE
| false | 10,234 |
[
"MIT"
] | 0 |
9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
|
https://github.com/helenaandres/adversarial-generation-of-gene-expression-data/tree/9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
|
DispAct
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2v/c2vsyafx7g4metctsn5ppjp7y7xkbau5osryuxram5tznbyk6y23.py
# Topologically Sorted Source Nodes: [softplus, clamp], Original ATen: [aten.softplus, aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# softplus => exp, gt, log1p, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%where, 0.0001), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 10000.0), kwargs = {})
triton_poi_fused_clamp_softplus_0 = async_compile.triton('triton_poi_fused_clamp_softplus_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 0.0001
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 10000.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus, clamp], Original ATen: [aten.softplus, aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_softplus_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class DispAct(nn.Module):
def __init__(self):
super(DispAct, self).__init__()
def forward(self, x):
return torch.clamp(F.softplus(x), min=0.0001, max=10000.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 0.0001
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 10000.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_softplus_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class DispActNew(nn.Module):
def __init__(self):
super(DispActNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jdasam/scDCC
|
DispAct
| false | 10,235 |
[
"Apache-2.0"
] | 0 |
8ebaed766db5ad56021983ebc13e9a60b6c7b453
|
https://github.com/jdasam/scDCC/tree/8ebaed766db5ad56021983ebc13e9a60b6c7b453
|
KLDLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/5v/c5vtwldilipwi3r3wx5rsxypbvfmsav7s7xybl5bf72d3sckrknw.py
# Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, sum_1, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
# Source node to ATen node mapping:
# add => add
# exp => exp
# mul => mul
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %exp), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -0.5), kwargs = {})
triton_per_fused_add_exp_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_exp_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp0)
tmp7 = tmp5 - tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = -0.5
tmp12 = tmp10 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, pow_1, sub, exp, sub_1, sum_1, mul], Original ATen: [aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
class KLDLoss(nn.Module):
def forward(self, mu, logvar):
return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp0)
tmp7 = tmp5 - tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = -0.5
tmp12 = tmp10 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_exp_mul_pow_sub_sum_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class KLDLossNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
izhorvath/MetGAN
|
KLDLoss
| false | 10,236 |
[
"BSD-3-Clause"
] | 0 |
aca85fb3306d2515a65c8d525cd78e1147ba7e1b
|
https://github.com/izhorvath/MetGAN/tree/aca85fb3306d2515a65c8d525cd78e1147ba7e1b
|
PerturbationModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2v/c2vwatafc7bysodsvfwld7cmvue26dh5jpkxqo6qevfrerixs7yp.py
# Topologically Sorted Source Nodes: [zeros_like], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# zeros_like => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_0 = async_compile.triton('triton_poi_fused_zeros_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/km/ckmxpzrjcatgg5st7lgobdwygl3sa5s6b4zxsma2yq476435fsk2.py
# Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# x => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_out_ptr0 + (x0), xmask)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [zeros_like], Original ATen: [aten.zeros_like]
stream0 = get_raw_stream(0)
triton_poi_fused_zeros_like_0.run(buf0, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [zeros_like, normal], Original ATen: [aten.zeros_like, aten.normal]
buf1 = torch.ops.aten.normal.Tensor_float(buf0)
del buf0
buf2 = buf1
del buf1
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(buf3, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class PerturbationModule(nn.Module):
def __init__(self, T):
super(PerturbationModule, self).__init__()
self.T = T
self.training = False
self.conv_block = None
def forward(self, x):
if not self.training:
x = x + self.T * torch.normal(torch.zeros_like(x), 1.0)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'T': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_zeros_like_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_out_ptr0 + x0, xmask)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_zeros_like_0[grid(256)](buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf1 = torch.ops.aten.normal.Tensor_float(buf0)
del buf0
buf2 = buf1
del buf1
buf3 = buf2
del buf2
triton_poi_fused_add_mul_1[grid(256)](buf3, arg0_1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class PerturbationModuleNew(nn.Module):
def __init__(self, T):
super(PerturbationModuleNew, self).__init__()
self.T = T
self.training = False
self.conv_block = None
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jeffkinnison/pytorch-CycleGAN-and-pix2pix
|
PerturbationModule
| false | 10,237 |
[
"BSD-3-Clause"
] | 0 |
e47041fa4ffa80ad5948d2d1125ec94c34c5947d
|
https://github.com/jeffkinnison/pytorch-CycleGAN-and-pix2pix/tree/e47041fa4ffa80ad5948d2d1125ec94c34c5947d
|
CIoU
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/lo/clogtb3i4zusr6ps43mzqxludqyhxzh63ytsulqsxxjswkfqhj34.py
# Topologically Sorted Source Nodes: [sub_8, sub_9, rec_1, sub_10, sub_11, rec_2, add_4, gt, gt_1, or_, where, minimum_1, maximum_1, sub_6, X, gt_2, gt_3, or__1, where_1, minimum_2, maximum_2, sub_7, Y, i_area, total_area, IoU, sub_13, sub, pow_1, sub_1, pow_2, add_2, p, pow_5, sub_4, pow_3, sub_5, pow_4, add_3, C, pow_6, truediv_1, DIoU, mean], Original ATen: [aten.sub, aten.mul, aten.add, aten.gt, aten.bitwise_or, aten.scalar_tensor, aten.where, aten.minimum, aten.maximum, aten.div, aten.rsub, aten.pow, aten.sqrt, aten.mean]
# Source node to ATen node mapping:
# C => sqrt_1
# DIoU => add_5
# IoU => div_2
# X => mul_1
# Y => mul_2
# add_2 => add_2
# add_3 => add_3
# add_4 => add_4
# gt => gt
# gt_1 => gt_1
# gt_2 => gt_2
# gt_3 => gt_3
# i_area => mul_3
# maximum_1 => maximum_1
# maximum_2 => maximum_2
# mean => mean
# minimum_1 => minimum_1
# minimum_2 => minimum_2
# or_ => bitwise_or
# or__1 => bitwise_or_1
# p => sqrt
# pow_1 => pow_1
# pow_2 => pow_2
# pow_3 => pow_3
# pow_4 => pow_4
# pow_5 => pow_5
# pow_6 => pow_6
# rec_1 => mul_4
# rec_2 => mul_5
# sub => sub
# sub_1 => sub_1
# sub_10 => sub_10
# sub_11 => sub_11
# sub_13 => sub_13
# sub_4 => sub_4
# sub_5 => sub_5
# sub_6 => sub_6
# sub_7 => sub_7
# sub_8 => sub_8
# sub_9 => sub_9
# total_area => sub_12
# truediv_1 => div_3
# where => full_default, full_default_1, where
# where_1 => full_default_2, full_default_3, where_1
# Graph fragment:
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %select), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_3, %select_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %sub_9), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_6, %select_4), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_7, %select_5), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %sub_11), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%select_4, %select_2), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%select, %select_6), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%gt, %gt_1), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%bitwise_or, %full_default_1, %full_default), kwargs = {})
# %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%select_2, %select_6), kwargs = {})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%select, %select_4), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %maximum_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sub_6), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%select_5, %select_3), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%select_1, %select_7), kwargs = {})
# %bitwise_or_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%gt_2, %gt_3), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%bitwise_or_1, %full_default_3, %full_default_2), kwargs = {})
# %minimum_2 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%select_3, %select_7), kwargs = {})
# %maximum_2 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%select_1, %select_5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_2, %maximum_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, %sub_7), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_4, %mul_3), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, %sub_12), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_10, %select_8), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_11, %select_9), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_2,), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt, 2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_14, %select_12), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_15, %select_13), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %pow_4), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_3,), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_1, 2), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_5, %pow_6), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_13, %div_3), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_5,), kwargs = {})
triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0 = async_compile.triton('triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp67 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp81 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp83 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp0 = tl.full([1, 1], 2, tl.int64)
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tmp0 < tmp0
tmp4 = tl.load(in_ptr0 + (tl.broadcast_to((4*r0) + 2, [XBLOCK, RBLOCK])), tmp3, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr1 + (tl.broadcast_to((4*r0) + 2, [XBLOCK, RBLOCK])), tmp3, eviction_policy='evict_last', other=0.0)
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp3, tmp6, tmp7)
tmp9 = tmp0 >= tmp0
tmp10 = tl.full([1, 1], 4, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r0) + 0, [XBLOCK, RBLOCK])), tmp9, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*r0) + 0, [XBLOCK, RBLOCK])), tmp9, eviction_policy='evict_last', other=0.0)
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tl.where(tmp3, tmp8, tmp16)
tmp18 = tmp1 >= tmp1
tmp19 = tmp1 < tmp0
tmp20 = tl.load(in_ptr0 + (tl.broadcast_to((4*r0) + 0, [XBLOCK, RBLOCK])), tmp19, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr1 + (tl.broadcast_to((4*r0) + 0, [XBLOCK, RBLOCK])), tmp19, eviction_policy='evict_last', other=0.0)
tmp22 = triton_helpers.minimum(tmp20, tmp21)
tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype)
tmp24 = tl.where(tmp19, tmp22, tmp23)
tmp25 = tmp1 >= tmp0
tmp26 = tmp1 < tmp10
tmp27 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r0) + (-2), [XBLOCK, RBLOCK])), tmp25, eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*r0) + (-2), [XBLOCK, RBLOCK])), tmp25, eviction_policy='evict_last', other=0.0)
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp25, tmp29, tmp30)
tmp32 = tl.where(tmp19, tmp24, tmp31)
tmp33 = tmp17 - tmp32
tmp34 = tl.full([1, 1], 3, tl.int64)
tmp35 = tmp34 >= tmp1
tmp36 = tmp34 < tmp0
tmp37 = tl.load(in_ptr0 + (tl.broadcast_to((4*r0) + 3, [XBLOCK, RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr1 + (tl.broadcast_to((4*r0) + 3, [XBLOCK, RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0)
tmp39 = triton_helpers.minimum(tmp37, tmp38)
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp36, tmp39, tmp40)
tmp42 = tmp34 >= tmp0
tmp43 = tmp34 < tmp10
tmp44 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r0) + 1, [XBLOCK, RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0)
tmp45 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*r0) + 1, [XBLOCK, RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0)
tmp46 = triton_helpers.maximum(tmp44, tmp45)
tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype)
tmp48 = tl.where(tmp42, tmp46, tmp47)
tmp49 = tl.where(tmp36, tmp41, tmp48)
tmp50 = tl.full([1, 1], 1, tl.int64)
tmp51 = tmp50 >= tmp1
tmp52 = tmp50 < tmp0
tmp53 = tl.load(in_ptr0 + (tl.broadcast_to((4*r0) + 1, [XBLOCK, RBLOCK])), tmp52, eviction_policy='evict_last', other=0.0)
tmp54 = tl.load(in_ptr1 + (tl.broadcast_to((4*r0) + 1, [XBLOCK, RBLOCK])), tmp52, eviction_policy='evict_last', other=0.0)
tmp55 = triton_helpers.minimum(tmp53, tmp54)
tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype)
tmp57 = tl.where(tmp52, tmp55, tmp56)
tmp58 = tmp50 >= tmp0
tmp59 = tmp50 < tmp10
tmp60 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r0) + (-1), [XBLOCK, RBLOCK])), tmp58, eviction_policy='evict_last', other=0.0)
tmp61 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*r0) + (-1), [XBLOCK, RBLOCK])), tmp58, eviction_policy='evict_last', other=0.0)
tmp62 = triton_helpers.maximum(tmp60, tmp61)
tmp63 = tl.full(tmp62.shape, 0.0, tmp62.dtype)
tmp64 = tl.where(tmp58, tmp62, tmp63)
tmp65 = tl.where(tmp52, tmp57, tmp64)
tmp66 = tmp49 - tmp65
tmp69 = tmp67 > tmp68
tmp72 = tmp70 > tmp71
tmp73 = tmp69 | tmp72
tmp74 = tl.where(tmp73, tmp1, tmp50)
tmp75 = tmp74.to(tl.float32)
tmp76 = triton_helpers.minimum(tmp68, tmp71)
tmp77 = triton_helpers.maximum(tmp70, tmp67)
tmp78 = tmp76 - tmp77
tmp79 = tmp75 * tmp78
tmp82 = tmp80 > tmp81
tmp85 = tmp83 > tmp84
tmp86 = tmp82 | tmp85
tmp87 = tl.where(tmp86, tmp1, tmp50)
tmp88 = tmp87.to(tl.float32)
tmp89 = triton_helpers.minimum(tmp81, tmp84)
tmp90 = triton_helpers.maximum(tmp83, tmp80)
tmp91 = tmp89 - tmp90
tmp92 = tmp88 * tmp91
tmp93 = tmp79 * tmp92
tmp94 = tmp68 - tmp70
tmp95 = tmp81 - tmp83
tmp96 = tmp94 * tmp95
tmp97 = tmp71 - tmp67
tmp98 = tmp84 - tmp80
tmp99 = tmp97 * tmp98
tmp100 = tmp96 + tmp99
tmp101 = tmp100 - tmp93
tmp102 = tmp67 + tmp71
tmp103 = 0.5
tmp104 = tmp102 * tmp103
tmp105 = tmp70 + tmp68
tmp106 = tmp105 * tmp103
tmp107 = tmp104 - tmp106
tmp108 = tmp107 * tmp107
tmp109 = tmp80 + tmp84
tmp110 = tmp109 * tmp103
tmp111 = tmp83 + tmp81
tmp112 = tmp111 * tmp103
tmp113 = tmp110 - tmp112
tmp114 = tmp113 * tmp113
tmp115 = tmp108 + tmp114
tmp116 = libdevice.sqrt(tmp115)
tmp117 = tmp116 * tmp116
tmp118 = tmp33 * tmp33
tmp119 = tmp66 * tmp66
tmp120 = tmp118 + tmp119
tmp121 = libdevice.sqrt(tmp120)
tmp122 = tmp121 * tmp121
tmp123 = tmp117 / tmp122
tmp124 = tmp93 / tmp101
tmp125 = 1.0
tmp126 = tmp125 - tmp124
tmp127 = tmp126 + tmp123
tmp128 = tl.broadcast_to(tmp127, [XBLOCK, RBLOCK])
tmp130 = tl.sum(tmp128, 1)[:, None]
tmp131 = 4.0
tmp132 = tmp130 / tmp131
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp132, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [sub_8, sub_9, rec_1, sub_10, sub_11, rec_2, add_4, gt, gt_1, or_, where, minimum_1, maximum_1, sub_6, X, gt_2, gt_3, or__1, where_1, minimum_2, maximum_2, sub_7, Y, i_area, total_area, IoU, sub_13, sub, pow_1, sub_1, pow_2, add_2, p, pow_5, sub_4, pow_3, sub_5, pow_4, add_3, C, pow_6, truediv_1, DIoU, mean], Original ATen: [aten.sub, aten.mul, aten.add, aten.gt, aten.bitwise_or, aten.scalar_tensor, aten.where, aten.minimum, aten.maximum, aten.div, aten.rsub, aten.pow, aten.sqrt, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0.run(buf6, arg1_1, arg0_1, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class CIoU(nn.Module):
def __init__(self):
super(CIoU, self).__init__()
def forward(self, inputs, targets):
size = len(inputs)
uL_truth = targets[:, 0:2]
lR_truth = targets[:, 2:4]
uL_pred = inputs[:, 0:2]
lR_pred = inputs[:, 2:4]
truth_cen = torch.div(torch.add(uL_truth, lR_truth), 2)
pred_cen = torch.div(torch.add(uL_pred, lR_pred), 2)
uL_truth_x = uL_truth[:, 0]
uL_truth_y = uL_truth[:, 1]
lR_truth_x = lR_truth[:, 0]
lR_truth_y = lR_truth[:, 1]
uL_pred_x = uL_pred[:, 0]
uL_pred_y = uL_pred[:, 1]
lR_pred_x = lR_pred[:, 0]
lR_pred_y = lR_pred[:, 1]
truth_cen_x = truth_cen[:, 0]
truth_cen_y = truth_cen[:, 1]
pred_cen_x = pred_cen[:, 0]
pred_cen_y = pred_cen[:, 1]
p = torch.sqrt((pred_cen_x - truth_cen_x) ** 2 + (pred_cen_y -
truth_cen_y) ** 2)
enc_X = torch.reshape(torch.minimum(uL_truth, uL_pred), (size, 2))
enc_Y = torch.reshape(torch.maximum(lR_truth, lR_pred), (size, 2))
bounding_box = torch.reshape(torch.cat((enc_X, enc_Y), 1), (size, 4))
bb_uL_x = bounding_box[:, 0]
bb_uL_y = bounding_box[:, 1]
bb_lR_x = bounding_box[:, 2]
bb_lR_y = bounding_box[:, 3]
(bb_lR_x - bb_uL_x) * (bb_lR_y - bb_uL_y)
C = torch.sqrt((bb_lR_x - bb_uL_x) ** 2 + (bb_lR_y - bb_uL_y) ** 2)
X = torch.where(torch.gt(uL_pred_x, lR_truth_x) | torch.gt(
uL_truth_x, lR_pred_x), 0, 1) * (torch.minimum(lR_truth_x,
lR_pred_x) - torch.maximum(uL_truth_x, uL_pred_x))
Y = torch.where(torch.gt(uL_pred_y, lR_truth_y) | torch.gt(
uL_truth_y, lR_pred_y), 0, 1) * (torch.minimum(lR_truth_y,
lR_pred_y) - torch.maximum(uL_truth_y, uL_pred_y))
i_area = X * Y
rec_1 = (lR_truth_x - uL_truth_x) * (lR_truth_y - uL_truth_y)
rec_2 = (lR_pred_x - uL_pred_x) * (lR_pred_y - uL_pred_y)
total_area = rec_1 + rec_2 - i_area
IoU = i_area / total_area
DIoU = 1 - IoU + p ** 2 / C ** 2
return torch.mean(DIoU)
"""#my own calculation
first = 1 - (i_area/BBA) # this will approach 0 when i_area == bbA
second = torch.where(p<5, first, torch.mul(p, first))
return torch.mean(second)"""
"""pred_W = lR_pred_x - uL_pred_x
pred_H = torch.where((lR_pred_y - uL_pred_y)!=0, 1, 0)*(lR_pred_y - uL_pred_y)
truth_W = lR_truth_x - uL_truth_x
truth_H = torch.where((lR_truth_y - uL_truth_y)!=0, 1, 0)*(lR_truth_y - uL_truth_y)
V = (4/(np.pi**2))*((torch.atan(torch.div(truth_W, truth_H)) - torch.atan(torch.div(pred_W, pred_H)))**2)
#alpha_1 = torch.div(V, ((1 - IoU)+V))
#print("alpha 1: ", alpha_1)
alpha = torch.where(torch.lt(IoU, 0.5), 0, 1)*torch.div(V, ((1-IoU)+V))
#print(torch.where(torch.lt(IoU, 0.5), 0, 1))
CIoU = 1 - (IoU - (((p**2)/(C**2)) + alpha*V))
return CIoU"""
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0(
in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp67 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp81 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp83 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp0 = tl.full([1, 1], 2, tl.int64)
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp3 = tmp0 < tmp0
tmp4 = tl.load(in_ptr0 + tl.broadcast_to(4 * r0 + 2, [XBLOCK, RBLOCK]),
tmp3, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr1 + tl.broadcast_to(4 * r0 + 2, [XBLOCK, RBLOCK]),
tmp3, eviction_policy='evict_last', other=0.0)
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp3, tmp6, tmp7)
tmp9 = tmp0 >= tmp0
tl.full([1, 1], 4, tl.int64)
tmp12 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r0 + 0, [XBLOCK,
RBLOCK]), tmp9, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * r0 + 0, [XBLOCK,
RBLOCK]), tmp9, eviction_policy='evict_last', other=0.0)
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp9, tmp14, tmp15)
tmp17 = tl.where(tmp3, tmp8, tmp16)
tmp19 = tmp1 < tmp0
tmp20 = tl.load(in_ptr0 + tl.broadcast_to(4 * r0 + 0, [XBLOCK, RBLOCK]),
tmp19, eviction_policy='evict_last', other=0.0)
tmp21 = tl.load(in_ptr1 + tl.broadcast_to(4 * r0 + 0, [XBLOCK, RBLOCK]),
tmp19, eviction_policy='evict_last', other=0.0)
tmp22 = triton_helpers.minimum(tmp20, tmp21)
tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype)
tmp24 = tl.where(tmp19, tmp22, tmp23)
tmp25 = tmp1 >= tmp0
tmp27 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r0 + -2, [XBLOCK,
RBLOCK]), tmp25, eviction_policy='evict_last', other=0.0)
tmp28 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * r0 + -2, [XBLOCK,
RBLOCK]), tmp25, eviction_policy='evict_last', other=0.0)
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp25, tmp29, tmp30)
tmp32 = tl.where(tmp19, tmp24, tmp31)
tmp33 = tmp17 - tmp32
tmp34 = tl.full([1, 1], 3, tl.int64)
tmp36 = tmp34 < tmp0
tmp37 = tl.load(in_ptr0 + tl.broadcast_to(4 * r0 + 3, [XBLOCK, RBLOCK]),
tmp36, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr1 + tl.broadcast_to(4 * r0 + 3, [XBLOCK, RBLOCK]),
tmp36, eviction_policy='evict_last', other=0.0)
tmp39 = triton_helpers.minimum(tmp37, tmp38)
tmp40 = tl.full(tmp39.shape, 0.0, tmp39.dtype)
tmp41 = tl.where(tmp36, tmp39, tmp40)
tmp42 = tmp34 >= tmp0
tmp44 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r0 + 1, [XBLOCK,
RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0)
tmp45 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * r0 + 1, [XBLOCK,
RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0)
tmp46 = triton_helpers.maximum(tmp44, tmp45)
tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype)
tmp48 = tl.where(tmp42, tmp46, tmp47)
tmp49 = tl.where(tmp36, tmp41, tmp48)
tmp50 = tl.full([1, 1], 1, tl.int64)
tmp52 = tmp50 < tmp0
tmp53 = tl.load(in_ptr0 + tl.broadcast_to(4 * r0 + 1, [XBLOCK, RBLOCK]),
tmp52, eviction_policy='evict_last', other=0.0)
tmp54 = tl.load(in_ptr1 + tl.broadcast_to(4 * r0 + 1, [XBLOCK, RBLOCK]),
tmp52, eviction_policy='evict_last', other=0.0)
tmp55 = triton_helpers.minimum(tmp53, tmp54)
tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype)
tmp57 = tl.where(tmp52, tmp55, tmp56)
tmp58 = tmp50 >= tmp0
tmp60 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r0 + -1, [XBLOCK,
RBLOCK]), tmp58, eviction_policy='evict_last', other=0.0)
tmp61 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * r0 + -1, [XBLOCK,
RBLOCK]), tmp58, eviction_policy='evict_last', other=0.0)
tmp62 = triton_helpers.maximum(tmp60, tmp61)
tmp63 = tl.full(tmp62.shape, 0.0, tmp62.dtype)
tmp64 = tl.where(tmp58, tmp62, tmp63)
tmp65 = tl.where(tmp52, tmp57, tmp64)
tmp66 = tmp49 - tmp65
tmp69 = tmp67 > tmp68
tmp72 = tmp70 > tmp71
tmp73 = tmp69 | tmp72
tmp74 = tl.where(tmp73, tmp1, tmp50)
tmp75 = tmp74.to(tl.float32)
tmp76 = triton_helpers.minimum(tmp68, tmp71)
tmp77 = triton_helpers.maximum(tmp70, tmp67)
tmp78 = tmp76 - tmp77
tmp79 = tmp75 * tmp78
tmp82 = tmp80 > tmp81
tmp85 = tmp83 > tmp84
tmp86 = tmp82 | tmp85
tmp87 = tl.where(tmp86, tmp1, tmp50)
tmp88 = tmp87.to(tl.float32)
tmp89 = triton_helpers.minimum(tmp81, tmp84)
tmp90 = triton_helpers.maximum(tmp83, tmp80)
tmp91 = tmp89 - tmp90
tmp92 = tmp88 * tmp91
tmp93 = tmp79 * tmp92
tmp94 = tmp68 - tmp70
tmp95 = tmp81 - tmp83
tmp96 = tmp94 * tmp95
tmp97 = tmp71 - tmp67
tmp98 = tmp84 - tmp80
tmp99 = tmp97 * tmp98
tmp100 = tmp96 + tmp99
tmp101 = tmp100 - tmp93
tmp102 = tmp67 + tmp71
tmp103 = 0.5
tmp104 = tmp102 * tmp103
tmp105 = tmp70 + tmp68
tmp106 = tmp105 * tmp103
tmp107 = tmp104 - tmp106
tmp108 = tmp107 * tmp107
tmp109 = tmp80 + tmp84
tmp110 = tmp109 * tmp103
tmp111 = tmp83 + tmp81
tmp112 = tmp111 * tmp103
tmp113 = tmp110 - tmp112
tmp114 = tmp113 * tmp113
tmp115 = tmp108 + tmp114
tmp116 = libdevice.sqrt(tmp115)
tmp117 = tmp116 * tmp116
tmp118 = tmp33 * tmp33
tmp119 = tmp66 * tmp66
tmp120 = tmp118 + tmp119
tmp121 = libdevice.sqrt(tmp120)
tmp122 = tmp121 * tmp121
tmp123 = tmp117 / tmp122
tmp124 = tmp93 / tmp101
tmp125 = 1.0
tmp126 = tmp125 - tmp124
tmp127 = tmp126 + tmp123
tmp128 = tl.broadcast_to(tmp127, [XBLOCK, RBLOCK])
tmp130 = tl.sum(tmp128, 1)[:, None]
tmp131 = 4.0
tmp132 = tmp130 / tmp131
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp132, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf5 = empty_strided_cuda((), (), torch.float32)
buf6 = buf5
del buf5
get_raw_stream(0)
triton_per_fused_add_bitwise_or_div_gt_maximum_mean_minimum_mul_pow_rsub_scalar_tensor_sqrt_sub_where_0[
grid(1)](buf6, arg1_1, arg0_1, 1, 4, XBLOCK=1, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
return buf6,
class CIoUNew(nn.Module):
def __init__(self):
super(CIoUNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
jcscheufele/CS545_Final
|
CIoU
| false | 10,238 |
[
"MIT"
] | 0 |
d86858408a9a0aab82b5d2b7e12847023d939e2e
|
https://github.com/jcscheufele/CS545_Final/tree/d86858408a9a0aab82b5d2b7e12847023d939e2e
|
BiaffineScorer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/am/cambydvhijs7vhod3hwt5aje7cqigviqetkgm6iccyrgbwhmprcb.py
