entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
Cartesian
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/v4/cv4ff55kvqufmlwbha3zwifl2iiainuigc3ecu7srjssgsdlhdbq.py # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], -1), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4*x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl_math.cos(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + (4*x1), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr0 + (1 + (4*x1)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl_math.sin(tmp15) tmp17 = tmp14 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp11, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp10, tmp19) tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.utils.data.distributed import torch.optim class Cartesian(nn.Module): def forward(self, x): r, phi = x[..., 0], x[..., 1] return torch.stack((r * torch.cos(phi), r * torch.sin(phi)), dim=-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data import torch.utils.data.distributed import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + 4 * x1, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl_math.cos(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp14 = tl.load(in_ptr0 + 4 * x1, tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.load(in_ptr0 + (1 + 4 * x1), tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tl_math.sin(tmp15) tmp17 = tmp14 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp11, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp10, tmp19) tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class CartesianNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
kapoor1992/fastMRI
Cartesian
false
10,498
[ "MIT" ]
0
6b0af94663faa55a2dd901a6a5cbb7d7b5f4cf6d
https://github.com/kapoor1992/fastMRI/tree/6b0af94663faa55a2dd901a6a5cbb7d7b5f4cf6d
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul_2 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py # Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src_1 => add_2 # src_2 => var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py # Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src_1 => add_2 # src_2 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ct/cct7fdnwiat77gmy2crh3kczskgz2h3fhqyydq4w5mawjn5eb6qf.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/44/c444sh6bryz652bk24ocru63kbqhe67iwwzctt3isl7imfgv5iaa.py # Topologically Sorted Source Nodes: [src_1, src_3], Original ATen: [aten.add] # Source node to ATen node mapping: # src_1 => add_2 # src_3 => add_5 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {}) triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (2048, 4), (4, 1)) assert_size_stride(primals_11, (2048, ), (1, )) assert_size_stride(primals_12, (4, 2048), (2048, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1; del buf1 # reuse buf14 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 2048), (1, 4), 0), out=buf16) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] triton_poi_fused_relu_8.run(buf17, primals_11, 8192, grid=grid(8192), stream=stream0) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (2048, 4), (1, 2048), 0), out=buf18) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [src_1, src_3], Original ATen: [aten.add] triton_poi_fused_add_9.run(buf19, primals_1, buf12, primals_13, 16, grid=grid(16), stream=stream0) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Optional from torch import nn def _get_activation_fn(activation: 'str'): if activation == 'relu': return nn.functional.relu elif activation == 'gelu': return nn.functional.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerEncoderLayer(nn.Module): """ Modified from torch.nn.TransformerEncoderLayer. Add support of normalize_before, i.e., use layer_norm before the first block. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). normalize_before: whether to use layer_norm before the first block. Examples:: >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) """ def __init__(self, d_model: 'int', nhead: 'int', dim_feedforward: 'int' =2048, dropout: 'float'=0.1, activation: 'str'='relu', normalize_before: 'bool'=True) ->None: super(TransformerEncoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def __setstate__(self, state): if 'activation' not in state: state['activation'] = nn.functional.relu super(TransformerEncoderLayer, self).__setstate__(state) def forward(self, src: 'torch.Tensor', src_mask: 'Optional[torch.Tensor]'=None, src_key_padding_mask: 'Optional[torch.Tensor]'=None) ->torch.Tensor: """ Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional) Shape: src: (S, N, E). src_mask: (S, S). src_key_padding_mask: (N, S). S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number """ residual = src if self.normalize_before: src = self.norm1(src) src2 = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = residual + self.dropout1(src2) if not self.normalize_before: src = self.norm1(src) residual = src if self.normalize_before: src = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = residual + self.dropout2(src2) if not self.normalize_before: src = self.norm2(src) return src def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (2048, 4), (4, 