# Topologically Sorted Source Nodes: [input1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %full_default], 3), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/t6/ct6f57cdvyh3ahq6iwyawuy7577bar2ftumjxqllolmn4c4lh7ph.py
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add]
# Source node to ATen node mapping:
# bilinear => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_4), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 5, 5), (25, 5, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [input1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 320, grid=grid(320), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [input2], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(primals_2, buf1, 320, grid=grid(320), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(buf0, (64, 5), (5, 1), 0), primals_3, reinterpret_tensor(buf1, (64, 5), (5, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf3 = buf2
del buf2
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf4, primals_4, 256, grid=grid(256), stream=stream0)
del primals_4
return (buf4, reinterpret_tensor(buf0, (64, 5), (5, 1), 0), reinterpret_tensor(buf1, (64, 5), (5, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 5, 5), (25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class BiaffineScorer(nn.Module):
def __init__(self, input1_size, input2_size, output_size):
super().__init__()
self.W_bilin = nn.Bilinear(input1_size + 1, input2_size + 1,
output_size)
self.W_bilin.weight.data.zero_()
self.W_bilin.bias.data.zero_()
def forward(self, input1, input2):
input1 = torch.cat([input1, input1.new_ones(*input1.size()[:-1], 1)
], len(input1.size()) - 1)
input2 = torch.cat([input2, input2.new_ones(*input2.size()[:-1], 1)
], len(input2.size()) - 1)
return self.W_bilin(input1, input2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input1_size': 4, 'input2_size': 4, 'output_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 5, 5), (25, 5, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(320)](primals_1, buf0, 320, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32)
triton_poi_fused_cat_0[grid(320)](primals_2, buf1, 320, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(buf0, (
64, 5), (5, 1), 0), primals_3, reinterpret_tensor(buf1, (64, 5),
(5, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf3 = buf2
del buf2
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_1[grid(256)](buf4, primals_4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_4
return buf4, reinterpret_tensor(buf0, (64, 5), (5, 1), 0
), reinterpret_tensor(buf1, (64, 5), (5, 1), 0)
class BiaffineScorerNew(nn.Module):
def __init__(self, input1_size, input2_size, output_size):
super().__init__()
self.W_bilin = nn.Bilinear(input1_size + 1, input2_size + 1,
output_size)
self.W_bilin.weight.data.zero_()
self.W_bilin.bias.data.zero_()
def forward(self, input_0, input_1):
primals_3 = self.W_bilin.weight
primals_4 = self.W_bilin.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
giorgianb/stanza
|
BiaffineScorer
| false | 10,239 |
[
"Apache-2.0"
] | 0 |
e1ff1ab73c228739fea3ef5c012a9f1042bef2e3
|
https://github.com/giorgianb/stanza/tree/e1ff1ab73c228739fea3ef5c012a9f1042bef2e3
|
Actor
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [act], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# act => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (4, 256), (256, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 16384, grid=grid(16384), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [act], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch import nn
class Actor(nn.Module):
"""
Policy Network (state --> action)
"""
def __init__(self, state_size: 'int', action_size: 'int', hidden_size:
'int'=256):
super().__init__()
self.fc1 = nn.Linear(state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, action_size)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
act = torch.tanh(self.out(x))
return act
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (4, 256), (256, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf7, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3,
primals_5, buf6, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_tanh_1[grid(256)](buf5, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), buf5, primals_6, buf6, primals_4, buf7
class ActorNew(nn.Module):
"""
Policy Network (state --> action)
"""
def __init__(self, state_size: 'int', action_size: 'int', hidden_size:
'int'=256):
super().__init__()
self.fc1 = nn.Linear(state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, action_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jadenvc/puppersim
|
Actor
| false | 10,240 |
[
"Apache-2.0"
] | 0 |
1b3f3e3fc0515d5d6101622e0d729c779debfd32
|
https://github.com/jadenvc/puppersim/tree/1b3f3e3fc0515d5d6101622e0d729c779debfd32
|
BboxHead
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ff/cffqfrlow7duxa2a27d743tueqjmutkqtb36724h4w62beoddrug.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 4]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 64, 64), (32768, 1, 512, 8))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 8), (32768, 512, 8, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 4), (32768, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 131072, grid=grid(131072), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from itertools import product as product
class BboxHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(BboxHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(
1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 4)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 64, 64), (32768, 1, 512, 8))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 8), (32768, 512, 8, 1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 4), (32768, 4, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(131072)](buf3, primals_2, 131072,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class BboxHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(BboxHeadNew, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(
1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
huigs/retinaface-pytorch
|
BboxHead
| false | 10,241 |
[
"MIT"
] | 0 |
0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
https://github.com/huigs/retinaface-pytorch/tree/0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
SDFNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/fl/cflw6zjzdk2wqtau7m6nsei5vavjfijzxhb37zaa3xp4yxpw5yb2.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# inputs => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/37/c37esw52rucibb46dl26rfvuzbcbxbhcpsd7ramumzunyzagvgwq.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__weight_norm_interface_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jg/cjg527q7k5sloxuipk76c6qbvftmhbkafocncizwfc4enj3gepuu.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => div, mul_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_2), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div), kwargs = {})
triton_poi_fused__weight_norm_interface_2 = async_compile.triton('triton_poi_fused__weight_norm_interface_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__weight_norm_interface_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 / tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kh/ckh5bbutpcj4fo2i3xv3gyn55zm6aawjpvu6b4jm6f7qxua5brtu.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# x_1 => div_1, exp, gt, log1p, mul_2, where
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm, 100), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 100), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_2, 20.0), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %addmm, %div_1), kwargs = {})
triton_poi_fused_softplus_3 = async_compile.triton('triton_poi_fused_softplus_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 100.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = 0.01
tmp8 = tmp6 * tmp7
tmp9 = tl.where(tmp4, tmp0, tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wn/cwnbxkjldwk4wfaj4njkiy2y3vwd2eqanrvyckw46ywaj2vii2co.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div_3, %slice_4], -1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4*x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 4, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr0 + (1 + (4*x1) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 1), (1, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_2.run(primals_3, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.softplus]
triton_poi_fused_softplus_3.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_1.run(primals_6, buf5, 4, grid=grid(4), stream=stream0)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_2.run(primals_6, primals_5, buf5, buf6, 16, grid=grid(16), stream=stream0)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf7, buf8, 16, grid=grid(16), stream=stream0)
del buf7
return (buf8, buf2, buf6, primals_2, primals_3, primals_5, primals_6, buf0, buf1, buf3, buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
def get_embedder(multires, input_dims=3):
embed_kwargs = {'include_input': True, 'input_dims': input_dims,
'max_freq_log2': multires - 1, 'num_freqs': multires,
'log_sampling': True, 'periodic_fns': [torch.sin, torch.cos]}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj):
return eo.embed(x)
return embed, embedder_obj.out_dim
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, N_freqs)
else:
freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)
)
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
class SDFNetwork(nn.Module):
def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,),
multires=0, bias=0.5, scale=1, geometric_init=True, weight_norm=
True, inside_outside=False):
super(SDFNetwork, self).__init__()
dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
self.embed_fn_fine = None
if multires > 0:
embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
self.embed_fn_fine = embed_fn
dims[0] = input_ch
self.num_layers = len(dims)
self.skip_in = skip_in
self.scale = scale
for l in range(0, self.num_layers - 1):
if l + 1 in self.skip_in:
out_dim = dims[l + 1] - dims[0]
else:
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if geometric_init:
if l == self.num_layers - 2:
if not inside_outside:
torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, -bias)
else:
torch.nn.init.normal_(lin.weight, mean=-np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, bias)
elif multires > 0 and l == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2
) / np.sqrt(out_dim))
elif multires > 0 and l in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0
)
else:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, 'lin' + str(l), lin)
self.activation = nn.Softplus(beta=100)
def forward(self, inputs):
inputs = inputs * self.scale
if self.embed_fn_fine is not None:
inputs = self.embed_fn_fine(inputs)
x = inputs
for l in range(0, self.num_layers - 1):
lin = getattr(self, 'lin' + str(l))
if l in self.skip_in:
x = torch.cat([x, inputs], 1) / np.sqrt(2)
x = lin(x)
if l < self.num_layers - 2:
x = self.activation(x)
return torch.cat([x[:, :1] / self.scale, x[:, 1:]], dim=-1)
def sdf(self, x):
return self.forward(x)[:, :1]
def sdf_hidden_appearance(self, x):
return self.forward(x)
def gradient(self, x):
x.requires_grad_(True)
y = self.sdf(x)
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
gradients = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=
d_output, create_graph=True, retain_graph=True, only_inputs=True)[0
]
return gradients.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_in': 4, 'd_out': 4, 'd_hidden': 4, 'n_layers': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__weight_norm_interface_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__weight_norm_interface_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 / tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 100.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = 0.01
tmp8 = tmp6 * tmp7
tmp9 = tl.where(tmp4, tmp0, tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + 4 * x1, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp13 = tl.load(in_ptr0 + (1 + 4 * x1 + (-1 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 1), (1, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__weight_norm_interface_1[grid(4)](primals_3, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__weight_norm_interface_2[grid(16)](primals_3,
primals_2, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(buf2, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_softplus_3[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__weight_norm_interface_1[grid(4)](primals_6, buf5,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__weight_norm_interface_2[grid(16)](primals_6,
primals_5, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(buf6, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_cat_4[grid(16)](buf7, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf7
return (buf8, buf2, buf6, primals_2, primals_3, primals_5, primals_6,
buf0, buf1, buf3, buf4, buf5, buf6)
def get_embedder(multires, input_dims=3):
embed_kwargs = {'include_input': True, 'input_dims': input_dims,
'max_freq_log2': multires - 1, 'num_freqs': multires,
'log_sampling': True, 'periodic_fns': [torch.sin, torch.cos]}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj):
return eo.embed(x)
return embed, embedder_obj.out_dim
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, N_freqs)
else:
freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)
)
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
class SDFNetworkNew(nn.Module):
def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,),
multires=0, bias=0.5, scale=1, geometric_init=True, weight_norm=
True, inside_outside=False):
super(SDFNetworkNew, self).__init__()
dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
self.embed_fn_fine = None
if multires > 0:
embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
self.embed_fn_fine = embed_fn
dims[0] = input_ch
self.num_layers = len(dims)
self.skip_in = skip_in
self.scale = scale
for l in range(0, self.num_layers - 1):
if l + 1 in self.skip_in:
out_dim = dims[l + 1] - dims[0]
else:
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if geometric_init:
if l == self.num_layers - 2:
if not inside_outside:
torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, -bias)
else:
torch.nn.init.normal_(lin.weight, mean=-np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, bias)
elif multires > 0 and l == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2
) / np.sqrt(out_dim))
elif multires > 0 and l in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0
)
else:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, 'lin' + str(l), lin)
self.activation = nn.Softplus(beta=100)
def sdf(self, x):
return self.forward(x)[:, :1]
def sdf_hidden_appearance(self, x):
return self.forward(x)
def gradient(self, x):
x.requires_grad_(True)
y = self.sdf(x)
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
gradients = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=
d_output, create_graph=True, retain_graph=True, only_inputs=True)[0
]
return gradients.unsqueeze(1)
def forward(self, input_0):
primals_4 = self.lin0.bias
primals_2 = self.lin0.weight_g
primals_1 = self.lin0.weight_v
primals_7 = self.lin1.bias
primals_5 = self.lin1.weight_g
primals_3 = self.lin1.weight_v
primals_6 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
hzwangjl/NeuS
|
SDFNetwork
| false | 10,242 |
[
"MIT"
] | 0 |
f1b89176ec18e19b3848d787416dab9a1ce5300b
|
https://github.com/hzwangjl/NeuS/tree/f1b89176ec18e19b3848d787416dab9a1ce5300b
|
Critic
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (256, 8), (8, 1))
assert_size_stride(primals_4, (256, ), (1, ))
assert_size_stride(primals_5, (256, 256), (256, 1))
assert_size_stride(primals_6, (256, ), (1, ))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 1024, grid=grid(1024), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (1, 256), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 1024, grid=grid(1024), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [val], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6)
del primals_8
return (buf6, buf0, buf2, buf4, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch import nn
class Critic(nn.Module):
"""
Value Network (state + action --> value)
"""
def __init__(self, state_size: 'int', action_size: 'int', hidden_size:
'int'=256):
super().__init__()
self.fc1 = nn.Linear(state_size + action_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, 1)
def forward(self, state, action):
x = torch.cat((state, action), dim=1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
val = self.out(x)
return val
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (256, 8), (8, 1))
assert_size_stride(primals_4, (256,), (1,))
assert_size_stride(primals_5, (256, 256), (256, 1))
assert_size_stride(primals_6, (256,), (1,))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(1024)](buf2, primals_4, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (
1, 256), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(1024)](buf4, primals_6, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6)
del primals_8
return buf6, buf0, buf2, buf4, primals_7, primals_5
class CriticNew(nn.Module):
"""
Value Network (state + action --> value)
"""
def __init__(self, state_size: 'int', action_size: 'int', hidden_size:
'int'=256):
super().__init__()
self.fc1 = nn.Linear(state_size + action_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, 1)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
jadenvc/puppersim
|
Critic
| false | 10,243 |
[
"Apache-2.0"
] | 0 |
1b3f3e3fc0515d5d6101622e0d729c779debfd32
|
https://github.com/jadenvc/puppersim/tree/1b3f3e3fc0515d5d6101622e0d729c779debfd32
|
LandmarkHead
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7a/c7auqvqakf5iup6jxhpmvimbxgbhkwojsfkb4ydpzggudkwfecso.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 10]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 327680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 20, 64, 64), (81920, 1, 1280, 20))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 20), (81920, 1280, 20, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 10), (81920, 10, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 327680, grid=grid(327680), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from itertools import product as product
class LandmarkHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(LandmarkHead, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 10)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (20, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 20, 64, 64), (81920, 1, 1280, 20))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 20), (81920, 1280, 20,
1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 10), (81920, 10, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(327680)](buf3, primals_2, 327680,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class LandmarkHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(LandmarkHeadNew, self).__init__()
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=
(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
huigs/retinaface-pytorch
|
LandmarkHead
| false | 10,244 |
[
"MIT"
] | 0 |
0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
https://github.com/huigs/retinaface-pytorch/tree/0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
SpatialSELayer1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3u/c3u6zmp5plplv5tjyzlxet5sgcucpeizysbhi7xphxjhdc6kmodq.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xe/cxeibrbdtfwskdwocgzxyywkifml4pk6oqbf64lqps7x4oktrzp6.py
# Topologically Sorted Source Nodes: [squeeze_tensor, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# squeeze_tensor => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4), (4, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [squeeze_tensor, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 64, grid=grid(64), stream=stream0)
return (buf2, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class SpatialSELayer1d(nn.Module):
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer1d, self).__init__()
self.conv = nn.Conv1d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, W)
:return: output_tensor
"""
batch_size, channel, a = input_tensor.size()
if weights is not None:
weights = torch.mean(weights, dim=0)
weights = weights.view(1, channel, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
return input_tensor * squeeze_tensor.view(batch_size, 1, a)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4), (4, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(64)](primals_1, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
return buf2, primals_1, primals_2, buf1
class SpatialSELayer1dNew(nn.Module):
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer1dNew, self).__init__()
self.conv = nn.Conv1d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ioanvl/1d_squeeze_excitation
|
SpatialSELayer1d
| false | 10,245 |
[
"MIT"
] | 0 |
f422dc4b8e7de6239a6fb7d1688048db5053e733
|
https://github.com/ioanvl/1d_squeeze_excitation/tree/f422dc4b8e7de6239a6fb7d1688048db5053e733
|
ClassHead
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xy/cxy5t3derdktibljcvhb4n4so7gljpvchrlgaqpvp5yr4i2tjqbi.py
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# out_1 => clone
# view => view
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 2]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 1, 256, 4))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 4), (16384, 256, 4, 1), 0); del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 8192, 2), (16384, 2, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf3, primals_2, 65536, grid=grid(65536), stream=stream0)
del primals_2
return (buf3, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from itertools import product as product
class ClassHead(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(ClassHead, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, x):
out = self.conv1x1(x)
out = out.permute(0, 2, 3, 1).contiguous()
return out.view(out.shape[0], -1, 2)
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 1, 256, 4))
buf2 = reinterpret_tensor(buf1, (4, 64, 64, 4), (16384, 256, 4, 1), 0)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 8192, 2), (16384, 2, 1), 0)
del buf2
triton_poi_fused_clone_view_1[grid(65536)](buf3, primals_2, 65536,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_1, buf0
class ClassHeadNew(nn.Module):
def __init__(self, inchannels=512, num_anchors=2):
super(ClassHeadNew, self).__init__()
self.num_anchors = num_anchors
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2,
kernel_size=(1, 1), stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1x1.weight
primals_2 = self.conv1x1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
huigs/retinaface-pytorch
|
ClassHead
| false | 10,246 |
[
"MIT"
] | 0 |
0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
https://github.com/huigs/retinaface-pytorch/tree/0d7551d5863d172c2122bdd8d2d58be36e1b10fd
|
CNormalized_Linear
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ef/cefxo2fn2nc6kz3xqsftatxgyvfkkm7bbs7raicfjscwteq4iixh.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, div], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# div => div
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [0]), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %sqrt), kwargs = {})
triton_poi_fused_div_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_div_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, div], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_pow_sqrt_sum_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch as th
class CNormalized_Linear(th.nn.Module):
"""Linear layer with column-wise normalized input matrix."""
def __init__(self, in_features, out_features, bias=False):
"""Initialize the layer."""
super(CNormalized_Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = th.nn.Parameter(th.Tensor(out_features, in_features))
if bias:
self.bias = th.nn.Parameter(th.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
"""Reset the parameters."""
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
"""Feed-forward through the network."""
return th.nn.functional.linear(input, self.weight.div(self.weight.
pow(2).sum(0).sqrt()))
def __repr__(self):
"""For print purposes."""
return self.__class__.__name__ + '(' + 'in_features=' + str(self.
in_features) + ', out_features=' + str(self.out_features
) + ', bias=' + str(self.bias is not None) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch as th
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_pow_sqrt_sum_0[grid(16)](primals_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0)
class CNormalized_LinearNew(th.nn.Module):
"""Linear layer with column-wise normalized input matrix."""
def __init__(self, in_features, out_features, bias=False):
"""Initialize the layer."""
super(CNormalized_LinearNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = th.nn.Parameter(th.Tensor(out_features, in_features))
if bias:
self.bias = th.nn.Parameter(th.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
"""Reset the parameters."""
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
"""For print purposes."""
return self.__class__.__name__ + '(' + 'in_features=' + str(self.
in_features) + ', out_features=' + str(self.out_features
) + ', bias=' + str(self.bias is not None) + ')'
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
edgarvardanyan/CausalDiscoveryToolbox
|
CNormalized_Linear
| false | 10,247 |
[
"MIT"
] | 0 |
5497a400440b49a3af14a0c7512bcdd307c9285d
|
https://github.com/edgarvardanyan/CausalDiscoveryToolbox/tree/5497a400440b49a3af14a0c7512bcdd307c9285d
|
ChannelSELayer1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# squeeze_tensor => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3p/c3pvtte4adxbodvqq4iab6zximg555lpk2lopxwzpt4fva4eetqt.py
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# fc_out_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lu/cluoynjdcltxwpjubrhgdo7oh6p5oiqgebxryzgynymp3qkjpscr.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf3, buf4, 64, grid=grid(64), stream=stream0)
return (buf4, primals_1, buf0, buf2, buf3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ChannelSELayer1d(nn.Module):
def __init__(self, num_channels, reduction_ratio=4):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer1d, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.activ_1 = nn.ReLU()
self.activ_2 = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, H)
:return: output tensor
"""
batch_size, num_channels, _H = input_tensor.size()
squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(
dim=2)
fc_out_1 = self.activ_1(self.fc1(squeeze_tensor))
fc_out_2 = self.activ_2(self.fc2(fc_out_1))
return input_tensor * fc_out_2.view(batch_size, num_channels, 1)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 1), (1, 4
), 0), out=buf1)
del primals_2
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(4)](buf2, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(64)](primals_1, buf3, buf4, 64, XBLOCK=
64, num_warps=1, num_stages=1)
return buf4, primals_1, buf0, buf2, buf3, primals_4
class ChannelSELayer1dNew(nn.Module):
def __init__(self, num_channels, reduction_ratio=4):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer1dNew, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.activ_1 = nn.ReLU()
self.activ_2 = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ioanvl/1d_squeeze_excitation
|
ChannelSELayer1d
| false | 10,248 |
[
"MIT"
] | 0 |
f422dc4b8e7de6239a6fb7d1688048db5053e733
|
https://github.com/ioanvl/1d_squeeze_excitation/tree/f422dc4b8e7de6239a6fb7d1688048db5053e733
|
Linear3D
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/64/c64ahxnpt5ixqrlolbug3qf6y4u2zqmcjekif2yu4ba4hcze2fom.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2) + (64*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2g/c2gow746iojnl6yugujjn3non5klwrqsxgmhc4ib5irxlfwbv7ap.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ri/cripmqky3lo3skozwggzdw7u7ybokgg2w2o3vcesam3ywnqu73dg.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# output_1 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %unsqueeze), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_2, buf1, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf3, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (16, 64, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch as th
from torch.nn import Parameter
def functional_linear3d(input, weight, bias=None):
"""
Apply a linear transformation to the incoming data: :math:`y = xA^T + b`.
Shape:
- Input: :math:`(N, *, in\\_features)` where `*` means any number of
additional dimensions
- Weight: :math:`(out\\_features, in\\_features)`
- Bias: :math:`(out\\_features)`
- Output: :math:`(N, *, out\\_features)`
"""
output = input.transpose(0, 1).matmul(weight)
if bias is not None:
output += bias.unsqueeze(1)
return output.transpose(0, 1)
class Linear3D(th.nn.Module):
"""Applies a linear transformation to the incoming data: :math:`y = Ax + b`.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\\_features)` where all but the last dimension
are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
`(out_features x in_features)`
bias: the learnable bias of the module of shape `(out_features)`
Examples::
>>> m = nn.Linear(3, 20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, channels, in_features, out_features, batch_size=-1,
bias=True, noise=False):
super(Linear3D, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.channels = channels
if noise:
self.in_features += 1
self.weight = Parameter(th.Tensor(channels, self.in_features,
out_features))
if bias:
self.bias = Parameter(th.Tensor(channels, out_features))
else:
self.register_parameter('bias', None)
if noise:
self.register_buffer('noise', th.Tensor(batch_size, channels, 1))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj_matrix=None, permutation_matrix=None):
input_ = [input]
if input.dim() == 2:
if permutation_matrix is not None:
input_.append(input.unsqueeze(1).expand([input.shape[0],
self.channels, permutation_matrix.shape[1]]))
elif hasattr(self, 'noise'):
input_.append(input.unsqueeze(1).expand([input.shape[0],
self.channels, self.in_features - 1]))
else:
input_.append(input.unsqueeze(1).expand([input.shape[0],
self.channels, self.in_features]))
if adj_matrix is not None and permutation_matrix is not None:
input_.append((input_[-1].transpose(0, 1) @ (adj_matrix.t().
unsqueeze(2) * permutation_matrix)).transpose(0, 1))
elif adj_matrix is not None:
input_.append(input_[-1] * adj_matrix.t().unsqueeze(0))
elif permutation_matrix is not None:
input_.append((input_[-1].transpose(0, 1) @ permutation_matrix).t()
)
if hasattr(self, 'noise'):
self.noise.normal_()
input_.append(th.cat([input_[-1], self.noise], 2))
return functional_linear3d(input_[-1], self.weight, self.bias)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
def apply_filter(self, permutation_matrix):
transpose_weight = self.weight.transpose(1, 2) @ permutation_matrix
self.weight = Parameter(transpose_weight.transpose(1, 2))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch as th
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 64 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(256)](primals_2, buf1, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_add_2[grid(256)](buf3, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
return reinterpret_tensor(buf3, (4, 4, 4, 4), (16, 64, 4, 1), 0
), reinterpret_tensor(buf0, (16, 4, 4), (16, 1, 4), 0)
def functional_linear3d(input, weight, bias=None):
"""
Apply a linear transformation to the incoming data: :math:`y = xA^T + b`.
Shape:
- Input: :math:`(N, *, in\\_features)` where `*` means any number of
additional dimensions
- Weight: :math:`(out\\_features, in\\_features)`
- Bias: :math:`(out\\_features)`
- Output: :math:`(N, *, out\\_features)`
"""
output = input.transpose(0, 1).matmul(weight)
if bias is not None:
output += bias.unsqueeze(1)
return output.transpose(0, 1)
class Linear3DNew(th.nn.Module):
"""Applies a linear transformation to the incoming data: :math:`y = Ax + b`.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\\_features)` where all but the last dimension
are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
`(out_features x in_features)`
bias: the learnable bias of the module of shape `(out_features)`
Examples::
>>> m = nn.Linear(3, 20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, channels, in_features, out_features, batch_size=-1,
bias=True, noise=False):
super(Linear3DNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.channels = channels
if noise:
self.in_features += 1
self.weight = Parameter(th.Tensor(channels, self.in_features,
out_features))
if bias:
self.bias = Parameter(th.Tensor(channels, out_features))
else:
self.register_parameter('bias', None)
if noise:
self.register_buffer('noise', th.Tensor(batch_size, channels, 1))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
def apply_filter(self, permutation_matrix):
transpose_weight = self.weight.transpose(1, 2) @ permutation_matrix
self.weight = Parameter(transpose_weight.transpose(1, 2))
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
edgarvardanyan/CausalDiscoveryToolbox
|
Linear3D
| false | 10,249 |
[
"MIT"
] | 0 |
5497a400440b49a3af14a0c7512bcdd307c9285d
|
https://github.com/edgarvardanyan/CausalDiscoveryToolbox/tree/5497a400440b49a3af14a0c7512bcdd307c9285d
|
GCNLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/fm/cfmazf5iwuuaknliyiq4obsjt4roufymjs6ha5ei6aoyekotoo5q.py
# Topologically Sorted Source Nodes: [out_1, prelu], Original ATen: [aten.add, aten._prelu_kernel]
# Source node to ATen node mapping:
# out_1 => add
# prelu => gt, mul, where
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %primals_4), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %add), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_add_0 = async_compile.triton('triton_poi_fused__prelu_kernel_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [feat], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [out_1, prelu], Original ATen: [aten.add, aten._prelu_kernel]
stream0 = get_raw_stream(0)
triton_poi_fused__prelu_kernel_add_0.run(buf1, primals_4, primals_5, buf2, 64, grid=grid(64), stream=stream0)
return (buf2, primals_4, primals_5, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf1, reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class GCNLayer(nn.Module):
def __init__(self, in_ft, out_ft, bias=True):
super(GCNLayer, self).__init__()
self.fc = nn.Linear(in_ft, out_ft, bias=False)
self.act = nn.PReLU()
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_ft))
self.bias.data.fill_(0.0)
else:
self.register_parameter('bias', None)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, feat, adj):
feat = self.fc(feat)
out = torch.bmm(adj, feat)
if self.bias is not None:
out += self.bias
return self.act(out)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_ft': 4, 'out_ft': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__prelu_kernel_add_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), (
16, 4, 1), 0), out=buf1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused__prelu_kernel_add_0[grid(64)](buf1, primals_4,
primals_5, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf2, primals_4, primals_5, reinterpret_tensor(primals_2, (16, 4
), (4, 1), 0), buf1, reinterpret_tensor(primals_3, (4, 4, 4), (16,
1, 4), 0)
class GCNLayerNew(nn.Module):
def __init__(self, in_ft, out_ft, bias=True):
super(GCNLayerNew, self).__init__()
self.fc = nn.Linear(in_ft, out_ft, bias=False)
self.act = nn.PReLU()
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_ft))
self.bias.data.fill_(0.0)
else:
self.register_parameter('bias', None)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, input_0, input_1):
primals_4 = self.bias
primals_1 = self.fc.weight
primals_5 = self.act.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jaynee156/GNN-thesis
|
GCNLayer
| false | 10,250 |
[
"MIT"
] | 0 |
fe8a731698dedb6cf76f7130658a646664a79b09
|
https://github.com/jaynee156/GNN-thesis/tree/fe8a731698dedb6cf76f7130658a646664a79b09
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/h2/ch2qmvn2pnakfb2rmi27soi6fdit5okdksuuroqly6h4mehoukws.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 576) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lr/clr4dqzywalbootuyerjzaulln46meffyy4s6x4ufxgovhz3vvt3.py
# Topologically Sorted Source Nodes: [max_pool2d, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1
# x_1 => relu
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 5760
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = (xindex // 12)
x2 = (xindex // 1440)
x4 = xindex % 1440
x5 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4 + (1536*x2)), tmp15, xmask)
tl.store(out_ptr1 + (x5), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kv/ckvxoo67wykkix56guvhafnmoj7ybofi4256vgkv6dblf6kd6f57.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 20
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3v/c3vjs7cwub6yw4cpmxvqbzjabjh3xu4qeeml6jobk35deiu6msr5.py
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# x_2 => relu_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = 0.0
tmp20 = tmp18 <= tmp19
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp18, xmask)
tl.store(out_ptr2 + (x2), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xi/cxiouqdy3aqmwg2p7remcu57ny7vnw4f263cpqtavvo5sya77u64.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/i3/ci3gjxynws4b6snihkmy4mi7mtg3xhsmd2rvhtmsnpenwlazlbbl.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_per_fused__log_softmax_5 = async_compile.triton('triton_per_fused__log_softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (10, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (10, ), (1, ))
assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (50, 320), (320, 1))
assert_size_stride(primals_7, (50, ), (1, ))
assert_size_stride(primals_8, (10, 50), (50, 1))
assert_size_stride(primals_9, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 24, 24), (5760, 576, 24, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 23040, grid=grid(23040), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 10, 12, 12), (1536, 144, 12, 1), torch.int8)
buf3 = empty_strided_cuda((4, 10, 12, 12), (1440, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, 5760, grid=grid(5760), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 20, 8, 8), (1280, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 5120, grid=grid(5120), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.int8)
buf7 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3.run(buf5, buf6, buf7, buf14, 1280, grid=grid(1280), stream=stream0)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (4, 320), (320, 1), 0), reinterpret_tensor(primals_6, (320, 50), (1, 320), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_7, 200, grid=grid(200), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_9
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_5.run(buf10, buf13, 4, 10, grid=grid(4), stream=stream0)
del buf10
return (buf13, primals_1, primals_2, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 320), (320, 1), 0), buf9, buf13, primals_8, primals_6, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 28, 28), (784, 784, 28, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 10, 5, 5), (250, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((50, 320), (320, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((10, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = x.view(x.shape[0], 1, 28, 28)
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 1, 28, 28])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.utils.data.distributed
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 576 % 10
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 5760
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = xindex // 12
x2 = xindex // 1440
x4 = xindex % 1440
x5 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x3), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x3), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tl.store(out_ptr0 + (x4 + 1536 * x2), tmp15, xmask)
tl.store(out_ptr1 + x5, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 20
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0,
out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), xmask, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = 0.0
tmp20 = tmp18 <= tmp19
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp18, xmask)
tl.store(out_ptr2 + x2, tmp20, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 28, 28), (784, 784, 28, 1))
assert_size_stride(primals_2, (10, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (10,), (1,))
assert_size_stride(primals_4, (20, 10, 5, 5), (250, 25, 5, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (50, 320), (320, 1))
assert_size_stride(primals_7, (50,), (1,))
assert_size_stride(primals_8, (10, 50), (50, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 24, 24), (5760, 576, 24, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(23040)](buf1, primals_3, 23040,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 10, 12, 12), (1536, 144, 12, 1),
torch.int8)
buf3 = empty_strided_cuda((4, 10, 12, 12), (1440, 144, 12, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_1[grid(5760)](buf1,
buf2, buf3, 5760, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 20, 8, 8), (1280, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(5120)](buf5, primals_5, 5120,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.int8)
buf7 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.float32
)
buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.bool)
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3[grid
(1280)](buf5, buf6, buf7, buf14, 1280, XBLOCK=128, num_warps=4,
num_stages=1)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (4, 320), (320, 1), 0),
reinterpret_tensor(primals_6, (320, 50), (1, 320), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(200)](buf9, primals_7, 200, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8,
(50, 10), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_9
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_5[grid(4)](buf10, buf13, 4, 10,
XBLOCK=1, num_warps=2, num_stages=1)
del buf10
return (buf13, primals_1, primals_2, primals_4, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 320), (320, 1), 0), buf9, buf13,
primals_8, primals_6, buf14)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
iquintero/sagemaker-pytorch-container
|
Net
| false | 10,251 |
[
"Apache-2.0"
] | 0 |
70f64c87e549ae833d7f2ef2f15f01542ff5678e
|
https://github.com/iquintero/sagemaker-pytorch-container/tree/70f64c87e549ae833d7f2ef2f15f01542ff5678e
|
ValueFunction
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3m/c3mzp3ti73rkr2ycpo5n5vkpamkp63miruoys5loyr5qw563wde6.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (1, 200), (200, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 12800, grid=grid(12800), stream=stream0)
del buf3
del primals_5
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 1), (1, 200), 0), alpha=1, beta=1, out=buf7)
del primals_7
return (reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class ValueFunction(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim):
super(ValueFunction, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, 1)
def forward(self, x):
"""return: scalar value"""
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
return self.out(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (1, 200), (200, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(12800)](buf0, primals_2, buf1,
buf2, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
triton_poi_fused_leaky_relu_0[grid(12800)](buf3, primals_5, buf4,
buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_6, (200, 1), (1, 200),
0), alpha=1, beta=1, out=buf7)
del primals_7
return reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0
), primals_6, primals_4
class ValueFunctionNew(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim):
super(ValueFunctionNew, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
himanshusahni/task-biased-url
|
ValueFunction
| false | 10,252 |
[
"MIT"
] | 0 |
28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
https://github.com/himanshusahni/task-biased-url/tree/28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
CrossAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py
# Topologically Sorted Source Nodes: [x_q], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_q => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py
# Topologically Sorted Source Nodes: [x_q], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_q => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul_4
# Graph fragment:
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub_2
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (12, 4), (4, 1))
assert_size_stride(primals_8, (12, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [x_q], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [x_kv], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(primals_6, buf2, buf3, 4, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_q], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf4, 16, grid=grid(16), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_kv], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_6, buf2, buf3, primals_4, primals_5, buf6, 16, grid=grid(16), stream=stream0)
del buf2
del buf3
del primals_4
del primals_5
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_8, (4, ), (1, ), 4), buf6, reinterpret_tensor(primals_7, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf7)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_8, (4, ), (1, ), 8), buf6, reinterpret_tensor(primals_7, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf8)
buf9 = reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 16), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf9, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf7, (4, 1, 4), (1, 1, 4), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf10, buf11, 64, grid=grid(64), stream=stream0)
buf12 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf11, buf12, 64, grid=grid(64), stream=stream0)
del buf11
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf12, reinterpret_tensor(buf8, (4, 4, 1), (1, 4, 1), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf13, buf14, 4, 4, grid=grid(4, 4), stream=stream0)
buf15 = reinterpret_tensor(buf13, (4, 4), (4, 1), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (4, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_10
return (buf15, primals_3, primals_6, buf4, buf6, buf12, reinterpret_tensor(buf14, (4, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf8, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf9, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf7, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (4, 1), 32), reinterpret_tensor(primals_7, (4, 4), (4, 1), 16), reinterpret_tensor(primals_7, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class MultiHeadAttention(nn.Module):
"""
Multi head attention for Perceiver https://arxiv.org/pdf/2103.03206.pdf.
Args:
num_q_channels (`int`):
Number of q channels.
num_kv_channels (`int`):
Number of k or v channels. k has the same channels as v.
num_heads (`int`):
Number of parallel attention heads.
dropout (`nn.Module`):
Dropout probability.
"""
def __init__(self, num_q_channels: 'int', num_kv_channels: 'int',
num_heads: 'int', dropout: 'float'):
super().__init__()
self.attention = nn.MultiheadAttention(embed_dim=num_q_channels,
num_heads=num_heads, kdim=num_kv_channels, vdim=num_kv_channels,
dropout=dropout, batch_first=True)
def forward(self, x_q, x_kv, pad_mask=None, attn_mask=None):
"""
Forward function.
Args:
x_q (`Tensor`):
Query embeddings.
x_kv (`Tensor`):
Key embeddings. Key equals value.
pad_mask (`int`):
Padding mask.
attn_mask (`nn.Module`):
Attention mask.
"""
return self.attention(x_q, x_kv, x_kv, key_padding_mask=pad_mask,
attn_mask=attn_mask)[0]
class CrossAttention(nn.Module):
"""
Cross attention for Perceiver https://arxiv.org/pdf/2103.03206.pdf.
Args:
num_q_channels (`int`):
Number of q channels.
num_kv_channels (`int`):
Number of k or v channels. k has the same channels as v.
num_heads (`int`):
Number of parallel attention heads.
dropout (`nn.Module`):
Dropout probability.
"""
def __init__(self, num_q_channels: 'int', num_kv_channels: 'int',
num_heads: 'int', dropout: 'float'):
super().__init__()
self.q_norm = nn.LayerNorm(num_q_channels)
self.kv_norm = nn.LayerNorm(num_kv_channels)
self.attention = MultiHeadAttention(num_q_channels=num_q_channels,
num_kv_channels=num_kv_channels, num_heads=num_heads, dropout=
dropout)
def forward(self, x_q, x_kv, pad_mask=None, attn_mask=None):
x_q = self.q_norm(x_q)
x_kv = self.kv_norm(x_kv)
return self.attention(x_q, x_kv, pad_mask=pad_mask, attn_mask=attn_mask
)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_q_channels': 4, 'num_kv_channels': 4, 'num_heads': 4,
'dropout': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (12, 4), (4, 1))
assert_size_stride(primals_8, (12,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(4)](primals_3, buf0, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_native_layer_norm_0[grid(4)](primals_6, buf2, buf3,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](primals_3, buf0,
buf1, primals_1, primals_2, buf4, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4
), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](primals_6, buf2,
buf3, primals_4, primals_5, buf6, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf2
del buf3
del primals_4
del primals_5
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_8, (4,), (1,), 4),
buf6, reinterpret_tensor(primals_7, (4, 4), (1, 4), 16), alpha=
1, beta=1, out=buf7)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_8, (4,), (1,), 8),
buf6, reinterpret_tensor(primals_7, (4, 4), (1, 4), 32), alpha=
1, beta=1, out=buf8)
buf9 = reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 16), 0)
del buf5
triton_poi_fused_mul_2[grid(16)](buf9, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf7, (4, 1, 4), (1, 1,
4), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf10, buf11, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf12 = buf10
del buf10
triton_poi_fused__softmax_4[grid(64)](buf11, buf12, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf11
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf12, reinterpret_tensor(buf8, (4, 4, 1), (1, 4,
1), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(4, 4)](buf13, buf14, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf15 = reinterpret_tensor(buf13, (4, 4), (4, 1), 0)
del buf13
extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (4, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_10
return buf15, primals_3, primals_6, buf4, buf6, buf12, reinterpret_tensor(
buf14, (4, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf8, (4,
1, 4), (1, 1, 4), 0), reinterpret_tensor(buf9, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf7, (4, 4, 1), (1, 4, 1), 0
), reinterpret_tensor(primals_7, (4, 4), (4, 1), 32
), reinterpret_tensor(primals_7, (4, 4), (4, 1), 16
), reinterpret_tensor(primals_7, (4, 4), (4, 1), 0)
class MultiHeadAttention(nn.Module):
"""
Multi head attention for Perceiver https://arxiv.org/pdf/2103.03206.pdf.