1)) assert_size_stride(primals_11, (2048,), (1,)) assert_size_stride(primals_12, (4, 2048), (2048, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha= 1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha= 1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0) del buf3 triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1 del buf1 buf14 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12, buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 2048), (1, 4), 0), out=buf16) buf17 = buf16 del buf16 triton_poi_fused_relu_8[grid(8192)](buf17, primals_11, 8192, XBLOCK =256, num_warps=4, num_stages=1) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (2048, 4), (1, 2048), 0), out=buf18) buf19 = buf18 del buf18 triton_poi_fused_add_9[grid(16)](buf19, primals_1, buf12, primals_13, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor( buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4 ), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0)) def _get_activation_fn(activation: 'str'): if activation == 'relu': return nn.functional.relu elif activation == 'gelu': return nn.functional.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerEncoderLayerNew(nn.Module): """ Modified from torch.nn.TransformerEncoderLayer. Add support of normalize_before, i.e., use layer_norm before the first block. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). normalize_before: whether to use layer_norm before the first block. Examples:: >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) """ def __init__(self, d_model: 'int', nhead: 'int', dim_feedforward: 'int' =2048, dropout: 'float'=0.1, activation: 'str'='relu', normalize_before: 'bool'=True) ->None: super(TransformerEncoderLayerNew, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def __setstate__(self, state): if 'activation' not in state: state['activation'] = nn.functional.relu super(TransformerEncoderLayerNew, self).__setstate__(state) def forward(self, input_0): primals_4 = self.self_attn.in_proj_weight primals_5 = self.self_attn.in_proj_bias primals_1 = self.self_attn.out_proj.weight primals_2 = self.self_attn.out_proj.bias primals_10 = self.linear1.weight primals_11 = self.linear1.bias primals_12 = self.linear2.weight primals_3 = self.linear2.bias primals_7 = self.norm1.weight primals_8 = self.norm1.bias primals_9 = self.norm2.weight primals_13 = self.norm2.bias primals_6 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
marcinwitkowski/icefall
TransformerEncoderLayer
false
10,499
[ "Apache-2.0" ]
0
73e917f689fa2ebfcfe5d484a34a262e74b77581
https://github.com/marcinwitkowski/icefall/tree/73e917f689fa2ebfcfe5d484a34a262e74b77581
ExponentialEnvelope
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/x5/cx5j776jq3f7ur7t6btfvmwkx226q23v5cc44pr45r44hqzgfwf5.py # Topologically Sorted Source Nodes: [lt, pow_1, neg, sub, add, mul, truediv, env_val, zeros_like, where], Original ATen: [aten.lt, aten.pow, aten.neg, aten.rsub, aten.add, aten.mul, aten.div, aten.exp, aten.zeros_like, aten.where] # Source node to ATen node mapping: # add => add # env_val => exp # lt => lt # mul => mul # neg => neg # pow_1 => pow_1 # sub => sub # truediv => div # where => where # zeros_like => full_default # Graph fragment: # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%arg0_1, 1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %exp, %full_default), kwargs = {}) triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0 = async_compile.triton('triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 < tmp1 tmp3 = tmp0 * tmp0 tmp4 = -tmp3 tmp5 = tmp1 - tmp0 tmp6 = tmp0 + tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp4 / tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = 0.0 tmp11 = tl.where(tmp2, tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [lt, pow_1, neg, sub, add, mul, truediv, env_val, zeros_like, where], Original ATen: [aten.lt, aten.pow, aten.neg, aten.rsub, aten.add, aten.mul, aten.div, aten.exp, aten.zeros_like, aten.where] stream0 = get_raw_stream(0) triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ExponentialEnvelope(torch.nn.Module): """ Exponential envelope function that ensures a smooth cutoff, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects """ def __init__(self): super().__init__() def forward(self, d_scaled): env_val = torch.exp(-d_scaled ** 2 / ((1 - d_scaled) * (1 + d_scaled))) return torch.where(d_scaled < 1, env_val, torch.zeros_like(d_scaled)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0(in_ptr0 , out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 < tmp1 tmp3 = tmp0 * tmp0 tmp4 = -tmp3 tmp5 = tmp1 - tmp0 tmp6 = tmp0 + tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp4 / tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = 0.0 tmp11 = tl.where(tmp2, tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_exp_lt_mul_neg_pow_rsub_where_zeros_like_0[ grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1 ) del arg0_1 return buf0, class ExponentialEnvelopeNew(torch.nn.Module): """ Exponential envelope function that ensures a smooth cutoff, as proposed in Unke, Chmiela, Gastegger, Schütt, Sauceda, Müller 2021. SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects """ def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