Args:
num_q_channels (`int`):
Number of q channels.
num_kv_channels (`int`):
Number of k or v channels. k has the same channels as v.
num_heads (`int`):
Number of parallel attention heads.
dropout (`nn.Module`):
Dropout probability.
"""
def __init__(self, num_q_channels: 'int', num_kv_channels: 'int',
num_heads: 'int', dropout: 'float'):
super().__init__()
self.attention = nn.MultiheadAttention(embed_dim=num_q_channels,
num_heads=num_heads, kdim=num_kv_channels, vdim=num_kv_channels,
dropout=dropout, batch_first=True)
def forward(self, x_q, x_kv, pad_mask=None, attn_mask=None):
"""
Forward function.
Args:
x_q (`Tensor`):
Query embeddings.
x_kv (`Tensor`):
Key embeddings. Key equals value.
pad_mask (`int`):
Padding mask.
attn_mask (`nn.Module`):
Attention mask.
"""
return self.attention(x_q, x_kv, x_kv, key_padding_mask=pad_mask,
attn_mask=attn_mask)[0]
class CrossAttentionNew(nn.Module):
"""
Cross attention for Perceiver https://arxiv.org/pdf/2103.03206.pdf.
Args:
num_q_channels (`int`):
Number of q channels.
num_kv_channels (`int`):
Number of k or v channels. k has the same channels as v.
num_heads (`int`):
Number of parallel attention heads.
dropout (`nn.Module`):
Dropout probability.
"""
def __init__(self, num_q_channels: 'int', num_kv_channels: 'int',
num_heads: 'int', dropout: 'float'):
super().__init__()
self.q_norm = nn.LayerNorm(num_q_channels)
self.kv_norm = nn.LayerNorm(num_kv_channels)
self.attention = MultiHeadAttention(num_q_channels=num_q_channels,
num_kv_channels=num_kv_channels, num_heads=num_heads, dropout=
dropout)
def forward(self, input_0, input_1):
primals_1 = self.q_norm.weight
primals_2 = self.q_norm.bias
primals_4 = self.kv_norm.weight
primals_5 = self.kv_norm.bias
primals_7 = self.attention.attention.in_proj_weight
primals_8 = self.attention.attention.in_proj_bias
primals_3 = self.attention.attention.out_proj.weight
primals_10 = self.attention.attention.out_proj.bias
primals_6 = input_0
primals_9 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
jennyli-z/towhee
|
CrossAttention
| false | 10,253 |
[
"Apache-2.0"
] | 0 |
55c55fd961229575b75eae269b55090c839f8dcd
|
https://github.com/jennyli-z/towhee/tree/55c55fd961229575b75eae269b55090c839f8dcd
|
DenseBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/gk/cgkw7mtnlzc2x4r4dlaxhd27twdsy4zp5nunyiqlzxzxlut26kgd.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [2], [2], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 6) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/n4/cn4nrao6ng2dt25fyig6ikjf3xz5iqxb22ofakq7pljb2sg3u6rd.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %mul], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 8
x0 = xindex % 4
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (6*((-4) + x1)) + (24*x2)), tmp6 & xmask, other=0.0)
tmp10 = libdevice.tanh(tmp9)
tmp11 = tl.load(in_ptr2 + (x0 + (6*((-4) + x1)) + (24*x2)), tmp6 & xmask, other=0.0)
tmp12 = tl.sigmoid(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6), (24, 6, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 96, grid=grid(96), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 6), (24, 6, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 96, grid=grid(96), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_3, buf1, buf3, buf4, 128, grid=grid(128), stream=stream0)
return (buf4, primals_1, primals_3, primals_4, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
class CausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, dilation=2):
super(CausalConv1d, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=self.padding, dilation=dilation)
def forward(self, minibatch):
return self.causal_conv(minibatch)[:, :, :-self.padding]
class DenseBlock(nn.Module):
def __init__(self, in_channels, filters, dilation=2):
super(DenseBlock, self).__init__()
self.causal_conv1 = CausalConv1d(in_channels, filters, dilation=
dilation)
self.causal_conv2 = CausalConv1d(in_channels, filters, dilation=
dilation)
def forward(self, minibatch):
tanh = F.tanh(self.causal_conv1(minibatch))
sig = F.sigmoid(self.causal_conv2(minibatch))
out = torch.cat([minibatch, tanh * sig], dim=1)
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'filters': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 6 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 6 * (-4 + x1) + 24 * x2), tmp6 & xmask,
other=0.0)
tmp10 = libdevice.tanh(tmp9)
tmp11 = tl.load(in_ptr2 + (x0 + 6 * (-4 + x1) + 24 * x2), tmp6 & xmask,
other=0.0)
tmp12 = tl.sigmoid(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6), (24, 6, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(96)](buf1, primals_2, 96,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 6), (24, 6, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(96)](buf3, primals_5, 96,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(128)](primals_3, buf1, buf3, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
return buf4, primals_1, primals_3, primals_4, buf1, buf3
class CausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, dilation=2):
super(CausalConv1d, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=self.padding, dilation=dilation)
def forward(self, minibatch):
return self.causal_conv(minibatch)[:, :, :-self.padding]
class DenseBlockNew(nn.Module):
def __init__(self, in_channels, filters, dilation=2):
super(DenseBlockNew, self).__init__()
self.causal_conv1 = CausalConv1d(in_channels, filters, dilation=
dilation)
self.causal_conv2 = CausalConv1d(in_channels, filters, dilation=
dilation)
def forward(self, input_0):
primals_1 = self.causal_conv1.causal_conv.weight
primals_2 = self.causal_conv1.causal_conv.bias
primals_4 = self.causal_conv2.causal_conv.weight
primals_5 = self.causal_conv2.causal_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
heyitsmine/FewRel
|
DenseBlock
| false | 10,254 |
[
"MIT"
] | 0 |
2a2b8ae471298d9eb3557796a085c23b21982fb2
|
https://github.com/heyitsmine/FewRel/tree/2a2b8ae471298d9eb3557796a085c23b21982fb2
|
CausalConv1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/gk/cgkw7mtnlzc2x4r4dlaxhd27twdsy4zp5nunyiqlzxzxlut26kgd.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [2], [2], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 6) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6), (24, 6, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 96, grid=grid(96), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (4, 4, 4), (24, 6, 1), 0), primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class CausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, dilation=2):
super(CausalConv1d, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=self.padding, dilation=dilation)
def forward(self, minibatch):
return self.causal_conv(minibatch)[:, :, :-self.padding]
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 6 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6), (24, 6, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(96)](buf1, primals_2, 96,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (4, 4, 4), (24, 6, 1), 0
), primals_1, primals_3
class CausalConv1dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, dilation=2):
super(CausalConv1dNew, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=self.padding, dilation=dilation)
def forward(self, input_0):
primals_1 = self.causal_conv.weight
primals_2 = self.causal_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
heyitsmine/FewRel
|
CausalConv1d
| false | 10,255 |
[
"MIT"
] | 0 |
2a2b8ae471298d9eb3557796a085c23b21982fb2
|
https://github.com/heyitsmine/FewRel/tree/2a2b8ae471298d9eb3557796a085c23b21982fb2
|
QValueFunction
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ni/cnim4hby6ukzrr5hpnqhyes24yh4u2u2me5drgtw5svnox5lhi5h.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => gt, mul, where
# Graph fragment:
# %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (200, 8), (8, 1))
assert_size_stride(primals_4, (200, ), (1, ))
assert_size_stride(primals_5, (200, 200), (200, 1))
assert_size_stride(primals_6, (200, ), (1, ))
assert_size_stride(primals_7, (1, 200), (200, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 200), (1, 8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf3 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf1, primals_4, buf2, buf3, 800, grid=grid(800), stream=stream0)
del primals_4
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (200, 200), (1, 200), 0), out=buf4)
buf5 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf6 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf4, primals_6, buf5, buf6, 800, grid=grid(800), stream=stream0)
del buf4
del primals_6
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7, (200, 1), (1, 200), 0), alpha=1, beta=1, out=buf8)
del primals_8
return (buf8, buf0, buf2, buf3, buf5, buf6, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((200, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class QValueFunction(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(QValueFunction, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, 1)
def forward(self, s, a):
"""return: scalar value"""
x = torch.cat((s, a), dim=1)
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
return self.out(x)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (200, 8), (8, 1))
assert_size_stride(primals_4, (200,), (1,))
assert_size_stride(primals_5, (200, 200), (200, 1))
assert_size_stride(primals_6, (200,), (1,))
assert_size_stride(primals_7, (1, 200), (200, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 200), (1,
8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf3 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(800)](buf1, primals_4, buf2,
buf3, 800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf4 = buf1
del buf1
extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (200, 200), (
1, 200), 0), out=buf4)
buf5 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf6 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(800)](buf4, primals_6, buf5,
buf6, 800, XBLOCK=256, num_warps=4, num_stages=1)
del buf4
del primals_6
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7,
(200, 1), (1, 200), 0), alpha=1, beta=1, out=buf8)
del primals_8
return buf8, buf0, buf2, buf3, buf5, buf6, primals_7, primals_5
class QValueFunctionNew(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(QValueFunctionNew, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, 1)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
himanshusahni/task-biased-url
|
QValueFunction
| false | 10,256 |
[
"MIT"
] | 0 |
28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
https://github.com/himanshusahni/task-biased-url/tree/28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
Gate
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwapf4spszv7xrakefo7xfxxiomqve2jhc3fgichvmsioyx2bqg.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# z => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %mul, %sub], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tmp21 = tl.full([1], 16, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/x4/cx4biuchnddvcnztblwsbxqa3jigqmx4dwtuiemykp7ce6bvxpvm.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (1, 16), (16, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 1), (1, 16), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
return (buf2, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Gate(nn.Module):
def __init__(self, input_dim):
super(Gate, self).__init__()
self.linear = nn.Linear(input_dim * 4, 1, bias=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x, y):
z = torch.cat([x, y, x * y, x - y], dim=2)
return self.sigmoid(self.linear(z))
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 - tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (1, 16), (16, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_3, (16, 1), (1, 16), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0)
del buf1
triton_poi_fused_sigmoid_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
return buf2, reinterpret_tensor(buf0, (16, 16), (16, 1), 0), buf2
class GateNew(nn.Module):
def __init__(self, input_dim):
super(GateNew, self).__init__()
self.linear = nn.Linear(input_dim * 4, 1, bias=True)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0, input_1):
primals_3 = self.linear.weight
primals_4 = self.linear.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
hgrhgy/NumSeq2SQL
|
Gate
| false | 10,257 |
[
"MIT"
] | 0 |
6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
https://github.com/hgrhgy/NumSeq2SQL/tree/6f22fdf108736f979afa2dbd3af14aa9ad4718aa
|
ChannelSpatialSELayer1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# squeeze_tensor => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/eb/cebpbupczy3a7z6yffgxybumq5trdt3jp5hxwuoo6w6cunzz7d7h.py
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# fc_out_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/of/cofp3y7hx4rouft2pepcjvbgcrlj6tozkfzrtktr6gvdantyfca2.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4s/c4sbsf2l5uzvgqh3tfrqr7jxgu5x74lqjmbfqtnzieuqqb2uzsfw.py
# Topologically Sorted Source Nodes: [mul, squeeze_tensor_1, mul_1, max_1], Original ATen: [aten.mul, aten.sigmoid, aten.maximum]
# Source node to ATen node mapping:
# max_1 => maximum
# mul => mul
# mul_1 => mul_1
# squeeze_tensor_1 => sigmoid_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid_1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_maximum_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_maximum_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 4)
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4, 1), (4, 1, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_3, 8, grid=grid(8), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf3)
del primals_5
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_1, primals_6, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf4, (4, 1, 4), (4, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, squeeze_tensor_1, mul_1, max_1], Original ATen: [aten.mul, aten.sigmoid, aten.maximum]
triton_poi_fused_maximum_mul_sigmoid_3.run(primals_1, buf3, buf5, buf6, 64, grid=grid(64), stream=stream0)
return (buf6, primals_1, primals_6, buf0, buf2, buf3, buf5, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelSELayer1d(nn.Module):
def __init__(self, num_channels, reduction_ratio=4):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer1d, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.activ_1 = nn.ReLU()
self.activ_2 = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, H)
:return: output tensor
"""
batch_size, num_channels, _H = input_tensor.size()
squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(
dim=2)
fc_out_1 = self.activ_1(self.fc1(squeeze_tensor))
fc_out_2 = self.activ_2(self.fc2(fc_out_1))
return input_tensor * fc_out_2.view(batch_size, num_channels, 1)
class SpatialSELayer1d(nn.Module):
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer1d, self).__init__()
self.conv = nn.Conv1d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, W)
:return: output_tensor
"""
batch_size, channel, a = input_tensor.size()
if weights is not None:
weights = torch.mean(weights, dim=0)
weights = weights.view(1, channel, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
return input_tensor * squeeze_tensor.view(batch_size, 1, a)
class ChannelSpatialSELayer1d(nn.Module):
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSpatialSELayer1d, self).__init__()
self.cSE = ChannelSELayer1d(num_channels, reduction_ratio)
self.sSE = SpatialSELayer1d(num_channels)
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, W)
:return: output_tensor
"""
return torch.max(self.cSE(input_tensor), self.sSE(input_tensor))
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 4
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4, 1), (4, 1, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 2), (1, 4
), 0), out=buf1)
del primals_2
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(8)](buf2, primals_3, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(2, 4), (1, 2), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = extern_kernels.convolution(primals_1, primals_6, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf4, (4, 1, 4), (4, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(16)](buf5, primals_7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_maximum_mul_sigmoid_3[grid(64)](primals_1, buf3,
buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf6, primals_1, primals_6, buf0, buf2, buf3, buf5, primals_4
class ChannelSELayer1d(nn.Module):
def __init__(self, num_channels, reduction_ratio=4):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer1d, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.activ_1 = nn.ReLU()
self.activ_2 = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, H)
:return: output tensor
"""
batch_size, num_channels, _H = input_tensor.size()
squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(
dim=2)
fc_out_1 = self.activ_1(self.fc1(squeeze_tensor))
fc_out_2 = self.activ_2(self.fc2(fc_out_1))
return input_tensor * fc_out_2.view(batch_size, num_channels, 1)
class SpatialSELayer1d(nn.Module):
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer1d, self).__init__()
self.conv = nn.Conv1d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, W)
:return: output_tensor
"""
batch_size, channel, a = input_tensor.size()
if weights is not None:
weights = torch.mean(weights, dim=0)
weights = weights.view(1, channel, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
return input_tensor * squeeze_tensor.view(batch_size, 1, a)
class ChannelSpatialSELayer1dNew(nn.Module):
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSpatialSELayer1dNew, self).__init__()
self.cSE = ChannelSELayer1d(num_channels, reduction_ratio)
self.sSE = SpatialSELayer1d(num_channels)
def forward(self, input_0):
primals_2 = self.cSE.fc1.weight
primals_3 = self.cSE.fc1.bias
primals_4 = self.cSE.fc2.weight
primals_5 = self.cSE.fc2.bias
primals_6 = self.sSE.conv.weight
primals_7 = self.sSE.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ioanvl/1d_squeeze_excitation
|
ChannelSpatialSELayer1d
| false | 10,258 |
[
"MIT"
] | 0 |
f422dc4b8e7de6239a6fb7d1688048db5053e733
|
https://github.com/ioanvl/1d_squeeze_excitation/tree/f422dc4b8e7de6239a6fb7d1688048db5053e733
|
GaussianPolicyFunction
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3m/c3mzp3ti73rkr2ycpo5n5vkpamkp63miruoys5loyr5qw563wde6.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zv/czv5s7vhnnk57wjpu7nfknqnqvxuibay5jnopwryaahzkyiwjune.py
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# softplus => exp, gt_2, log1p, where_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_7,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 20), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_7, %log1p), kwargs = {})
triton_poi_fused_softplus_2 = async_compile.triton('triton_poi_fused_softplus_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 200), (200, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 12800, grid=grid(12800), stream=stream0)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf7, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf8)
del primals_9
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
triton_poi_fused_softplus_2.run(buf8, buf9, 256, grid=grid(256), stream=stream0)
return (buf7, buf9, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), buf7, buf8, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class GaussianPolicyFunction(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(GaussianPolicyFunction, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.mu_out = nn.Linear(200, action_dim)
self.sigma_out = nn.Linear(200, action_dim)
def forward(self, x):
"""return: action between [-1,1]"""
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
return torch.tanh(self.mu_out(x)), F.softplus(self.sigma_out(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 200), (200, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(12800)](buf0, primals_2, buf1,
buf2, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
triton_poi_fused_leaky_relu_0[grid(12800)](buf3, primals_5, buf4,
buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_tanh_1[grid(256)](buf7, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_8, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf8)
del primals_9
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_softplus_2[grid(256)](buf8, buf9, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf7, buf9, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0
), buf7, buf8, primals_8, primals_6, primals_4
class GaussianPolicyFunctionNew(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(GaussianPolicyFunctionNew, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.mu_out = nn.Linear(200, action_dim)
self.sigma_out = nn.Linear(200, action_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.mu_out.weight
primals_7 = self.mu_out.bias
primals_8 = self.sigma_out.weight
primals_9 = self.sigma_out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
|
himanshusahni/task-biased-url
|
GaussianPolicyFunction
| false | 10,259 |
[
"MIT"
] | 0 |
28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
https://github.com/himanshusahni/task-biased-url/tree/28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
SkillDiscriminator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3m/c3mzp3ti73rkr2ycpo5n5vkpamkp63miruoys5loyr5qw563wde6.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bg/cbg32drchyezvbfwshguvyopixmzwi2llws7xkhvpdruis76tr2t.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oo/coo5rivaroinv27r7to5gs4jb7ce7itar6epfsastoa2ig6tj65k.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 12800, grid=grid(12800), stream=stream0)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf6)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), buf8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class SkillDiscriminator(nn.Module):
"""fully connected 200x200 layers for inferring q(z|s)"""
def __init__(self, state_dim, nb_skills):
super(SkillDiscriminator, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, nb_skills)
def forward(self, x):
"""return: scalar value"""
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
logits = self.out(x)
return logits, nn.LogSoftmax(dim=1)(logits)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'nb_skills': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(12800)](buf0, primals_2, buf1,
buf2, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
triton_poi_fused_leaky_relu_0[grid(12800)](buf3, primals_5, buf4,
buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf6)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](buf6, buf7, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del buf7
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0
), buf8, primals_6, primals_4
class SkillDiscriminatorNew(nn.Module):
"""fully connected 200x200 layers for inferring q(z|s)"""
def __init__(self, state_dim, nb_skills):
super(SkillDiscriminatorNew, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, nb_skills)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
himanshusahni/task-biased-url
|
SkillDiscriminator
| false | 10,260 |
[
"MIT"
] | 0 |
28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
https://github.com/himanshusahni/task-biased-url/tree/28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
OutConv
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/eb/cebivcwv62fevyvsdcdlinto77y4sx4nbcfpkpzffguhvem2ic7n.py
# Topologically Sorted Source Nodes: [conv2d, tanh], Original ATen: [aten.convolution, aten.tanh]
# Source node to ATen node mapping:
# conv2d => convolution
# tanh => tanh
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_tanh_0 = async_compile.triton('triton_poi_fused_convolution_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, tanh], Original ATen: [aten.convolution, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class OutConv(nn.Module):
def __init__(self, inChannels, outChannels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(inChannels, outChannels, kernel_size=1)
self.tanh = nn.Tanh()
def forward(self, input_):
return self.tanh(self.conv(input_))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inChannels': 4, 'outChannels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_tanh_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3, buf1
class OutConvNew(nn.Module):
def __init__(self, inChannels, outChannels):
super(OutConvNew, self).__init__()
self.conv = nn.Conv2d(inChannels, outChannels, kernel_size=1)
self.tanh = nn.Tanh()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
iabd/Dereverbify
|
OutConv
| false | 10,261 |
[
"MIT"
] | 0 |
e0c2e40c6813cf5528c3e0a1d697085444fb23b2
|
https://github.com/iabd/Dereverbify/tree/e0c2e40c6813cf5528c3e0a1d697085444fb23b2
|
DiscretePolicyFunction
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3m/c3mzp3ti73rkr2ycpo5n5vkpamkp63miruoys5loyr5qw563wde6.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/j4/cj4miacghwuwo6tmp3hylr7yjqyun32g4pisr65oc2dtlcxfwv2f.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uy/cuylqrd7ye33ogvvpsnxb3skali4boxth4tryw5hn4czjzyh4a34.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 12800, grid=grid(12800), stream=stream0)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf6)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0), buf8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class DiscretePolicyFunction(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(DiscretePolicyFunction, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, action_dim)
def forward(self, x):
"""return: action between [-1,1]"""
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
return F.softmax(self.out(x), 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(12800)](buf0, primals_2, buf1,
buf2, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
triton_poi_fused_leaky_relu_0[grid(12800)](buf3, primals_5, buf4,
buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf6)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf7
return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 200), (200, 1), 0
), buf8, primals_6, primals_4
class DiscretePolicyFunctionNew(nn.Module):
"""fully connected 200x200 hidden layers"""
def __init__(self, state_dim, action_dim):
super(DiscretePolicyFunctionNew, self).__init__()
self.fc1 = nn.Linear(state_dim, 200)
self.fc2 = nn.Linear(200, 200)
self.out = nn.Linear(200, action_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
himanshusahni/task-biased-url
|
DiscretePolicyFunction
| false | 10,263 |
[
"MIT"
] | 0 |
28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
https://github.com/himanshusahni/task-biased-url/tree/28e4ec318d46d84065b6e197fa9f4100bd4a4c34
|
AttentionPool2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ct/cctgbe64jgxq3sxjjjqccvq653sunfecfcizp3jcofnl7uiib7wo.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
# Source node to ATen node mapping:
# x_1 => cat
# x_2 => add
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %view], -1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %unsqueeze), kwargs = {})
triton_poi_fused_add_cat_1 = async_compile.triton('triton_poi_fused_add_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = (xindex // 17)
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 17, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr1 + ((16*x3) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + (x5), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rq/crqhbpxwwpvdowuqzuzvjdahxv45tx2y4dpxda2rurvr5kralgbn.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cr/ccrjqh2olqyevqox4t3kpoubo2s2m44cuvtxmf2k3slvdcgmmlcm.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6p/c6p34hneq7lp7a3tjiwk44lxqe2hzbpdjgbgmanamv35xvznwb2j.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (17*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (17*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wf/cwf36kt6t5p6sv4fjknukcyy4vz6ejfamnreogfggthvquklzkf6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 12
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oe/coet3g5rxo652nti4d4ogiwpej2mrpgh4cyidpv6aivegc4mda7s.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (68*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (17*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uk/cuk32wvqx6lzak6biu2zut26pzpqa3ell4xsxs3qv3cpuuon7kkw.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
triton_poi_fused_add_cat_1.run(buf0, primals_1, primals_2, buf1, 272, grid=grid(272), stream=stream0)
del buf0
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf2, primals_4, buf3, 272, grid=grid(272), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf2, primals_4, buf4, 272, grid=grid(272), stream=stream0)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17), 0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_4.run(buf5, buf8, 68, 17, grid=grid(68), stream=stream0)
del buf5
buf9 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf9, primals_4, 816, grid=grid(816), stream=stream0)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204, 1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf10, buf11, 16, 17, grid=grid(16, 17), stream=stream0)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf13, primals_6, 272, grid=grid(272), stream=stream0)
del primals_6
return (reinterpret_tensor(buf13, (4, 4), (68, 17), 0), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204, 17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 17), (17, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import numpy as np
import torch.nn as nn
import torch as th
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
x = x + self.positional_embedding[None, :, :]
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'spacial_dim': 4, 'embed_dim': 4, 'num_heads_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
import torch.nn as nn
import torch as th
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = xindex // 17
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 17, tl.int64)
tmp13 = tl.load(in_ptr1 + (16 * x3 + (-1 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + x5, tmp16, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 17 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 17 * x0), tmp11, rmask & xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 12
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 68 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 17 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_add_cat_1[grid(272)](buf0, primals_1, primals_2,
buf1, 272, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_1
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_2[grid(272)](buf2, primals_4, buf3, 272,
XBLOCK=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_3[grid(272)](buf2, primals_4, buf4, 272,
XBLOCK=256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17),
0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
triton_per_fused__softmax_4[grid(68)](buf5, buf8, 68, 17, XBLOCK=1,
num_warps=2, num_stages=1)
del buf5
buf9 = buf2
del buf2
triton_poi_fused_convolution_5[grid(816)](buf9, primals_4, 816,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204,
1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 17)](buf10, buf11, 16, 17,
XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12
del buf12
triton_poi_fused_convolution_7[grid(272)](buf13, primals_6, 272,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
return reinterpret_tensor(buf13, (4, 4), (68, 17), 0
), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4,
4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204,
17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0
)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2dNew(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, input_0):
primals_2 = self.positional_embedding
primals_3 = self.qkv_proj.weight
primals_4 = self.qkv_proj.bias
primals_5 = self.c_proj.weight
primals_6 = self.c_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
jasperhu13/deit
|
AttentionPool2d
| false | 10,265 |
[
"Apache-2.0"
] | 0 |
97b09b1c131a7ee8d01ee0ce27a936ff33cf62fc
|
https://github.com/jasperhu13/deit/tree/97b09b1c131a7ee8d01ee0ce27a936ff33cf62fc
|
PatchEmbed
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/jg/cjgafsignr6eltwpgfdtyyamm7z2oofx6jlesakdp45oail3wyp7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 4, 4], [1, 7, 7], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[67108864],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 51904512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16896) % 768
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (768, 3, 1, 16, 16), (768, 256, 256, 16, 1))
assert_size_stride(primals_2, (768, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 4, 4), padding=(1, 7, 7), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 768, 66, 16, 16), (12976128, 16896, 256, 16, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 51904512, grid=grid(51904512), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (4, 16896, 768), (12976128, 1, 16896), 0), primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((768, 3, 1, 16, 16), (768, 256, 256, 16, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class PatchEmbed(nn.Module):
"""
PatchEmbed.
"""
def __init__(self, dim_in=3, dim_out=768, kernel=(1, 16, 16), stride=(1,
4, 4), padding=(1, 7, 7), conv_2d=False):
super().__init__()
if conv_2d:
conv = nn.Conv2d
else:
conv = nn.Conv3d
self.proj = conv(dim_in, dim_out, kernel_size=kernel, stride=stride,
padding=padding)
def forward(self, x):
x = self.proj(x)
return x.flatten(2).transpose(1, 2)
def get_inputs():
return [torch.rand([4, 3, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16896 % 768
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (768, 3, 1, 16, 16), (768, 256, 256, 16, 1))
assert_size_stride(primals_2, (768,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096,
64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
4, 4), padding=(1, 7, 7), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 768, 66, 16, 16), (12976128, 16896,
256, 16, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(51904512)](buf1, primals_2,
51904512, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (4, 16896, 768), (12976128, 1, 16896), 0
), primals_1, primals_3
class PatchEmbedNew(nn.Module):
"""
PatchEmbed.
"""
def __init__(self, dim_in=3, dim_out=768, kernel=(1, 16, 16), stride=(1,
4, 4), padding=(1, 7, 7), conv_2d=False):
super().__init__()
if conv_2d:
conv = nn.Conv2d
else:
conv = nn.Conv3d
self.proj = conv(dim_in, dim_out, kernel_size=kernel, stride=stride,
padding=padding)
def forward(self, input_0):
primals_1 = self.proj.weight
primals_2 = self.proj.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jasperhu13/deit
|
PatchEmbed
| false | 10,266 |
[
"Apache-2.0"
] | 0 |
97b09b1c131a7ee8d01ee0ce27a936ff33cf62fc
|
https://github.com/jasperhu13/deit/tree/97b09b1c131a7ee8d01ee0ce27a936ff33cf62fc
|
SiglogModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/cu/ccuwsratos2vcijifnnadjntl37h2fz4na3ke67h5sya2t7pfkrg.py
# Topologically Sorted Source Nodes: [sign, abs_1, add, log, mul], Original ATen: [aten.sign, aten.abs, aten.add, aten.log, aten.mul]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# log => log
# mul => mul
# sign => sign
# Graph fragment:
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %log), kwargs = {})
triton_poi_fused_abs_add_log_mul_sign_0 = async_compile.triton('triton_poi_fused_abs_add_log_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_log_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_log_mul_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp1 < tmp0
tmp3 = tmp2.to(tl.int8)
tmp4 = tmp0 < tmp1
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp3 - tmp5
tmp7 = tmp6.to(tmp0.dtype)
tmp8 = tl_math.abs(tmp0)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp7 * tmp11
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sign, abs_1, add, log, mul], Original ATen: [aten.sign, aten.abs, aten.add, aten.log, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_log_mul_sign_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def siglog(v):
return v.sign() * torch.log(1 + v.abs())
class SiglogModule(nn.Module):
def forward(self, v):
return siglog(v)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_log_mul_sign_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp1 < tmp0
tmp3 = tmp2.to(tl.int8)
tmp4 = tmp0 < tmp1
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp3 - tmp5
tmp7 = tmp6.to(tmp0.dtype)
tmp8 = tl_math.abs(tmp0)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp7 * tmp11
tl.store(out_ptr0 + x0, tmp12, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_log_mul_sign_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def siglog(v):
return v.sign() * torch.log(1 + v.abs())
class SiglogModuleNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
finalgruntgit/diautils
|
SiglogModule
| false | 10,267 |
[
"MIT"
] | 0 |
b9d7666ed5023700db01a4295430c52721acfc25
|
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
|
MeanModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/vz/cvzdeyzbjmguyc7weo3g2iu6knqdlesduaneomlvq4mxjrspo75o.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, []), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class MeanModule(nn.Module):
def __init__(self, *axis, keepdim=False):
super().__init__()
self.axis = axis
self.keepdim = keepdim
def forward(self, v):
mean = v.mean(self.axis)
if self.keepdim:
dims = list(v.shape)
if isinstance(self.axis, list) or isinstance(self.axis, tuple):
for ax in self.axis:
dims[ax] = 1
else:
dims[self.axis] = 1
mean = mean.view(dims)
return mean
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
return buf1,
class MeanModuleNew(nn.Module):
def __init__(self, *axis, keepdim=False):
super().__init__()
self.axis = axis
self.keepdim = keepdim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
finalgruntgit/diautils
|
MeanModule
| false | 10,268 |
[
"MIT"
] | 0 |
b9d7666ed5023700db01a4295430c52721acfc25
|
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
|
Attention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/fh/cfhw6jsqnchbmvzjnufqyx6wlrnerowzjkbvgzlap66bd37waupt.py
# Topologically Sorted Source Nodes: [eij_1, eij_2, a, sum_1], Original ATen: [aten.add, aten.tanh, aten.exp, aten.sum]
# Source node to ATen node mapping:
# a => exp
# eij_1 => add
# eij_2 => tanh
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%tanh,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused_add_exp_sum_tanh_0 = async_compile.triton('triton_poi_fused_add_exp_sum_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_sum_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_sum_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3))
tmp22 = tl.broadcast_to(tmp21, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tmp5 = tl_math.exp(tmp4)
tmp9 = tmp6 + tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp5 + tmp11
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp12 + tmp18
tmp23 = tmp20 + tmp22
tmp24 = libdevice.tanh(tmp23)
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp19 + tmp25
tl.store(out_ptr0 + (x0), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ol/colig22fqpovbdb44bjwgie6kivqc5vjoux3acv7lfeqg4djbl3b.py
# Topologically Sorted Source Nodes: [weighted_input, sum_2], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# sum_2 => sum_2
# weighted_input => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
triton_poi_fused_mul_sum_1 = async_compile.triton('triton_poi_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 13, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp13 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (1))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp23 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp24 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + (2))
tmp26 = tl.broadcast_to(tmp25, [XBLOCK])
tmp34 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp35 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (3))
tmp37 = tl.broadcast_to(tmp36, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = 1e-10
tmp10 = tmp8 + tmp9
tmp11 = tmp0 * tmp10
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp18 / tmp7
tmp20 = tmp19 + tmp9
tmp21 = tmp12 * tmp20
tmp22 = tmp11 + tmp21
tmp27 = tmp24 + tmp26
tmp28 = libdevice.tanh(tmp27)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp29 / tmp7
tmp31 = tmp30 + tmp9
tmp32 = tmp23 * tmp31
tmp33 = tmp22 + tmp32
tmp38 = tmp35 + tmp37
tmp39 = libdevice.tanh(tmp38)
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp40 / tmp7
tmp42 = tmp41 + tmp9
tmp43 = tmp34 * tmp42
tmp44 = tmp33 + tmp43
tl.store(out_ptr0 + (x2), tmp44, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
# Topologically Sorted Source Nodes: [eij_1, eij_2, a, sum_1], Original ATen: [aten.add, aten.tanh, aten.exp, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_sum_tanh_0.run(buf0, primals_3, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weighted_input, sum_2], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_1.run(primals_1, buf0, primals_3, buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
return (buf2, primals_1, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class Attention(nn.Module):
def __init__(self, feature_dim, K, bias=True, **kwargs):
super(Attention, self).__init__(**kwargs)
self.supports_masking = True
self.bias = bias
self.feature_dim = feature_dim
self.K = K
weight = torch.zeros(feature_dim, 1)
nn.init.xavier_uniform_(weight)
self.weight = nn.Parameter(weight)
if bias:
self.b = nn.Parameter(torch.zeros(K))
def forward(self, x):
B, N, K, feature_dim = x.shape
eij = torch.mm(x.contiguous().view(-1, feature_dim), self.weight).view(
-1, K)
if self.bias:
eij = eij + self.b
eij = torch.tanh(eij)
a = torch.exp(eij)
a = a / torch.sum(a, 1, keepdim=True) + 1e-10
weighted_input = x * a.view(B, N, K, 1)
return torch.sum(weighted_input, 2)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'feature_dim': 4, 'K': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_exp_sum_tanh_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + 1)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + 2)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + 3)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tmp5 = tl_math.exp(tmp4)
tmp9 = tmp6 + tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp5 + tmp11
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp12 + tmp18
tmp23 = tmp20 + tmp22
tmp24 = libdevice.tanh(tmp23)
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp19 + tmp25
tl.store(out_ptr0 + x0, tmp26, xmask)
@triton.jit
def triton_poi_fused_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp7 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp13 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr2 + 1)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp23 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp24 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr2 + 2)
tmp26 = tl.broadcast_to(tmp25, [XBLOCK])
tmp34 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp35 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp36 = tl.load(in_ptr2 + 3)
tmp37 = tl.broadcast_to(tmp36, [XBLOCK])
tmp4 = tmp1 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = 1e-10
tmp10 = tmp8 + tmp9
tmp11 = tmp0 * tmp10
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp18 / tmp7
tmp20 = tmp19 + tmp9
tmp21 = tmp12 * tmp20
tmp22 = tmp11 + tmp21
tmp27 = tmp24 + tmp26
tmp28 = libdevice.tanh(tmp27)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp29 / tmp7
tmp31 = tmp30 + tmp9
tmp32 = tmp23 * tmp31
tmp33 = tmp22 + tmp32
tmp38 = tmp35 + tmp37
tmp39 = libdevice.tanh(tmp38)
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp40 / tmp7
tmp42 = tmp41 + tmp9
tmp43 = tmp34 * tmp42
tmp44 = tmp33 + tmp43
tl.store(out_ptr0 + x2, tmp44, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_sum_tanh_0[grid(16)](buf0, primals_3, buf1,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_sum_1[grid(64)](primals_1, buf0, primals_3,
buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf1
return buf2, primals_1, primals_3, buf0
class AttentionNew(nn.Module):
def __init__(self, feature_dim, K, bias=True, **kwargs):
super(AttentionNew, self).__init__(**kwargs)
self.supports_masking = True
self.bias = bias
self.feature_dim = feature_dim
self.K = K
weight = torch.zeros(feature_dim, 1)
nn.init.xavier_uniform_(weight)
self.weight = nn.Parameter(weight)
if bias:
self.b = nn.Parameter(torch.zeros(K))
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.b
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
heyitsmine/FewRel
|
Attention
| false | 10,269 |
[
"MIT"
] | 0 |
2a2b8ae471298d9eb3557796a085c23b21982fb2
|
https://github.com/heyitsmine/FewRel/tree/2a2b8ae471298d9eb3557796a085c23b21982fb2
|
SumModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/nc/cnc3hun37uugdoohqi3fxky2dy24evetrjus72n5qbjgvwiqu2cc.py
# Topologically Sorted Source Nodes: [sum_2], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_2 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, []), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [sum_2], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SumModule(nn.Module):
def __init__(self, *axis, keepdim=False):
super().__init__()
self.axis = axis
self.keepdim = keepdim
def forward(self, v):
sum = v.sum(self.axis)
if self.keepdim:
dims = list(v.shape)
if isinstance(self.axis, list) or isinstance(self.axis, tuple):
for ax in self.axis:
dims[ax] = 1
else:
dims[self.axis] = 1
sum = sum.view(dims)
return sum
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
return buf0,
class SumModuleNew(nn.Module):
def __init__(self, *axis, keepdim=False):
super().__init__()
self.axis = axis
self.keepdim = keepdim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
finalgruntgit/diautils
|
SumModule
| false | 10,271 |
[
"MIT"
] | 0 |
b9d7666ed5023700db01a4295430c52721acfc25
|
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
|
MultiheadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py
# Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# q_1 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ko/ckow7ci7f3mygm6ujdzdisip6tet25h4hj6uestesqalhkarwrrw.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qa/cqazar4hg4rdjbxm7zr5mix2w3dkhfmvvjksn7c6lktr5yfe6ndy.py
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_3 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/c2/cc2wsialcqiknwetscnqy3fzaqmmib3cxfb7tsfjx7hdlsxbdq7s.py
# Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# attn_weights_4 => div_1
# sum_1 => sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_12, [1]), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {})
triton_poi_fused_div_sum_3 = async_compile.triton('triton_poi_fused_div_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (256*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0 + (256*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0 + (256*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4)
buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0)
del buf4
buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1, 16, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf8, buf9, 4, 16, grid=grid(4, 16), stream=stream0)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del primals_7
buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_3.run(buf7, buf11, 256, grid=grid(256), stream=stream0)
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True,
add_bias_kv=False, add_zero_attn=False):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.attn_dropout = attn_dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
self.register_parameter('in_proj_bias', None)
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.0)
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(self, query, key, value, attn_mask=None):
"""Input shape: Time x Batch x Channel
Self-attention can be implemented by passing in the same arguments for
query, key and value. Timesteps can be masked by supplying a T x T mask in the
`attn_mask` argument. Padding elements can be excluded from
the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
batch x src_len, where padding elements are indicated by 1s.
"""
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
kv_same = key.data_ptr() == value.data_ptr()
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
if qkv_same:
q, k, v = self.in_proj_qkv(query)
elif kv_same:
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k, v = self.in_proj_kv(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q = q * self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
src_len = k.size(1)
if self.add_zero_attn:
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])],
dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])],
dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(
attn_mask.size(0), 1)], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len,
src_len]
if attn_mask is not None:
try:
attn_weights += attn_mask.unsqueeze(0)
except:
None
None
assert False
attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as(
attn_weights)
attn_weights = F.dropout(attn_weights, p=self.attn_dropout,
training=self.training)
attn = torch.bmm(attn_weights, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.