krylea/ocp
ExponentialEnvelope
false
10,500
[ "MIT" ]
0
00fc1df29731d70ff1b5cf8e9323d1d2f1f8e540
https://github.com/krylea/ocp/tree/00fc1df29731d70ff1b5cf8e9323d1d2f1f8e540
TransformerDecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul_2 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py # Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt_1 => add_2 # tgt_2 => var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py # Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt_1 => add_2 # tgt_2 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/7u/c7up5iv73h2zidaszkmsx5lcplapb2eule6rqadg4siq5zdaoo5m.py # Topologically Sorted Source Nodes: [tgt_1, tgt_3], Original ATen: [aten.add] # Source node to ATen node mapping: # tgt_1 => add_2 # tgt_3 => add_5 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_5 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %squeeze_2), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/72/c72dbqgy5xkloy2rcp3rynir3hrgprnoecgmcynn3qr6522vq72l.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_18), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_9 = async_compile.triton('triton_poi_fused_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/4e/c4escp7v3hikmzkxuyjmzdj3juzy4ty3yheqrkztwu2gvsteirte.py # Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.add] # Source node to ATen node mapping: # tgt_5 => add_8 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_20), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_tensor), kwargs = {}) triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (12, 4), (4, 1)) assert_size_stride(primals_12, (12, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (2048, 4), (4, 1)) assert_size_stride(primals_18, (2048, ), (1, )) assert_size_stride(primals_19, (4, 2048), (2048, 1)) assert_size_stride(primals_20, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1; del buf1 # reuse buf14 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt_1, tgt_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0) del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf16) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_12, (4, ), (1, ), 4), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf17) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_12, (4, ), (1, ), 8), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf18) buf19 = reinterpret_tensor(buf16, (4, 4, 1), (1, 4, 16), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf19, primals_12, 16, grid=grid(16), stream=stream0) del primals_12 buf20 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf19, reinterpret_tensor(buf17, (4, 1, 4), (1, 1, 4), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf20, buf21, 64, grid=grid(64), stream=stream0) buf22 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf21, buf22, 64, grid=grid(64), stream=stream0) del buf21 buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf22, reinterpret_tensor(buf18, (4, 4, 1), (1, 4, 1), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf23, buf24, 4, 4, grid=grid(4, 4), stream=stream0) buf25 = reinterpret_tensor(buf23, (4, 4), (4, 1), 0); del buf23 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf24, (4, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf25) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [tgt_1, tgt_3], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf26, primals_1, buf12, primals_14, 16, grid=grid(16), stream=stream0) del primals_14 buf27 = buf14; del buf14 # reuse buf28 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [tgt_4], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(buf26, buf27, buf28, 4, grid=grid(4), stream=stream0) buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt_4], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf26, buf27, buf28, primals_15, primals_16, buf29, 16, grid=grid(16), stream=stream0) del buf27 del buf28 del primals_16 buf30 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf29, reinterpret_tensor(primals_17, (4, 2048), (1, 4), 0), out=buf30) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] triton_poi_fused_relu_9.run(buf31, primals_18, 8192, grid=grid(8192), stream=stream0) del primals_18 buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf31, reinterpret_tensor(primals_19, (2048, 4), (1, 2048), 0), out=buf32) buf33 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf33, buf26, primals_20, 16, grid=grid(16), stream=stream0) del primals_20 return (buf33, primals_1, primals_8, primals_15, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, primals_10, buf22, reinterpret_tensor(buf24, (4, 4), (4, 1), 0), buf26, buf29, buf31, primals_19, primals_17, primals_13, reinterpret_tensor(buf18, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf19, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf17, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Optional from torch import nn def _get_activation_fn(activation: 'str'): if activation == 'relu': return nn.functional.relu elif activation == 'gelu': return nn.functional.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerDecoderLayer(nn.Module): """ Modified from torch.nn.TransformerDecoderLayer. Add support of normalize_before, i.e., use layer_norm before the first block. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = decoder_layer(tgt, memory) """ def __init__(self, d_model: 'int', nhead: 'int', dim_feedforward: 'int' =2048, dropout: 'float'=0.1, activation: 'str'='relu', normalize_before: 'bool'=True) ->None: super(TransformerDecoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def __setstate__(self, state): if 'activation' not in state: state['activation'] = nn.functional.relu super(TransformerDecoderLayer, self).__setstate__(state) def forward(self, tgt: 'torch.Tensor', memory: 'torch.Tensor', tgt_mask: 'Optional[torch.Tensor]'=None, memory_mask: 'Optional[torch.Tensor]'=None, tgt_key_padding_mask: 'Optional[torch.Tensor]'=None, memory_key_padding_mask: 'Optional[torch.Tensor]'=None) ->torch.Tensor: """Pass the inputs (and mask) through the decoder layer. Args: tgt: the sequence to the decoder layer (required). memory: the sequence from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). Shape: tgt: (T, N, E). memory: (S, N, E). tgt_mask: (T, T). memory_mask: (T, S). tgt_key_padding_mask: (N, T). memory_key_padding_mask: (N, S). S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = residual + self.dropout1(tgt2) if not self.normalize_before: tgt = self.norm1(tgt) residual = tgt if self.normalize_before: tgt = self.norm2(tgt) tgt2 = self.src_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = residual + self.dropout2(tgt2) if not self.normalize_before: tgt = self.norm2(tgt) residual = tgt if self.normalize_before: tgt = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = residual + self.dropout3(tgt2) if not self.normalize_before: tgt = self.norm3(tgt) return tgt def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (12, 4), (4, 1)) assert_size_stride(primals_12, (12,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (2048, 4), (4, 1)) assert_size_stride(primals_18, (2048,), (1,)) assert_size_stride(primals_19, (4, 2048), (2048, 1)) assert_size_stride(primals_20, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha= 1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha= 1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0) del buf3 triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1 del buf1 buf14 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12, buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf16) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_12, (4,), (1,), 4), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf17) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_12, (4,), (1,), 8), primals_10, reinterpret_tensor(primals_11, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf18) buf19 = reinterpret_tensor(buf16, (4, 4, 1), (1, 4, 16), 0) del buf16 triton_poi_fused_mul_2[grid(16)](buf19, primals_12, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_12 buf20 = buf8 del buf8 extern_kernels.bmm(buf19, reinterpret_tensor(buf17, (4, 1, 4), (1, 1, 4), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf20, buf21, 64, XBLOCK=64, num_warps=1, num_stages=1) buf22 = buf20 del buf20 triton_poi_fused__softmax_4[grid(64)](buf21, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf22, reinterpret_tensor(buf18, (4, 4, 1), (1, 4, 1), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf23, buf24, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf25 = reinterpret_tensor(buf23, (4, 4), (4, 1), 0) del buf23 extern_kernels.mm(reinterpret_tensor(buf24, (4, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf25) buf26 = buf25 del buf25 triton_poi_fused_add_8[grid(16)](buf26, primals_1, buf12, primals_14, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_14 buf27 = buf14 del buf14 buf28 = buf13 del buf13 triton_poi_fused_native_layer_norm_0[grid(4)](buf26, buf27, buf28, 4, XBLOCK=4, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](buf26, buf27, buf28, primals_15, primals_16, buf29, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf27 del buf28 del primals_16 buf30 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf29, reinterpret_tensor(primals_17, (4, 2048), (1, 4), 0), out=buf30) buf31 = buf30 del buf30 triton_poi_fused_relu_9[grid(8192)](buf31, primals_18, 8192, XBLOCK =256, num_warps=4, num_stages=1) del primals_18 buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf31, reinterpret_tensor(primals_19, (2048, 4), (1, 2048), 0), out=buf32) buf33 = buf32 del buf32 triton_poi_fused_add_10[grid(16)](buf33, buf26, primals_20, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_20 return (buf33, primals_1, primals_8, primals_15, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, primals_10, buf22, reinterpret_tensor(buf24, (4, 4), (4, 1), 0), buf26, buf29, buf31, primals_19, primals_17, primals_13, reinterpret_tensor(buf18, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf19, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf17, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0)) def _get_activation_fn(activation: 'str'): if activation == 'relu': return nn.functional.relu elif activation == 'gelu': return nn.functional.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerDecoderLayerNew(nn.Module): """ Modified from torch.nn.TransformerDecoderLayer. Add support of normalize_before, i.e., use layer_norm before the first block. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = decoder_layer(tgt, memory) """ def __init__(self, d_model: 'int', nhead: 'int', dim_feedforward: 'int' =2048, dropout: 'float'=0.1, activation: 'str'='relu', normalize_before: 'bool'=True) ->None: super(TransformerDecoderLayerNew, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def __setstate__(self, state): if 'activation' not in state: state['activation'] = nn.functional.relu super(TransformerDecoderLayerNew, self).__setstate__(state) def forward(self, input_0, input_1): primals_4 = self.self_attn.in_proj_weight primals_5 = self.self_attn.in_proj_bias primals_1 = self.self_attn.out_proj.weight primals_2 = self.self_attn.out_proj.bias primals_11 = self.src_attn.in_proj_weight primals_12 = self.src_attn.in_proj_bias primals_6 = self.src_attn.out_proj.weight primals_3 = self.src_attn.out_proj.bias primals_17 = self.linear1.weight primals_18 = self.linear1.bias primals_19 = self.linear2.weight primals_7 = self.linear2.bias primals_8 = self.norm1.weight primals_9 = self.norm1.bias primals_14 = self.norm2.weight primals_15 = self.norm2.bias primals_16 = self.norm3.weight primals_20 = self.norm3.bias primals_10 = input_0 primals_13 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return output[0]
marcinwitkowski/icefall
TransformerDecoderLayer
false
10,501
[ "Apache-2.0" ]
0
73e917f689fa2ebfcfe5d484a34a262e74b77581
https://github.com/marcinwitkowski/icefall/tree/73e917f689fa2ebfcfe5d484a34a262e74b77581
EQ
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/al/calhisv2tizhq3s3r7egazungn7zoqv2w3alcz76uykvsknhyvtu.py # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] # Source node to ATen node mapping: # eq => eq # Graph fragment: # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_eq_0 = async_compile.triton('triton_poi_fused_eq_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] stream0 = get_raw_stream(0) triton_poi_fused_eq_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class EQ(torch.nn.Module): def __init__(self): super(EQ, self).__init__() def forward(self, x, y): return x == y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_eq_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class EQNew(torch.nn.Module): def __init__(self): super(EQNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
EQ
false
10,502
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
FloorDivConst
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/tb/ctbynfs5xkf63qma63wq3lqrqxudoglg3opu5uqncvk4krz6u4d6.py # Topologically Sorted Source Nodes: [floordiv], Original ATen: [aten.floor_divide] # Source node to ATen node mapping: # floordiv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor_mode](args = (%arg0_1, 2.0), kwargs = {rounding_mode: floor}) triton_poi_fused_floor_divide_0 = async_compile.triton('triton_poi_fused_floor_divide_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_divide_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [floordiv], Original ATen: [aten.floor_divide] stream0 = get_raw_stream(0) triton_poi_fused_floor_divide_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FloorDivConst(torch.nn.Module): def __init__(self): super(FloorDivConst, self).__init__() def forward(self, x): return x // 2.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_floor_divide_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class FloorDivConstNew(torch.nn.Module): def __init__(self): super(FloorDivConstNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FloorDivConst
false
10,503
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
FunctionalRelu6
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/36/c36w3rtlopsrs3btjlizo5n4q3ytar7mtz2eoqnft735ksvzltlx.py # Topologically Sorted Source Nodes: [relu6], Original ATen: [aten.hardtanh] # Source node to ATen node mapping: # relu6 => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) triton_poi_fused_hardtanh_0 = async_compile.triton('triton_poi_fused_hardtanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 6.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu6], Original ATen: [aten.hardtanh] stream0 = get_raw_stream(0) triton_poi_fused_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FunctionalRelu6(torch.nn.Module): def forward(self, x): return torch.nn.functional.relu6(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 6.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_hardtanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class FunctionalRelu6New(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FunctionalRelu6
false
10,504
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
Div
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/i3/ci3wf6sq5envi5qqy36dg5xyilb5fmbazlijbvgfe3ony6kt56ir.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Div(torch.nn.Module): def __init__(self): super(Div, self).__init__() def forward(self, x, y): return x / y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class DivNew(torch.nn.Module): def __init__(self): super(DivNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
Div
false
10,505
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
IMul