head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.sum(dim=1) / self.num_heads
return attn, attn_weights
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query, **kwargs):
return self._in_proj(query, end=self.embed_dim, **kwargs)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=0, end=None, **kwargs):
weight = kwargs.get('weight', self.in_proj_weight)
bias = kwargs.get('bias', self.in_proj_bias)
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4,
4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 256 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0 + 256 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0 + 256 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4),
reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1,
beta=1, out=buf1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8),
reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1,
beta=1, out=buf2)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0),
0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4)
buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32)
triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del buf4
buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1,
16, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32)
triton_poi_fused_clone_2[grid(4, 16)](buf8, buf9, 4, 16, XBLOCK=16,
YBLOCK=4, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0)
del buf8
extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf10)
del primals_7
buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_div_sum_3[grid(256)](buf7, buf11, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0
), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0
), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0
), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0)
class MultiheadAttentionNew(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True,
add_bias_kv=False, add_zero_attn=False):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.attn_dropout = attn_dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim))
self.register_parameter('in_proj_bias', None)
if bias:
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim))
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.0)
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query, **kwargs):
return self._in_proj(query, end=self.embed_dim, **kwargs)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=0, end=None, **kwargs):
weight = kwargs.get('weight', self.in_proj_weight)
bias = kwargs.get('bias', self.in_proj_bias)
weight = weight[start:end, :]
if bias is not None:
bias = bias[start:end]
return F.linear(input, weight, bias)
def forward(self, input_0, input_1, input_2):
primals_4 = self.in_proj_weight
primals_5 = self.in_proj_bias
primals_6 = self.out_proj.weight
primals_7 = self.out_proj.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
jiahuanluo/multi_media
|
MultiheadAttention
| false | 10,272 |
[
"MIT"
] | 0 |
ac5ac59dba87d0368ca656e600a85bfd9a1da28e
|
https://github.com/jiahuanluo/multi_media/tree/ac5ac59dba87d0368ca656e600a85bfd9a1da28e
|
SigsqrtModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/lf/clfueab2e77m52etqfe74c7c44ba6a2mrfnont2bg7bym7k5b67o.py
# Topologically Sorted Source Nodes: [abs_1, add, sqrt, truediv], Original ATen: [aten.abs, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# sqrt => sqrt
# truediv => div
# Graph fragment:
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {})
triton_poi_fused_abs_add_div_sqrt_0 = async_compile.triton('triton_poi_fused_abs_add_div_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.abs(tmp0)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = libdevice.sqrt(tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [abs_1, add, sqrt, truediv], Original ATen: [aten.abs, aten.add, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_div_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def sigsqrt(v):
return v / torch.sqrt(1 + v.abs())
class SigsqrtModule(nn.Module):
def forward(self, v):
return sigsqrt(v)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_div_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.abs(tmp0)
tmp2 = 1.0
tmp3 = tmp1 + tmp2
tmp4 = libdevice.sqrt(tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_div_sqrt_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def sigsqrt(v):
return v / torch.sqrt(1 + v.abs())
class SigsqrtModuleNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
finalgruntgit/diautils
|
SigsqrtModule
| false | 10,273 |
[
"MIT"
] | 0 |
b9d7666ed5023700db01a4295430c52721acfc25
|
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
|
LearnedPositionalEncoding
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/qz/cqzfcogql2l446of55recclsw5glrq4luh7x4vkalb7ftzt4wgs4.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 26214400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1638400
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 3200, 512), (1638400, 512, 1))
assert_size_stride(primals_2, (4, 4, 3200, 512), (6553600, 1638400, 512, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3200, 512), (6553600, 1638400, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 26214400, grid=grid(26214400), stream=stream0)
del primals_1
del primals_2
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 3200, 512), (1638400, 512, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3200, 512), (6553600, 1638400, 512, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.optim
class LearnedPositionalEncoding(nn.Module):
def __init__(self, max_position_embeddings, embedding_dim, seq_length):
super(LearnedPositionalEncoding, self).__init__()
self.position_embeddings = nn.Parameter(torch.zeros(1, 3200, 512))
def forward(self, x, position_ids=None):
position_embeddings = self.position_embeddings
return x + position_embeddings
def get_inputs():
return [torch.rand([4, 4, 3200, 512])]
def get_init_inputs():
return [[], {'max_position_embeddings': 4, 'embedding_dim': 4,
'seq_length': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1638400
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 3200, 512), (1638400, 512, 1))
assert_size_stride(primals_2, (4, 4, 3200, 512), (6553600, 1638400, 512, 1)
)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3200, 512), (6553600, 1638400, 512,
1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(26214400)](primals_2, primals_1, buf0,
26214400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0,
class LearnedPositionalEncodingNew(nn.Module):
def __init__(self, max_position_embeddings, embedding_dim, seq_length):
super(LearnedPositionalEncodingNew, self).__init__()
self.position_embeddings = nn.Parameter(torch.zeros(1, 3200, 512))
def forward(self, input_0):
primals_1 = self.position_embeddings
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
felixquinton1/TransBTS
|
LearnedPositionalEncoding
| false | 10,274 |
[
"Apache-2.0"
] | 0 |
6992c902413ba15f40ebfe9f6d5d0e3594051033
|
https://github.com/felixquinton1/TransBTS/tree/6992c902413ba15f40ebfe9f6d5d0e3594051033
|
VAELoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/bc/cbcs63wgigb7unamo6vgnlmottfh4tj3mtxc7uxebftbd6mlereg.py
# Topologically Sorted Source Nodes: [BCE, add, pow_1, sub, exp, sub_1, sum_1, KLD, add_1], Original ATen: [aten.binary_cross_entropy, aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
# Source node to ATen node mapping:
# BCE => full_default, full_default_1, log, log1p, maximum, maximum_1, mul, mul_1, neg, sub, sub_1, sum_1
# KLD => mul_2
# add => add
# add_1 => add_1
# exp => exp
# pow_1 => pow_1
# sub => sub_2
# sub_1 => sub_3
# sum_1 => sum_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %maximum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg2_1, 1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg3_1, 2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg2_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %exp), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, -0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %mul_2), kwargs = {})
triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp16 = tl.load(in_ptr2 + (r0), None)
tmp18 = tl.load(in_ptr3 + (r0), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp17 = tmp16 + tmp1
tmp19 = tmp18 * tmp18
tmp20 = tmp17 - tmp19
tmp21 = tl_math.exp(tmp16)
tmp22 = tmp20 - tmp21
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = -0.5
tmp27 = tmp25 * tmp26
tmp28 = tmp15 + tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [BCE, add, pow_1, sub, exp, sub_1, sum_1, KLD, add_1], Original ATen: [aten.binary_cross_entropy, aten.add, aten.pow, aten.sub, aten.exp, aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class VAELoss(nn.Module):
def __init__(self):
super(VAELoss, self).__init__()
self.bce = nn.BCELoss(reduction='sum')
def forward(self, recon_x, x, mu, logvar):
BCE = self.bce(recon_x, x)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0(in_out_ptr0
, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp16 = tl.load(in_ptr2 + r0, None)
tmp18 = tl.load(in_ptr3 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp17 = tmp16 + tmp1
tmp19 = tmp18 * tmp18
tmp20 = tmp17 - tmp19
tmp21 = tl_math.exp(tmp16)
tmp22 = tmp20 - tmp21
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = -0.5
tmp27 = tmp25 * tmp26
tmp28 = tmp15 + tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp28, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_exp_mul_pow_sub_sum_0[grid(1)
](buf2, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf2,
class VAELossNew(nn.Module):
def __init__(self):
super(VAELossNew, self).__init__()
self.bce = nn.BCELoss(reduction='sum')
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
jlrussin/RL_project
|
VAELoss
| false | 10,275 |
[
"Apache-2.0"
] | 0 |
a8562b4797afdf5944dba768a88d779056e8506a
|
https://github.com/jlrussin/RL_project/tree/a8562b4797afdf5944dba768a88d779056e8506a
|
SoftmaxModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ef/cef5jl2dffibrzdgvry2syqh3nv4y45hqkgzbp7rs7to3eijjxsa.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wx/cwx2kruo4gzyioj66hb76yw4vgc4lxjk7wwvv5hwx3fp7vkj4o6n.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SoftmaxModule(nn.Module):
def __init__(self, axis):
super().__init__()
self.axis = axis
def forward(self, v):
return v.softmax(self.axis)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'axis': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__softmax_1[grid(1024)](buf0, buf1, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del buf0
return buf1,
class SoftmaxModuleNew(nn.Module):
def __init__(self, axis):
super().__init__()
self.axis = axis
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
finalgruntgit/diautils
|
SoftmaxModule
| false | 10,276 |
[
"MIT"
] | 0 |
b9d7666ed5023700db01a4295430c52721acfc25
|
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
|
MultipleRegression
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/oz/cozyt2mpwzdnrqu4l42bzvdjle53cvm5zgsariudbe3lan5me2eg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rn/crnt33v5hoi57vamo5b42adk3tmkgywnvg2dcq3srwnjgthrnszr.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_1 => sigmoid_1
# Graph fragment:
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 64), (64, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 128), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class MultipleRegression(nn.Module):
def __init__(self, num_features):
super(MultipleRegression, self).__init__()
self.fc1 = nn.Linear(num_features, 64)
self.fc2 = nn.Linear(64, 128)
self.output = nn.Linear(128, 1)
self.act = nn.Sigmoid()
def forward(self, inputs):
x = self.act(self.fc1(inputs))
x = self.act(self.fc2(x))
x = self.output(x)
return x
def predict(self, test_inputs):
x = self.act(self.fc1(test_inputs))
x = self.act(self.fc2(x))
x = self.output(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 64), (64, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(4096)](buf1, primals_2, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 128), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
triton_poi_fused_sigmoid_1[grid(8192)](buf3, primals_5, 8192,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128),
0), alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class MultipleRegressionNew(nn.Module):
def __init__(self, num_features):
super(MultipleRegressionNew, self).__init__()
self.fc1 = nn.Linear(num_features, 64)
self.fc2 = nn.Linear(64, 128)
self.output = nn.Linear(128, 1)
self.act = nn.Sigmoid()
def predict(self, test_inputs):
x = self.act(self.fc1(test_inputs))
x = self.act(self.fc2(x))
x = self.output(x)
return x
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.output.weight
primals_7 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jiruifu-jerry0219/UpperLimbEstimator
|
MultipleRegression
| false | 10,277 |
[
"Apache-2.0"
] | 0 |
d62deef93419934dcb33e43707dd0634a235fb9a
|
https://github.com/jiruifu-jerry0219/UpperLimbEstimator/tree/d62deef93419934dcb33e43707dd0634a235fb9a
|
SegmentationNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out_5 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out_5 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf8, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class SegmentationNet(nn.Module):
def __init__(self, feature, hidden1, hidden2, output):
""" Initialize a class NeuralNet.
:param batch_size: int
:param hidden: int
"""
super(SegmentationNet, self).__init__()
self.layer1 = nn.Linear(feature, hidden1)
self.layer2 = nn.Linear(hidden1, hidden2)
self.layer3 = nn.Linear(hidden2, output)
def get_weight_norm(self):
""" Return ||W||
:return: float
"""
layer_1_w_norm = torch.norm(self.layer1.weight, 2)
layer_2_w_norm = torch.norm(self.layer2.weight, 2)
layer_3_w_norm = torch.norm(self.layer3.weight, 2)
return layer_1_w_norm + layer_2_w_norm + layer_3_w_norm
def forward(self, inputs):
""" Return a forward pass given inputs.
:param inputs: user vector.
:return: user vector.
"""
out = inputs
out = self.layer1(out)
out = F.relu(out)
out = self.layer2(out)
out = F.relu(out)
out = self.layer3(out)
out = F.softmax(out, dim=1)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'feature': 4, 'hidden1': 4, 'hidden2': 4, 'output': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_3, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class SegmentationNetNew(nn.Module):
def __init__(self, feature, hidden1, hidden2, output):
""" Initialize a class NeuralNet.
:param batch_size: int
:param hidden: int
"""
super(SegmentationNetNew, self).__init__()
self.layer1 = nn.Linear(feature, hidden1)
self.layer2 = nn.Linear(hidden1, hidden2)
self.layer3 = nn.Linear(hidden2, output)
def get_weight_norm(self):
""" Return ||W||
:return: float
"""
layer_1_w_norm = torch.norm(self.layer1.weight, 2)
layer_2_w_norm = torch.norm(self.layer2.weight, 2)
layer_3_w_norm = torch.norm(self.layer3.weight, 2)
return layer_1_w_norm + layer_2_w_norm + layer_3_w_norm
def forward(self, input_0):
primals_2 = self.layer1.weight
primals_3 = self.layer1.bias
primals_4 = self.layer2.weight
primals_5 = self.layer2.bias
primals_6 = self.layer3.weight
primals_7 = self.layer3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
jinyu-hou/medium-blog-scripts
|
SegmentationNet
| false | 10,278 |
[
"MIT"
] | 0 |
a645d544a4bd1c937e4ff99dca0d6e98b3abb7f9
|
https://github.com/jinyu-hou/medium-blog-scripts/tree/a645d544a4bd1c937e4ff99dca0d6e98b3abb7f9
|
LinearWithChannel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/cm/ccmcgo4hhocf76otuns232vkfdobmiyhbrbzce7zxp7kc5eree6u.py
# Topologically Sorted Source Nodes: [observations], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# observations => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qt/cqty7ixgnj6ymsefadavis3iwxnitomsuz2twh2sgj6lfymhccbj.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.add]
# Source node to ATen node mapping:
# output => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %primals_3), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [observations], Original ATen: [aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_repeat_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [observations, bmm], Original ATen: [aten.repeat, aten.bmm]
extern_kernels.bmm(buf0, primals_2, out=buf1)
del primals_2
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
class LinearWithChannel(nn.Module):
def __init__(self, input_size, output_size, channel_size):
super(LinearWithChannel, self).__init__()
self.channel_size = channel_size
self.weight = torch.nn.Parameter(torch.zeros(channel_size,
input_size, output_size))
self.bias = torch.nn.Parameter(torch.zeros(channel_size, 1,
output_size))
self.reset_parameters(self.weight, self.bias)
def reset_parameters(self, weights, bias):
torch.nn.init.kaiming_uniform_(weights, a=np.sqrt(3))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(weights)
bound = 1 / np.sqrt(fan_in)
torch.nn.init.uniform_(bias, -bound, bound)
def forward(self, observations):
"""
observations = torch.tensor(batch_size, input_size)
weight = torch.tensor(channel_size, input_size, output_size)
bias = torch.tensor(channel_size, 1, output_size)
:param observations:
:return: torch.tensor(channel_size, batch_size, output_size)
"""
observations = observations.repeat(self.channel_size, 1, 1)
output = torch.bmm(observations, self.weight) + self.bias
return output
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'channel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 1, 4), (4, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_repeat_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, primals_2, out=buf1)
del primals_2
buf2 = buf1
del buf1
triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
return buf2, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0)
class LinearWithChannelNew(nn.Module):
def __init__(self, input_size, output_size, channel_size):
super(LinearWithChannelNew, self).__init__()
self.channel_size = channel_size
self.weight = torch.nn.Parameter(torch.zeros(channel_size,
input_size, output_size))
self.bias = torch.nn.Parameter(torch.zeros(channel_size, 1,
output_size))
self.reset_parameters(self.weight, self.bias)
def reset_parameters(self, weights, bias):
torch.nn.init.kaiming_uniform_(weights, a=np.sqrt(3))
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(weights)
bound = 1 / np.sqrt(fan_in)
torch.nn.init.uniform_(bias, -bound, bound)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jilanglois-su/cobs10-dengai
|
LinearWithChannel
| false | 10,279 |
[
"MIT"
] | 0 |
101d3434db6330e9794b2e266b02c93793abfb82
|
https://github.com/jilanglois-su/cobs10-dengai/tree/101d3434db6330e9794b2e266b02c93793abfb82
|
MultiHeadedAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/3u/c3ui6pflkqqmwiicu3k3k6nxfn3zxrzgar4nyb7sxfkreg6ab7we.py
# Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_weights => div, exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 0.5
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp10 / tmp14
tl.store(out_ptr2 + (r1 + (16*x0)), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), out=buf1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), out=buf2)
del primals_2
buf3 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 16), (64, 1, 4), 0), out=buf3)
buf6 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(buf3, buf6, 64, 16, grid=grid(64), stream=stream0)
del buf3
buf7 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attended], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf8)
return (reinterpret_tensor(buf8, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf6, reinterpret_tensor(buf7, (64, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf0, (4, 4, 16), (64, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 16), (64, 1, 4), 0), reinterpret_tensor(buf1, (4, 16, 4), (64, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
def same_tensor(tensor, *args):
""" Do the input tensors all point to the same underlying data """
for other in args:
if not torch.is_tensor(other):
return False
if tensor.device != other.device:
return False
if tensor.dtype != other.dtype:
return False
if tensor.data_ptr() != other.data_ptr():
return False
return True
class MultiHeadedAttention(nn.Module):
""" Implement a multi-headed attention module """
def __init__(self, embed_dim, num_heads=1):
""" Initialize the attention module """
super(MultiHeadedAttention, self).__init__()
assert embed_dim % num_heads == 0, f'num_heads={num_heads} should evenly divide embed_dim={embed_dim}'
self.embed_dim = embed_dim
self.num_heads = num_heads
self.projection_dim = embed_dim // num_heads
self.scale = self.projection_dim ** -0.5
self.input_weights = nn.Parameter(torch.Tensor(3 * embed_dim,
embed_dim))
self.output_projection = nn.Linear(embed_dim, embed_dim, bias=False)
self.reset_parameters()
def reset_parameters(self):
""" Reset parameters using xavier initialization """
gain = nn.init.calculate_gain('linear')
nn.init.xavier_uniform_(self.input_weights, gain)
nn.init.xavier_uniform_(self.output_projection.weight, gain)
def project(self, inputs, index=0, chunks=1):
""" Produce a linear projection using the weights """
batch_size = inputs.shape[0]
start = index * self.embed_dim
end = start + chunks * self.embed_dim
projections = F.linear(inputs, self.input_weights[start:end]).chunk(
chunks, dim=-1)
output_projections = []
for projection in projections:
output_projections.append(projection.view(batch_size, -1, self.
num_heads, self.projection_dim).transpose(2, 1).contiguous(
).view(batch_size * self.num_heads, -1, self.projection_dim))
return output_projections
def attention(self, values, keys, queries, key_mask=None, mask=None):
""" Scaled dot product attention with optional masks """
logits = self.scale * torch.bmm(queries, keys.transpose(2, 1))
if mask is not None:
logits += mask
if key_mask is not None:
logits_shape = logits.shape
batch_size = logits_shape[0] // self.num_heads
logits = logits.view(batch_size, self.num_heads, logits_shape[1
], logits_shape[2])
logits.masked_fill_(key_mask[:, None, None], float('-inf'))
logits = logits.view(logits_shape)
attn_weights = F.softmax(logits, dim=-1)
attended = torch.bmm(attn_weights, values)
batch_size = queries.shape[0] // self.num_heads
return attended.view(batch_size, self.num_heads, -1, self.
projection_dim).transpose(2, 1).contiguous().view(batch_size, -
1, self.num_heads * self.projection_dim)
def forward(self, values, keys, queries, key_mask=None, attention_mask=
None, num_queries=0):
""" Forward pass of the attention """
None
None
None
if same_tensor(values, keys, queries):
values, keys, queries = self.project(values, chunks=3)
elif same_tensor(values, keys):
values, keys = self.project(values, chunks=2)
queries, = self.project(queries, 2)
else:
values, = self.project(values, 0)
keys, = self.project(keys, 1)
queries, = self.project(queries, 2)
if num_queries:
queries = queries[:, -num_queries:]
attended = self.attention(values, keys, queries, key_mask,
attention_mask)
return self.output_projection(attended)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 0.5
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp10 / tmp14
tl.store(out_ptr2 + (r1 + 16 * x0), tmp15, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), out=buf1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), out=buf2)
del primals_2
buf3 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 16, 4), (64, 4, 1),
0), reinterpret_tensor(buf1, (4, 4, 16), (64, 1, 4), 0), out=buf3)
buf6 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(64)](buf3, buf6, 64, 16, XBLOCK=32,
num_warps=4, num_stages=1)
del buf3
buf7 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf0, (4, 16, 4), (64,
4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf8)
return reinterpret_tensor(buf8, (4, 16, 4), (64, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), buf6, reinterpret_tensor(buf7, (64, 4), (4, 1), 0
), primals_5, reinterpret_tensor(buf0, (4, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(buf2, (4, 4, 16), (64, 1, 4), 0
), reinterpret_tensor(buf1, (4, 16, 4), (64, 4, 1), 0)
def same_tensor(tensor, *args):
""" Do the input tensors all point to the same underlying data """
for other in args:
if not torch.is_tensor(other):
return False
if tensor.device != other.device:
return False
if tensor.dtype != other.dtype:
return False
if tensor.data_ptr() != other.data_ptr():
return False
return True
class MultiHeadedAttentionNew(nn.Module):
""" Implement a multi-headed attention module """
def __init__(self, embed_dim, num_heads=1):
""" Initialize the attention module """
super(MultiHeadedAttentionNew, self).__init__()
assert embed_dim % num_heads == 0, f'num_heads={num_heads} should evenly divide embed_dim={embed_dim}'
self.embed_dim = embed_dim
self.num_heads = num_heads
self.projection_dim = embed_dim // num_heads
self.scale = self.projection_dim ** -0.5
self.input_weights = nn.Parameter(torch.Tensor(3 * embed_dim,
embed_dim))
self.output_projection = nn.Linear(embed_dim, embed_dim, bias=False)
self.reset_parameters()
def reset_parameters(self):
""" Reset parameters using xavier initialization """
gain = nn.init.calculate_gain('linear')
nn.init.xavier_uniform_(self.input_weights, gain)
nn.init.xavier_uniform_(self.output_projection.weight, gain)
def project(self, inputs, index=0, chunks=1):
""" Produce a linear projection using the weights """
batch_size = inputs.shape[0]
start = index * self.embed_dim
end = start + chunks * self.embed_dim
projections = F.linear(inputs, self.input_weights[start:end]).chunk(
chunks, dim=-1)
output_projections = []
for projection in projections:
output_projections.append(projection.view(batch_size, -1, self.
num_heads, self.projection_dim).transpose(2, 1).contiguous(
).view(batch_size * self.num_heads, -1, self.projection_dim))
return output_projections
def attention(self, values, keys, queries, key_mask=None, mask=None):
""" Scaled dot product attention with optional masks """
logits = self.scale * torch.bmm(queries, keys.transpose(2, 1))
if mask is not None:
logits += mask
if key_mask is not None:
logits_shape = logits.shape
batch_size = logits_shape[0] // self.num_heads
logits = logits.view(batch_size, self.num_heads, logits_shape[1
], logits_shape[2])
logits.masked_fill_(key_mask[:, None, None], float('-inf'))
logits = logits.view(logits_shape)
attn_weights = F.softmax(logits, dim=-1)
attended = torch.bmm(attn_weights, values)
batch_size = queries.shape[0] // self.num_heads
return attended.view(batch_size, self.num_heads, -1, self.