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/p7/cp7q4ygkticqaby6s2m6wxiksnded4xo7kzlzdrkn2gkm4uhmfll.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %mul), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class IMul(torch.nn.Module): def __init__(self): super(IMul, self).__init__() def forward(self, x, y): x *= y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class IMulNew(torch.nn.Module): def __init__(self): super(IMulNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
IMul
false
10,506
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
EncoderBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wn/cwnd5vl7chiovijimp6gyf33q73wu654iac6mrzitydgjlqpr2ex.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/3r/c3rot5fjewsldwgbczopiyc7qwhwfli6vc5uev7vkn5tanr55gng.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wx/cwxualxl25mqlzjtq2gwr23zxftbfa4prri2qek4cspbzaea5fdd.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/46/c46y6vu7xon3jysuuwy4oi42oevud6urjwy74ouqpco7hbi4q5vr.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/nj/cnjoabcsytotmhzv63dkba5ikz7rpfo4ysgbo2qil7oex3tfkqpp.py # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.view] # Source node to ATen node mapping: # tensordot_3 => view_15 # Graph fragment: # %view_15 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%permute_11, [16, 4]), kwargs = {}) triton_poi_fused_view_6 = async_compile.triton('triton_poi_fused_view_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/y3/cy343ygrf3zylgiur4j73pg37nhtigadgeesjteptezp3oudyv2v.py # Topologically Sorted Source Nodes: [a_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # a_3 => add_5 # out_4 => add_6 # out_5 => var_mean_1 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_6, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (3)) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/hb/chbkdewdizlbmjt2qaf2a7gkjdbx2wvkpzaar7bh34dczfbiwzwv.py # Topologically Sorted Source Nodes: [a_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # a_3 => add_5 # out_4 => add_6 # out_5 => add_7, add_8, mul_2, mul_3, rsqrt_1, sub_2 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_7,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_12), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_13), kwargs = {}) triton_poi_fused_add_native_layer_norm_8 = async_compile.triton('triton_poi_fused_add_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dp/cdplbbjhtn7wjfs5zbdr7dqzrhv6sxravwmmbhqyrtfejnoccqhe.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.gelu] # Source node to ATen node mapping: # out_7 => add_9, erf, mul_4, mul_5, mul_6 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.5), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_5,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_9), kwargs = {}) triton_poi_fused_gelu_9 = async_compile.triton('triton_poi_fused_gelu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/xq/cxqpreily3qozkpwkovyqsc2vivjcbbuib5nbvfc77b24cb4ywwa.py # Topologically Sorted Source Nodes: [a_3, out_4, out_11], Original ATen: [aten.add] # Source node to ATen node mapping: # a_3 => add_5 # out_11 => add_10 # out_4 => add_6 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_21, %add_6), kwargs = {}) triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_9, (4, 1), (1, 1)) assert_size_stride(primals_10, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), out=buf3) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (4, 1), 0), out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf3, primals_5, buf6, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf4, primals_7, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(buf8, buf9, buf10, 256, grid=grid(256), stream=stream0) del buf8 del buf9 buf11 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(buf5, primals_9, buf11, 16, 4, grid=grid(16, 4), stream=stream0) del primals_9 buf12 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.view] triton_poi_fused_view_6.run(buf12, buf13, 16, 4, grid=grid(16, 4), stream=stream0) buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.mm] extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (4, 4), (4, 1), 0), out=buf14) buf15 = buf1; del buf1 # reuse buf16 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [a_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(buf14, primals_11, primals_1, buf15, buf16, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_8.run(buf14, primals_11, primals_1, buf15, buf16, primals_12, primals_13, buf17, 64, grid=grid(64), stream=stream0) del buf15 del buf16 del primals_13 buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_15 buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.gelu] triton_poi_fused_gelu_9.run(buf18, buf19, 64, grid=grid(64), stream=stream0) buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [a_3, out_4, out_11], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf21, primals_17, buf14, primals_11, primals_1, 64, grid=grid(64), stream=stream0) del primals_17 return (buf21, primals_1, primals_11, primals_12, buf10, reinterpret_tensor(buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0), buf14, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), buf18, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), primals_16, primals_14, reinterpret_tensor(buf13, (4, 16), (1, 4), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MlpBlock(nn.Module): """ Transformer Feed-Forward Block """ def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1): super(MlpBlock, self).