projection_dim).transpose(2, 1).contiguous().view(batch_size, -
1, self.num_heads * self.projection_dim)
def forward(self, input_0, input_1, input_2):
primals_2 = self.input_weights
primals_5 = self.output_projection.weight
primals_1 = input_0
primals_3 = input_1
primals_4 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jinga-lala/stupidNMT
|
MultiHeadedAttention
| false | 10,280 |
[
"BSD-3-Clause"
] | 0 |
2a41c072c2bc622c7edd8556f552f38556d70dae
|
https://github.com/jinga-lala/stupidNMT/tree/2a41c072c2bc622c7edd8556f552f38556d70dae
|
MLP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/v7/cv7humnywkkqhrumbeetegqlkretdwtkj5pcanrbgxrolupvobzt.py
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, h], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# h => mul_3
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pow_1 => pow_1
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.044715), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608028654), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_2,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_pow_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_pow_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp3 * tmp0
tmp5 = 0.044715
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608028654
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), primals_3, alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, add, mul_2, tanh, add_1, h], Original ATen: [aten.mul, aten.pow, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_tanh_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_5, alpha=1, beta=1, out=buf2)
del primals_4
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf0, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
from torch.nn.parameter import Parameter
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 *
torch.pow(x, 3))))
class Conv1D(nn.Module):
def __init__(self, nf, nx):
super(Conv1D, self).__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class MLP(nn.Module):
def __init__(self, n_state, config):
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = gelu
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return h2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_state': 4, 'config': _mock_config(n_embd=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_pow_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp3 * tmp0
tmp5 = 0.044715
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608028654
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), primals_3, alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_tanh_0[grid(256)](buf0, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), primals_5, alpha=1, beta=1, out=buf2)
del primals_4
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf0, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor(
primals_1, (4, 64), (1, 4), 0)
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 *
torch.pow(x, 3))))
class Conv1D(nn.Module):
def __init__(self, nf, nx):
super(Conv1D, self).__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class MLPNew(nn.Module):
def __init__(self, n_state, config):
super(MLPNew, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = gelu
def forward(self, input_0):
primals_3 = self.c_fc.weight
primals_2 = self.c_fc.bias
primals_5 = self.c_proj.weight
primals_4 = self.c_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jamessheenworks/GPT2sQA
|
MLP
| false | 10,281 |
[
"Apache-2.0"
] | 0 |
14866cb21d229281e8f8b8f88aac9195bca45cd7
|
https://github.com/jamessheenworks/GPT2sQA/tree/14866cb21d229281e8f8b8f88aac9195bca45cd7
|
Classify
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [(x // 2) for x in k]
return p
class Flatten(nn.Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class Classify(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
super(Classify, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False
)
self.flat = Flatten()
def forward(self, x):
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else
[x])], 1)
return self.flat(self.conv(z))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c1': 4, 'c2': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
return reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_2, buf1
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [(x // 2) for x in k]
return p
class Flatten(nn.Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class ClassifyNew(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
super(ClassifyNew, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False
)
self.flat = Flatten()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
hyperparameters/Towards-Realtime-MOT
|
Classify
| false | 10,282 |
[
"MIT"
] | 0 |
eb956a3bd5991f4895178566cb0173769977f88d
|
https://github.com/hyperparameters/Towards-Realtime-MOT/tree/eb956a3bd5991f4895178566cb0173769977f88d
|
NeuralNerwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/n7/cn7nh46rtd7kizmv3lp3mx2h5n7mmglzjvvwnon3yiv3v4iyf4ga.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
x1 = xindex % 4000
x2 = (xindex // 4000)
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x1 + (4096*x2)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ce/cce4cx4v7uh7jmcpcvfcdgwb4qfxzeg6zviju4yc77tmmf6u2dco.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2000
x1 = (xindex // 2000)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + (x0 + (2016*x1)), tmp2, xmask)
tl.store(out_ptr1 + (x0 + (2048*x1)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/w6/cw662frhzlhbtv7e6y3yral7v4ea62wwb2adkoxku3gvogqatytc.py
# Topologically Sorted Source Nodes: [x_2, linear_3], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# linear_3 => view_6
# x_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %view_6 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_2, [64, 500]), kwargs = {})
triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = (xindex // 500)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (500*(x1 % 4)) + (2016*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uc/cucpr7hphg2dgixpqpnmigv4f4iayxbuteffgw4qgp4gk5lt3hvy.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_3
# Graph fragment:
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uk/cuksa57ow4msvzqmh6rcfm45f35yxtl2zdm2melyp4zye2akg3c7.py
# Topologically Sorted Source Nodes: [relu_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_4 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1000, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1000, 1000), (1000, 1))
assert_size_stride(primals_4, (500, 1000), (1000, 1))
assert_size_stride(primals_5, (200, 500), (500, 1))
assert_size_stride(primals_6, (4, 200), (200, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1000), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1000), (16000, 4000, 1000, 1), 0); del buf0 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf15, 64000, grid=grid(64000), stream=stream0)
buf2 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0), reinterpret_tensor(primals_3, (1000, 1000), (1, 1000), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1000), (16000, 4000, 1000, 1), 0); del buf2 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, buf14, 64000, grid=grid(64000), stream=stream0)
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (64, 1000), (1000, 1), 0), reinterpret_tensor(primals_4, (1000, 500), (1, 1000), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf4, buf5, buf13, 32000, grid=grid(32000), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2, linear_3], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_2.run(buf5, buf6, 32000, grid=grid(32000), stream=stream0)
del buf5
buf7 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(buf6, reinterpret_tensor(primals_5, (500, 200), (1, 500), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf7 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf8, buf12, 12800, grid=grid(12800), stream=stream0)
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf8, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf9 # reuse
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf10, buf11, 256, grid=grid(256), stream=stream0)
return (buf10, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0), reinterpret_tensor(buf3, (64, 1000), (1000, 1), 0), buf6, reinterpret_tensor(buf8, (64, 200), (200, 1), 0), buf11, primals_6, buf12, primals_5, buf13, primals_4, buf14, primals_3, buf15, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1000, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1000, 1000), (1000, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((500, 1000), (1000, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class NeuralNerwork(nn.Module):
""" Construct a ReLU-activated NN, set Bias to False
Four hidden layers with sizes [1000, 1000, 500, 200]
Features = 784, Targets = 10 classes
"""
def __init__(self, features, targets):
super(NeuralNerwork, self).__init__()
self.fc1 = nn.Linear(features, 1000, bias=False)
self.fc2 = nn.Linear(1000, 1000, bias=False)
self.fc3 = nn.Linear(1000, 500, bias=False)
self.fc4 = nn.Linear(500, 200, bias=False)
self.fc5 = nn.Linear(200, targets, bias=False)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
return F.relu(self.fc5(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'features': 4, 'targets': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
x1 = xindex % 4000
x2 = xindex // 4000
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + (x1 + 4096 * x2), tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2000
x1 = xindex // 2000
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + (x0 + 2016 * x1), tmp2, xmask)
tl.store(out_ptr1 + (x0 + 2048 * x1), tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = xindex // 500
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 500 * (x1 % 4) + 2016 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1000, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1000, 1000), (1000, 1))
assert_size_stride(primals_4, (500, 1000), (1000, 1))
assert_size_stride(primals_5, (200, 500), (500, 1))
assert_size_stride(primals_6, (4, 200), (200, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1000), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1000), (16000, 4000, 1000,
1), 0)
del buf0
buf15 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(64000)](buf1, buf15,
64000, XBLOCK=256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0
), reinterpret_tensor(primals_3, (1000, 1000), (1, 1000), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1000), (16000, 4000, 1000,
1), 0)
del buf2
buf14 = empty_strided_cuda((4, 4, 4, 1000), (16384, 4096, 1000, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(64000)](buf3, buf14,
64000, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 1000), (1000, 1), 0
), reinterpret_tensor(primals_4, (1000, 500), (1, 1000), 0),
out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1),
torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf4, buf5,
buf13, 32000, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused_relu_view_2[grid(32000)](buf5, buf6, 32000, XBLOCK
=128, num_warps=4, num_stages=1)
del buf5
buf7 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(buf6, reinterpret_tensor(primals_5, (500, 200), (
1, 500), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf7
buf12 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(12800)](buf8, buf12,
12800, XBLOCK=256, num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf9
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(256)](buf10, buf11,
256, XBLOCK=128, num_warps=4, num_stages=1)
return (buf10, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0),
reinterpret_tensor(buf3, (64, 1000), (1000, 1), 0), buf6,
reinterpret_tensor(buf8, (64, 200), (200, 1), 0), buf11, primals_6,
buf12, primals_5, buf13, primals_4, buf14, primals_3, buf15)
class NeuralNerworkNew(nn.Module):
""" Construct a ReLU-activated NN, set Bias to False
Four hidden layers with sizes [1000, 1000, 500, 200]
Features = 784, Targets = 10 classes
"""
def __init__(self, features, targets):
super(NeuralNerworkNew, self).__init__()
self.fc1 = nn.Linear(features, 1000, bias=False)
self.fc2 = nn.Linear(1000, 1000, bias=False)
self.fc3 = nn.Linear(1000, 500, bias=False)
self.fc4 = nn.Linear(500, 200, bias=False)
self.fc5 = nn.Linear(200, targets, bias=False)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_3 = self.fc2.weight
primals_4 = self.fc3.weight
primals_5 = self.fc4.weight
primals_6 = self.fc5.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
jf20541/Pruning-DeepNeuralNetwork
|
NeuralNerwork
| false | 10,283 |
[
"MIT"
] | 0 |
a78a88616c19aa0f1449eb562b7dd8d7c4f47252
|
https://github.com/jf20541/Pruning-DeepNeuralNetwork/tree/a78a88616c19aa0f1449eb562b7dd8d7c4f47252
|
SELayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3p/c3pvtte4adxbodvqq4iab6zximg555lpk2lopxwzpt4fva4eetqt.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# y_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class SELayer(nn.Module):
def __init__(self, in_channels, reduction):
super().__init__()
mid_channels = in_channels // reduction
self.fc1 = nn.Linear(in_channels, mid_channels)
self.fc2 = nn.Linear(mid_channels, in_channels)
def forward(self, x):
n_batches, n_channels, _, _ = x.size()
y = F.adaptive_avg_pool2d(x, output_size=1).view(n_batches, n_channels)
y = F.relu(self.fc1(y), inplace=True)
y = F.sigmoid(self.fc2(y)).view(n_batches, n_channels, 1, 1)
return x * y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'reduction': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](primals_1, buf4, buf5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0
), buf3, buf4, primals_4
class SELayerNew(nn.Module):
def __init__(self, in_channels, reduction):
super().__init__()
mid_channels = in_channels // reduction
self.fc1 = nn.Linear(in_channels, mid_channels)
self.fc2 = nn.Linear(mid_channels, in_channels)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
implus/pytorch_image_classification
|
SELayer
| false | 10,284 |
[
"MIT"
] | 0 |
cac490ed518ad09b0429fc01af060457fb050e68
|
https://github.com/implus/pytorch_image_classification/tree/cac490ed518ad09b0429fc01af060457fb050e68
|
WeightedMultilabel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ie/cieglmnnrvea7msp3cfx77swjcuddd57vx7arxkfhqya3cusvgh5.py
# Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.mean]
# Source node to ATen node mapping:
# loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# mean => mean
# mul => mul_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 4), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = 4.0
tmp14 = tmp12 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class WeightedMultilabel(nn.Module):
def __init__(self, weights: 'torch.Tensor'):
super(WeightedMultilabel, self).__init__()
self.cerition = nn.BCEWithLogitsLoss(reduction='none')
self.weights = weights
def forward(self, outputs, targets):
loss = self.cerition(outputs, targets)
return (loss * self.weights).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'weights': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = 4.0
tmp14 = tmp12 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_mean_mul_0[grid(1)](
buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class WeightedMultilabelNew(nn.Module):
def __init__(self, weights: 'torch.Tensor'):
super(WeightedMultilabelNew, self).__init__()
self.cerition = nn.BCEWithLogitsLoss(reduction='none')
self.weights = weights
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
jiawenxiao/physionet2020_0823
|
WeightedMultilabel
| false | 10,285 |
[
"BSD-2-Clause"
] | 0 |
99dd54a3f7b8cef83ff37a46223f4f979edd2e74
|
https://github.com/jiawenxiao/physionet2020_0823/tree/99dd54a3f7b8cef83ff37a46223f4f979edd2e74
|
BertLayerNormNoVar
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ke/ckesoupia4od4yj57n7ovmr2wav7eopyyngdjidks2sqhi3s4yx5.py
# Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# u => mean
# x => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_mean_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mean_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp14 = tmp12 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_mul_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class BertLayerNormNoVar(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
super(BertLayerNormNoVar, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
x = x - u
return self.weight * x + self.bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp14 = tmp12 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_mul_sub_0[grid(256)](primals_2, primals_1,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class BertLayerNormNoVarNew(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
super(BertLayerNormNoVarNew, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
jiachens/auto_LiRPA
|
BertLayerNormNoVar
| false | 10,286 |
[
"BSD-3-Clause"
] | 0 |
cc1ff18e8fbc938953b20ae6a030a25761cb0b78
|
https://github.com/jiachens/auto_LiRPA/tree/cc1ff18e8fbc938953b20ae6a030a25761cb0b78
|
RobNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xr/cxrn5vznflyqhnitxjoh4jnyfpvkm4wgtins5mlsntlgyloblhb5.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 61504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 961) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qo/cqofrz2ucdnmie7dx4j4f3nuuetpkw5zatyeeig6ytxnqlcqtnh7.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 28800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 225) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7j/c7jlcpfayfgm4ionvsotdwcpvr26emperi3u36tmlugpw3iltf26.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 43264
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 169) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qx/cqxm3qvuiggu3t4c6lcpw7d6fye5doscbl25sbc5lp4xjlpecsuv.py
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 61952
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 121) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zd/czdrgp7vhq73dxdrnx6ywh3qguvnwkm47rd2tugy7zi5jjorgl4f.py
# Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_4 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 51200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 100) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/t7/ct7pwmxlv35f2feojf7ultnhmcsjakimpf6r7me777fe4gwsocll.py
# Topologically Sorted Source Nodes: [rotate], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# rotate => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 324
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cz/cczg2eenij2vrserkx72i6h5i653gads7tvesewjlx6e3vkay4po.py
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# bbox => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 81) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/io/ciordbtctsdog3wv7iph2zg2qi4tscpqmzasutg2jvi5pbeo22zb.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sigmoid_1, %sigmoid], 1), kwargs = {})
triton_poi_fused_cat_7 = async_compile.triton('triton_poi_fused_cat_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1620
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 81) % 5
x0 = xindex % 81
x2 = (xindex // 405)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (81*x1) + (324*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.sigmoid(tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp4, tmp6, tmp7)
tmp9 = tmp0 >= tmp3
tmp10 = tl.full([1], 5, tl.int64)
tmp11 = tmp0 < tmp10
tmp12 = tl.load(in_ptr1 + (x0 + (81*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.sigmoid(tmp12)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp9, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp8, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (128, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (1, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_13, (1, ), (1, ))
assert_size_stride(primals_14, (4, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_15, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 31, 31), (15376, 961, 31, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 61504, grid=grid(61504), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 15, 15), (7200, 225, 15, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 28800, grid=grid(28800), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 13, 13), (10816, 169, 13, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 43264, grid=grid(43264), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 11, 11), (15488, 121, 11, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf7, primals_9, 61952, grid=grid(61952), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 10, 10), (12800, 100, 10, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_11, 51200, grid=grid(51200), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [rotate], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 1, 9, 9), (81, 81, 9, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [rotate], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf11, primals_13, 324, grid=grid(324), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf9, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 9, 9), (324, 81, 9, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf13, primals_15, 1296, grid=grid(1296), stream=stream0)
del primals_15
buf14 = empty_strided_cuda((4, 5, 9, 9), (405, 81, 9, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_7.run(buf13, buf11, buf14, 1620, grid=grid(1620), stream=stream0)
return (buf14, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class RobNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, dilation=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1)
self.conv4 = nn.Conv2d(64, 128, kernel_size=3, stride=1)
self.conv5 = nn.Conv2d(128, 128, kernel_size=2, stride=1)
self.rotate = nn.Conv2d(128, 1, kernel_size=2, stride=1)
self.bbox = nn.Conv2d(128, 4, kernel_size=2, stride=1)
self.sig = nn.Sigmoid()
def forward(self, x):
x = F.relu(self.conv1(x), inplace=True)
x = F.relu(self.conv2(x), inplace=True)
x = F.relu(self.conv3(x), inplace=True)
x = F.relu(self.conv4(x), inplace=True)
x = F.relu(self.conv5(x), inplace=True)
rotate = self.rotate(x)
rotate = self.sig(rotate)
bbox = self.bbox(x)
bbox = self.sig(bbox)
out = torch.cat((bbox, rotate), dim=1)
return out
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 61504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 961 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 28800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 225 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 43264
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 169 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 61952
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 121 % 128
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 100 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 324
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 81 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_cat_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1620
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 81 % 5
x0 = xindex % 81
x2 = xindex // 405
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 81 * x1 + 324 * x2), tmp4 & xmask, other=0.0
)
tmp6 = tl.sigmoid(tmp5)
tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype)
tmp8 = tl.where(tmp4, tmp6, tmp7)
tmp9 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp12 = tl.load(in_ptr1 + (x0 + 81 * x2), tmp9 & xmask, eviction_policy
='evict_last', other=0.0)
tmp13 = tl.sigmoid(tmp12)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp9, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp8, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (1, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_13, (1,), (1,))
assert_size_stride(primals_14, (4, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_15, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 31, 31), (15376, 961, 31, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(61504)](buf1, primals_2,
61504, XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 15, 15), (7200, 225, 15, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(28800)](buf3, primals_5,
28800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 13, 13), (10816, 169, 13, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(43264)](buf5, primals_7,
43264, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 11, 11), (15488, 121, 11, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_3[grid(61952)](buf7, primals_9,
61952, XBLOCK=512, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 10, 10), (12800, 100, 10, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(51200)](buf9, primals_11,
51200, XBLOCK=512, num_warps=4, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 1, 9, 9), (81, 81, 9, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_5[grid(324)](buf11, primals_13, 324,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
buf12 = extern_kernels.convolution(buf9, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 9, 9), (324, 81, 9, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_6[grid(1296)](buf13, primals_15, 1296,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf14 = empty_strided_cuda((4, 5, 9, 9), (405, 81, 9, 1), torch.float32
)
triton_poi_fused_cat_7[grid(1620)](buf13, buf11, buf14, 1620,
XBLOCK=256, num_warps=4, num_stages=1)
return (buf14, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9,
buf11, buf13)
class RobNetNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, dilation=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1)
self.conv4 = nn.Conv2d(64, 128, kernel_size=3, stride=1)
self.conv5 = nn.Conv2d(128, 128, kernel_size=2, stride=1)
self.rotate = nn.Conv2d(128, 1, kernel_size=2, stride=1)
self.bbox = nn.Conv2d(128, 4, kernel_size=2, stride=1)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_12 = self.rotate.weight
primals_13 = self.rotate.bias
primals_14 = self.bbox.weight
primals_15 = self.bbox.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
hongrui16/rotated_detection
|
RobNet
| false | 10,287 |
[
"MIT"
] | 0 |
0b0a061b0753950c20d1e52c8ae8fc59e1ceb21d
|
https://github.com/hongrui16/rotated_detection/tree/0b0a061b0753950c20d1e52c8ae8fc59e1ceb21d
|
Conv2
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [2], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/l7/cl73m2z7ubizl4gjzahoztnfbxiinsybshrc4sjlnb7hovne23sz.py
# Topologically Sorted Source Nodes: [sigmoid, tanh, mul], Original ATen: [aten.sigmoid, aten.tanh, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# sigmoid => sigmoid
# tanh => tanh
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {})
triton_poi_fused_mul_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (8*x1)), xmask)
tmp6 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (4 + x0 + (8*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp5 * tmp11
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp11, xmask)
tl.store(out_ptr2 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 1), (8, 1, 1))
del buf0
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(primals_4, reinterpret_tensor(primals_5, (4, 8), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, tanh, mul], Original ATen: [aten.sigmoid, aten.tanh, aten.mul]
triton_poi_fused_mul_sigmoid_tanh_1.run(buf1, primals_3, buf2, buf3, buf4, buf5, 16, grid=grid(16), stream=stream0)
del buf1
del buf2
del primals_3
return (buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
class Conv2(nn.Module):
""" A convolution layer with the stride of 2.
Input:
x: (N, 2L+2, in_channels) numeric tensor
global_cond: (N, global_cond_channels) numeric tensor
Output:
y: (N, L, out_channels) numeric tensor
"""
def __init__(self, in_channels, out_channels, global_cond_channels):
super().__init__()
ksz = 4
self.out_channels = out_channels
if 0 < global_cond_channels:
self.w_cond = nn.Linear(global_cond_channels, 2 * out_channels,
bias=False)
self.conv_wide = nn.Conv1d(in_channels, 2 * out_channels, ksz, stride=2
)
wsize = 2.967 / math.sqrt(ksz * in_channels)
self.conv_wide.weight.data.uniform_(-wsize, wsize)
self.conv_wide.bias.data.zero_()
def forward(self, x, global_cond):
x1 = self.conv_wide(x.transpose(1, 2)).transpose(1, 2)
if global_cond is not None:
x2 = self.w_cond(global_cond).unsqueeze(1).expand(-1, x1.size(1
), -1)
else:
x2 = torch.zeros_like(x1)
a, b = (x1 + x2).split(self.out_channels, dim=2)
return torch.sigmoid(a) * torch.tanh(b)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4,
'global_cond_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 8 * x1), xmask)
tmp6 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask)
tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (4 + x0 + 8 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp8 = tmp6 + tmp7
tmp10 = tmp8 + tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp5 * tmp11
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp11, xmask)
tl.store(out_ptr2 + x2, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 1), (8, 1, 1))
del buf0
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_4, reinterpret_tensor(primals_5, (4, 8),
(1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_tanh_1[grid(16)](buf1, primals_3, buf2,
buf3, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf1
del buf2
del primals_3
return buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4,
4), (16, 1, 4), 0), buf3, buf4
class Conv2New(nn.Module):
""" A convolution layer with the stride of 2.
Input:
x: (N, 2L+2, in_channels) numeric tensor
global_cond: (N, global_cond_channels) numeric tensor
Output:
y: (N, L, out_channels) numeric tensor
"""
def __init__(self, in_channels, out_channels, global_cond_channels):
super().__init__()
ksz = 4
self.out_channels = out_channels
if 0 < global_cond_channels:
self.w_cond = nn.Linear(global_cond_channels, 2 * out_channels,
bias=False)
self.conv_wide = nn.Conv1d(in_channels, 2 * out_channels, ksz, stride=2
)
wsize = 2.967 / math.sqrt(ksz * in_channels)
self.conv_wide.weight.data.uniform_(-wsize, wsize)
self.conv_wide.bias.data.zero_()
def forward(self, input_0, input_1):
primals_5 = self.w_cond.weight
primals_2 = self.conv_wide.weight
primals_3 = self.conv_wide.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
jonojace/WaveRNN
|
Conv2
| false | 10,288 |
[
"MIT"
] | 0 |
5ac72d5ed10262132f016f8e523bc663faa991da
|
https://github.com/jonojace/WaveRNN/tree/5ac72d5ed10262132f016f8e523bc663faa991da
|
CatKLLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/mg/cmg3rjq7o6dnngxd2py7kesfu2nr7fflmrgx6htiquznvsanm322.py
# Topologically Sorted Source Nodes: [qy, sub, mul, kl], Original ATen: [aten.exp, aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# kl => sum_1
# mul => mul
# qy => exp
# sub => sub
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %sub), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused_exp_mul_sub_sum_0 = async_compile.triton('triton_poi_fused_exp_mul_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp2 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp11 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp13 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp1 = tl_math.exp(tmp0)
tmp3 = tmp0 - tmp2
tmp4 = tmp1 * tmp3
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp5 - tmp7
tmp9 = tmp6 * tmp8
tmp10 = tmp4 + tmp9
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp11 - tmp13
tmp15 = tmp12 * tmp14
tmp16 = tmp10 + tmp15
tmp18 = tl_math.exp(tmp17)
tmp20 = tmp17 - tmp19
tmp21 = tmp18 * tmp20
tmp22 = tmp16 + tmp21
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [qy, sub, mul, kl], Original ATen: [aten.exp, aten.sub, aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_mul_sub_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.nn.modules.loss import _Loss
class CatKLLoss(_Loss):
def __init__(self, reduction='none'):
super(CatKLLoss, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, log_qy, log_py):
"""
KL(qy|py) = Eq[qy * log(q(y) / p(y))]
log_qy: (batch_size, latent_size)
log_py: (batch_size, latent_size)
"""
qy = torch.exp(log_qy)
kl = torch.sum(qy * (log_qy - log_py), dim=1)
if self.reduction == 'mean':
kl = kl.mean()
elif self.reduction == 'sum':
kl = kl.sum()
return kl
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn.modules.loss import _Loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp2 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp7 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp11 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp13 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp1 = tl_math.exp(tmp0)
tmp3 = tmp0 - tmp2
tmp4 = tmp1 * tmp3
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp5 - tmp7
tmp9 = tmp6 * tmp8
tmp10 = tmp4 + tmp9
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp11 - tmp13
tmp15 = tmp12 * tmp14
tmp16 = tmp10 + tmp15
tmp18 = tl_math.exp(tmp17)
tmp20 = tmp17 - tmp19
tmp21 = tmp18 * tmp20
tmp22 = tmp16 + tmp21
tl.store(out_ptr0 + x2, tmp22, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_mul_sub_sum_0[grid(64)](arg0_1, arg1_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class CatKLLossNew(_Loss):
def __init__(self, reduction='none'):
super(CatKLLossNew, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
imguozhen/proactive-chat
|
CatKLLoss
| false | 10,289 |
[
"Apache-2.0"
] | 0 |
80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
https://github.com/imguozhen/proactive-chat/tree/80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
PCN1
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/o4/co4nsnmwmq6u72ocszlwnicby3irkdzg333bffvczctebolija3z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2l/c2lopujvmnumdt346ycuertt5fmhzvjrvguon2iyn4d4fxs2achu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = (yindex // 16)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wv/cwvgka2tdnkfhotjblshnd7peeqx5dbyqvmgelrsa445t7sdxarg.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3q/c3qvez2r77ch5iao37cjwlxkfudhougiy5mgqj2rvlssb3674oac.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/q4/cq4jzxm6mfzoz3s2gw4gzdejerpbfgskqaexzzt3f2ymblqxix3g.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 61504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ku/ckubedjc6xofli363opw2wv3s5l2og734gsgxuoguw3xp6n4zglw.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 28800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oh/cohrpvvogjhpj5hqyf7yuwjs7gi6atbdwjl2s3qcqn4pkpe2znbw.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cl/ccl4udr4jxpg6mwurvh2p65ejlfsvbktwf7lbnwswommioowsrm2.py
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5q/c5q5kumendubiv2gwewlgrsy5mqbp2zgrqunx4htiexaday3bklo.py
# Topologically Sorted Source Nodes: [conv2d_4, cls_prob], Original ATen: [aten.convolution, aten._softmax]
# Source node to ATen node mapping:
# cls_prob => amax, exp, sub
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_4, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_4, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_convolution_9 = async_compile.triton('triton_poi_fused__softmax_convolution_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_convolution_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_convolution_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (1))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp6 = tmp3 + tmp5
tmp10 = tmp7 + tmp9
tmp11 = triton_helpers.maximum(tmp6, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ag/cagkmfz6apmfdbpgeexfxmzfgz5cdokn35ktphlwqielpc5xh3rf.py
# Topologically Sorted Source Nodes: [cls_prob], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# cls_prob => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_10 = async_compile.triton('triton_poi_fused__softmax_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = (yindex // 2)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (72*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + ((2*x2) + (72*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x2) + (72*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 / tmp3
tl.store(out_ptr0 + (x2 + (36*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7n/c7nae5ymzhakbyjocdyhdjjitxv7vnelq2hhwlqzubk4q6u3iu7c.py
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# bbox => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_11 = async_compile.triton('triton_poi_fused_convolution_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_11(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (108*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (36*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (2, ), (1, ))
assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (2, ), (1, ))
assert_size_stride(primals_14, (3, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_15, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 48, 9, grid=grid(48, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 512, 9, grid=grid(512, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 8192, 4, grid=grid(8192, 4), stream=stream0)
del primals_8
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 31, 31), (15376, 1, 496, 16))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf6, primals_2, 61504, grid=grid(61504), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 32, 15, 15), (7200, 1, 480, 32))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf8, primals_5, 28800, grid=grid(28800), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 7, 7), (3136, 1, 448, 64))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf10, primals_7, 12544, grid=grid(12544), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 128, 6, 6), (4608, 1, 768, 128))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf12, primals_9, 18432, grid=grid(18432), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 2, 6, 6), (72, 1, 12, 2))
buf14 = empty_strided_cuda((4, 2, 6, 6), (72, 1, 12, 2), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, cls_prob], Original ATen: [aten.convolution, aten._softmax]
triton_poi_fused__softmax_convolution_9.run(buf13, primals_11, buf14, 288, grid=grid(288), stream=stream0)
del primals_11
buf15 = reinterpret_tensor(buf13, (4, 2, 6, 6), (72, 36, 6, 1), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [cls_prob], Original ATen: [aten._softmax]
triton_poi_fused__softmax_10.run(buf14, buf15, 8, 36, grid=grid(8, 36), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 2, 6, 6), (72, 1, 12, 2))
buf17 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, rotate], Original ATen: [aten.convolution, aten._softmax]
triton_poi_fused__softmax_convolution_9.run(buf16, primals_13, buf17, 288, grid=grid(288), stream=stream0)
del primals_13
buf18 = reinterpret_tensor(buf16, (4, 2, 6, 6), (72, 36, 6, 1), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [rotate], Original ATen: [aten._softmax]
triton_poi_fused__softmax_10.run(buf17, buf18, 8, 36, grid=grid(8, 36), stream=stream0)
del buf17
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf12, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 3, 6, 6), (108, 1, 18, 3))
buf20 = empty_strided_cuda((4, 3, 6, 6), (108, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [bbox], Original ATen: [aten.convolution]
triton_poi_fused_convolution_11.run(buf19, primals_15, buf20, 12, 36, grid=grid(12, 36), stream=stream0)
del buf19
del primals_15
return (buf15, buf18, buf20, buf0, buf1, buf2, buf3, buf4, primals_10, primals_12, primals_14, buf6, buf8, buf10, buf12, buf15, buf18, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((2, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((2, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((3, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class PCN1(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, dilation=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=2)
self.conv4 = nn.Conv2d(64, 128, kernel_size=2, stride=1)
self.rotate = nn.Conv2d(128, 2, kernel_size=1, stride=1)
self.cls_prob = nn.Conv2d(128, 2, kernel_size=1, stride=1)
self.bbox = nn.Conv2d(128, 3, kernel_size=1, stride=1)
def forward(self, x):
x = F.relu(self.conv1(x), inplace=True)
x = F.relu(self.conv2(x), inplace=True)
x = F.relu(self.conv3(x), inplace=True)
x = F.relu(self.conv4(x), inplace=True)
cls_prob = F.softmax(self.cls_prob(x), dim=1)
rotate = F.softmax(self.rotate(x), dim=1)
bbox = self.bbox(x)
return cls_prob, rotate, bbox
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = yindex // 16
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 61504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 28800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused__softmax_convolution_9(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp7 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + 1)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp6 = tmp3 + tmp5
tmp10 = tmp7 + tmp9
tmp11 = triton_helpers.maximum(tmp6, tmp10)
tmp12 = tmp2 - tmp11
tmp13 = tl_math.exp(tmp12)
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused__softmax_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = yindex // 2
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 72 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (2 * x2 + 72 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x2 + 72 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 / tmp3
tl.store(out_ptr0 + (x2 + 36 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_11(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 108 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 36 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (2,), (1,))
assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (2,), (1,))
assert_size_stride(primals_14, (3, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_15, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(48, 9)](primals_1, buf0, 48, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.
float32)
triton_poi_fused_2[grid(512, 9)](primals_4, buf2, 512, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
triton_poi_fused_3[grid(2048, 9)](primals_6, buf3, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch
.float32)
triton_poi_fused_4[grid(8192, 4)](primals_8, buf4, 8192, 4, XBLOCK=
4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf5 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 31, 31), (15376, 1, 496, 16))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_5[grid(61504)](buf6, primals_2,
61504, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, buf2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 32, 15, 15), (7200, 1, 480, 32))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_6[grid(28800)](buf8, primals_5,
28800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 7, 7), (3136, 1, 448, 64))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_7[grid(12544)](buf10, primals_7,
12544, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf11 = extern_kernels.convolution(buf10, buf4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 128, 6, 6), (4608, 1, 768, 128))
buf12 = buf11
del buf11
triton_poi_fused_convolution_relu_8[grid(18432)](buf12, primals_9,
18432, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 2, 6, 6), (72, 1, 12, 2))
buf14 = empty_strided_cuda((4, 2, 6, 6), (72, 1, 12, 2), torch.float32)
triton_poi_fused__softmax_convolution_9[grid(288)](buf13,
primals_11, buf14, 288, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf15 = reinterpret_tensor(buf13, (4, 2, 6, 6), (72, 36, 6, 1), 0)
del buf13
triton_poi_fused__softmax_10[grid(8, 36)](buf14, buf15, 8, 36,
XBLOCK=32, YBLOCK=8, num_warps=4, num_stages=1)
buf16 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 2, 6, 6), (72, 1, 12, 2))
buf17 = buf14
del buf14
triton_poi_fused__softmax_convolution_9[grid(288)](buf16,
primals_13, buf17, 288, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf18 = reinterpret_tensor(buf16, (4, 2, 6, 6), (72, 36, 6, 1), 0)
del buf16
triton_poi_fused__softmax_10[grid(8, 36)](buf17, buf18, 8, 36,
XBLOCK=32, YBLOCK=8, num_warps=4, num_stages=1)
del buf17
buf19 = extern_kernels.convolution(buf12, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 3, 6, 6), (108, 1, 18, 3))
buf20 = empty_strided_cuda((4, 3, 6, 6), (108, 36, 6, 1), torch.float32
)
triton_poi_fused_convolution_11[grid(12, 36)](buf19, primals_15,
buf20, 12, 36, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf19
del primals_15
return (buf15, buf18, buf20, buf0, buf1, buf2, buf3, buf4, primals_10,
primals_12, primals_14, buf6, buf8, buf10, buf12, buf15, buf18)
class PCN1New(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, dilation=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=2)
self.conv4 = nn.Conv2d(64, 128, kernel_size=2, stride=1)
self.rotate = nn.Conv2d(128, 2, kernel_size=1, stride=1)
self.cls_prob = nn.Conv2d(128, 2, kernel_size=1, stride=1)
self.bbox = nn.Conv2d(128, 3, kernel_size=1, stride=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.rotate.weight
primals_11 = self.rotate.bias
primals_12 = self.cls_prob.weight
primals_13 = self.cls_prob.bias
primals_14 = self.bbox.weight
primals_15 = self.bbox.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
|
jisheng047/blinsert
|
PCN1
| false | 10,290 |
[
"BSD-2-Clause"
] | 0 |
923d2ea2af3f2f257c817fa8de02c7db8ec9bcc9
|
https://github.com/jisheng047/blinsert/tree/923d2ea2af3f2f257c817fa8de02c7db8ec9bcc9
|
MaskBCELoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/73/c73o3odiipn2rhj6wxeyqlraepquu766hx3b5wyoe4fllotyuuh4.py
# Topologically Sorted Source Nodes: [bce, bce_1, bce_2], Original ATen: [aten.binary_cross_entropy, aten.sum, aten.mean]
# Source node to ATen node mapping:
# bce => full_default, full_default_1, log, log1p, maximum, maximum_1, mul, mul_1, neg, sub, sub_1
# bce_1 => sum_1
# bce_2 => mean
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %maximum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_binary_cross_entropy_mean_sum_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_mean_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_mean_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_mean_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp3 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp15 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp25 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp27 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp37 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp39 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp14 = tmp13 - tmp1
tmp16 = -tmp15
tmp17 = libdevice.log1p(tmp16)
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp14 * tmp18
tmp20 = tl_math.log(tmp15)
tmp21 = triton_helpers.maximum(tmp20, tmp6)
tmp22 = tmp13 * tmp21
tmp23 = tmp19 - tmp22
tmp24 = tmp12 + tmp23
tmp26 = tmp25 - tmp1
tmp28 = -tmp27
tmp29 = libdevice.log1p(tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp6)
tmp31 = tmp26 * tmp30
tmp32 = tl_math.log(tmp27)
tmp33 = triton_helpers.maximum(tmp32, tmp6)
tmp34 = tmp25 * tmp33
tmp35 = tmp31 - tmp34
tmp36 = tmp24 + tmp35
tmp38 = tmp37 - tmp1
tmp40 = -tmp39
tmp41 = libdevice.log1p(tmp40)
tmp42 = triton_helpers.maximum(tmp41, tmp6)
tmp43 = tmp38 * tmp42
tmp44 = tl_math.log(tmp39)
tmp45 = triton_helpers.maximum(tmp44, tmp6)
tmp46 = tmp37 * tmp45
tmp47 = tmp43 - tmp46
tmp48 = tmp36 + tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.sum(tmp49, 1)[:, None]
tmp52 = 64.0
tmp53 = tmp51 / tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp53, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [bce, bce_1, bce_2], Original ATen: [aten.binary_cross_entropy, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_mean_sum_0.run(buf2, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
class MaskBCELoss(_Loss):
def __init__(self, reduction='mean'):
super(MaskBCELoss, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, input, target, mask=None):
"""
input: (batch_size, max_len)
target: (batch_size, max_len)
mask: (batch_size, max_len)
"""
bce = F.binary_cross_entropy(input=input, target=target, reduction=
'none')
if mask is not None:
bce *= mask.float()
bce = bce.sum(dim=1)
if self.reduction == 'mean':
bce = bce.mean()
elif self.reduction == 'sum':
bce = bce.sum()
return bce
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_mean_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp3 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp15 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp25 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp27 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp37 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp39 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp14 = tmp13 - tmp1
tmp16 = -tmp15
tmp17 = libdevice.log1p(tmp16)
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp14 * tmp18
tmp20 = tl_math.log(tmp15)
tmp21 = triton_helpers.maximum(tmp20, tmp6)
tmp22 = tmp13 * tmp21
tmp23 = tmp19 - tmp22
tmp24 = tmp12 + tmp23
tmp26 = tmp25 - tmp1
tmp28 = -tmp27
tmp29 = libdevice.log1p(tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp6)
tmp31 = tmp26 * tmp30
tmp32 = tl_math.log(tmp27)
tmp33 = triton_helpers.maximum(tmp32, tmp6)
tmp34 = tmp25 * tmp33
tmp35 = tmp31 - tmp34
tmp36 = tmp24 + tmp35
tmp38 = tmp37 - tmp1
tmp40 = -tmp39
tmp41 = libdevice.log1p(tmp40)
tmp42 = triton_helpers.maximum(tmp41, tmp6)
tmp43 = tmp38 * tmp42
tmp44 = tl_math.log(tmp39)
tmp45 = triton_helpers.maximum(tmp44, tmp6)
tmp46 = tmp37 * tmp45
tmp47 = tmp43 - tmp46
tmp48 = tmp36 + tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.sum(tmp49, 1)[:, None]
tmp52 = 64.0
tmp53 = tmp51 / tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_mean_sum_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class MaskBCELossNew(_Loss):
def __init__(self, reduction='mean'):
super(MaskBCELossNew, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
imguozhen/proactive-chat
|
MaskBCELoss
| false | 10,291 |
[
"Apache-2.0"
] | 0 |
80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
https://github.com/imguozhen/proactive-chat/tree/80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
NormalKLLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/tl/ctldn3aotcgk3fdxe6x4kczxezzfibwich7nkw2sgl3f4g2j7xkt.py
# Topologically Sorted Source Nodes: [exp, truediv, var_ratio, t1, add, sub_1, log, sub_2, mul, kl, kl_1], Original ATen: [aten.exp, aten.div, aten.pow, aten.add, aten.sub, aten.log, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add
# exp => exp
# kl => sum_1
# kl_1 => mean
# log => log
# mul => mul
# sub_1 => sub_1
# sub_2 => sub_2
# t1 => pow_2
# truediv => sqrt
# var_ratio => pow_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg1_1,), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%exp,), kwargs = {})
# %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, 1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%pow_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.5), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp25 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp29 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp37 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp41 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp2 = libdevice.sqrt(tmp1)
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp7 = 1.0
tmp8 = tmp6 - tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = tmp8 - tmp9
tmp11 = 0.5
tmp12 = tmp10 * tmp11
tmp14 = tl_math.exp(tmp13)
tmp15 = libdevice.sqrt(tmp14)
tmp16 = tmp15 * tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp7
tmp21 = tl_math.log(tmp16)
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp11
tmp24 = tmp12 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = libdevice.sqrt(tmp26)
tmp28 = tmp27 * tmp27
tmp30 = tmp29 * tmp29
tmp31 = tmp28 + tmp30
tmp32 = tmp31 - tmp7
tmp33 = tl_math.log(tmp28)
tmp34 = tmp32 - tmp33
tmp35 = tmp34 * tmp11
tmp36 = tmp24 + tmp35
tmp38 = tl_math.exp(tmp37)
tmp39 = libdevice.sqrt(tmp38)
tmp40 = tmp39 * tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = tmp43 - tmp7
tmp45 = tl_math.log(tmp40)
tmp46 = tmp44 - tmp45
tmp47 = tmp46 * tmp11
tmp48 = tmp36 + tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.sum(tmp49, 1)[:, None]
tmp52 = 64.0
tmp53 = tmp51 / tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp53, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [exp, truediv, var_ratio, t1, add, sub_1, log, sub_2, mul, kl, kl_1], Original ATen: [aten.exp, aten.div, aten.pow, aten.add, aten.sub, aten.log, aten.mul, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0.run(buf2, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import distributions
from torch.nn.modules.loss import _Loss
class NormalKLLoss(_Loss):
def __init__(self, reduction='mean'):
super(NormalKLLoss, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, q_mu, q_logvar, p_mu=None, p_logvar=None):
"""
q_mu: (batch_size, latent_size)
q_logvar: (batch_size, latent_size)
"""
if p_mu is None:
p_mu = torch.zeros_like(q_mu)
if p_logvar is None:
p_logvar = torch.zeros_like(q_logvar)
q_norm = distributions.Normal(q_mu, q_logvar.exp().sqrt())
p_norm = distributions.Normal(p_mu, p_logvar.exp().sqrt())
kl = distributions.kl_divergence(q_norm, p_norm).sum(dim=1)
if self.reduction == 'mean':
kl = kl.mean()
elif self.reduction == 'sum':
kl = kl.sum()
return kl
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn.modules.loss import _Loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp25 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp29 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp37 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp41 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp2 = libdevice.sqrt(tmp1)
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp7 = 1.0
tmp8 = tmp6 - tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = tmp8 - tmp9
tmp11 = 0.5
tmp12 = tmp10 * tmp11
tmp14 = tl_math.exp(tmp13)
tmp15 = libdevice.sqrt(tmp14)
tmp16 = tmp15 * tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp7
tmp21 = tl_math.log(tmp16)
tmp22 = tmp20 - tmp21
tmp23 = tmp22 * tmp11
tmp24 = tmp12 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = libdevice.sqrt(tmp26)
tmp28 = tmp27 * tmp27
tmp30 = tmp29 * tmp29
tmp31 = tmp28 + tmp30
tmp32 = tmp31 - tmp7
tmp33 = tl_math.log(tmp28)
tmp34 = tmp32 - tmp33
tmp35 = tmp34 * tmp11
tmp36 = tmp24 + tmp35
tmp38 = tl_math.exp(tmp37)
tmp39 = libdevice.sqrt(tmp38)
tmp40 = tmp39 * tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = tmp43 - tmp7
tmp45 = tl_math.log(tmp40)
tmp46 = tmp44 - tmp45
tmp47 = tmp46 * tmp11
tmp48 = tmp36 + tmp47
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp51 = tl.sum(tmp49, 1)[:, None]
tmp52 = 64.0
tmp53 = tmp51 / tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_div_exp_log_mean_mul_pow_sub_sum_0[grid(1)](buf2,
arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class NormalKLLossNew(_Loss):
def __init__(self, reduction='mean'):
super(NormalKLLossNew, self).__init__()
assert reduction in ['none', 'sum', 'mean']
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
imguozhen/proactive-chat
|
NormalKLLoss
| false | 10,292 |
[
"Apache-2.0"
] | 0 |
80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
https://github.com/imguozhen/proactive-chat/tree/80d13e28cb93c26a65ace0a028c53fd0bafcdbf9
|
Gather
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ww/cwwcm5rmiipzxtxuy2xmzdfvuu7aaecv32nuqtlblhmo5atmjrki.py
# Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index]
# Source node to ATen node mapping:
# getitem => index
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%arg1_1]), kwargs = {})
triton_poi_fused_index_0 = async_compile.triton('triton_poi_fused_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (x0 + (64*tmp4)), xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [getitem], Original ATen: [aten.index]
stream0 = get_raw_stream(0)
triton_poi_fused_index_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.onnx
class Gather(nn.Module):
def __init__(self, dim=0):
self.dim = dim
self.selection = [slice(None) for _ in range(dim)]
super().__init__()
def forward(self, input: 'torch.Tensor', indices: 'torch.Tensor'):
selection = self.selection + [indices]
return input.__getitem__(selection)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_index_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (x0 + 64 * tmp4), xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_index_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class GatherNew(nn.Module):
def __init__(self, dim=0):
self.dim = dim
self.selection = [slice(None) for _ in range(dim)]
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
jiuntian/onnx2pytorch
|
Gather
| false | 10,293 |
[
"Apache-2.0"
] | 0 |
fadca10a6045f4373293c9c0854607fb51a47c12
|
https://github.com/jiuntian/onnx2pytorch/tree/fadca10a6045f4373293c9c0854607fb51a47c12
|
GlobalAveragePool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.onnx
class GlobalAveragePool(nn.Module):
def forward(self, input: 'torch.Tensor'):
spatial_shape = input.ndimension() - 2
dim = tuple(range(spatial_shape, spatial_shape + 2))
return torch.mean(input, dim=dim, keepdim=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
class GlobalAveragePoolNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
jiuntian/onnx2pytorch
|
GlobalAveragePool
| false | 10,294 |
[
"Apache-2.0"
] | 0 |
fadca10a6045f4373293c9c0854607fb51a47c12
|
https://github.com/jiuntian/onnx2pytorch/tree/fadca10a6045f4373293c9c0854607fb51a47c12
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.