__init__() self.fc1 = nn.Linear(in_dim, mlp_dim) self.fc2 = nn.Linear(mlp_dim, out_dim) self.act = nn.GELU() if dropout_rate > 0.0: self.dropout1 = nn.Dropout(dropout_rate) self.dropout2 = nn.Dropout(dropout_rate) else: self.dropout1 = None self.dropout2 = None def forward(self, x): out = self.fc1(x) out = self.act(out) if self.dropout1: out = self.dropout1(out) out = self.fc2(out) out = self.dropout2(out) return out class LinearGeneral(nn.Module): def __init__(self, in_dim=(768,), feat_dim=(12, 64)): super(LinearGeneral, self).__init__() self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim)) self.bias = nn.Parameter(torch.zeros(*feat_dim)) def forward(self, x, dims): a = torch.tensordot(x, self.weight, dims=dims) + self.bias return a class SelfAttention(nn.Module): def __init__(self, in_dim, heads=8, dropout_rate=0.1): super(SelfAttention, self).__init__() self.heads = heads self.head_dim = in_dim // heads self.scale = self.head_dim ** 0.5 self.query = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.key = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.value = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.out = LinearGeneral((self.heads, self.head_dim), (in_dim,)) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None def forward(self, x): _b, _n, _ = x.shape q = self.query(x, dims=([2], [0])) k = self.key(x, dims=([2], [0])) v = self.value(x, dims=([2], [0])) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attn_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale attn_weights = F.softmax(attn_weights, dim=-1) out = torch.matmul(attn_weights, v) out = out.permute(0, 2, 1, 3) out = self.out(out, dims=([2, 3], [0, 1])) return out class EncoderBlock(nn.Module): def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attn_dropout_rate=0.1): super(EncoderBlock, self).__init__() self.norm1 = nn.LayerNorm(in_dim) self.attn = SelfAttention(in_dim, heads=num_heads, dropout_rate= attn_dropout_rate) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None self.norm2 = nn.LayerNorm(in_dim) self.mlp = MlpBlock(in_dim, mlp_dim, in_dim, dropout_rate) def forward(self, x): residual = x out = self.norm1(x) out = self.attn(out) if self.dropout: out = self.dropout(out) out += residual residual = out out = self.norm2(out) out = self.mlp(out) out += residual return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'mlp_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_view_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + 2) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + 3) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp40, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_9, (4, 1), (1, 1)) assert_size_stride(primals_10, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), out=buf3) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (4, 1), 0), out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_2[grid(16, 4)](buf3, primals_5, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf3 triton_poi_fused_2[grid(16, 4)](buf4, primals_7, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_3[grid(256)](buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_4[grid(256)](buf8, buf9, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del buf9 buf11 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf4 triton_poi_fused_5[grid(16, 4)](buf5, primals_9, buf11, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf12 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_view_6[grid(16, 4)](buf12, buf13, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0) del buf12 extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (4, 4), (4, 1), 0), out=buf14) buf15 = buf1 del buf1 buf16 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_7[grid(16)](buf14, primals_11, primals_1, buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_8[grid(64)](buf14, primals_11, primals_1, buf15, buf16, primals_12, primals_13, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf15 del buf16 del primals_13 buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_15 buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_gelu_9[grid(64)](buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0) del buf20 triton_poi_fused_add_10[grid(64)](buf21, primals_17, buf14, primals_11, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_17 return buf21, primals_1, primals_11, primals_12, buf10, reinterpret_tensor( buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0 ), buf14, reinterpret_tensor(buf17, (16, 4), (4, 1), 0 ), buf18, reinterpret_tensor(buf19, (16, 4), (4, 1), 0 ), primals_16, primals_14, reinterpret_tensor(buf13, (4, 16), (1, 4), 0 ), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0 ), reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor( primals_8, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0) class MlpBlock(nn.Module): """ Transformer Feed-Forward Block """ def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1): super(MlpBlock, self).__init__() self.fc1 = nn.Linear(in_dim, mlp_dim) self.fc2 = nn.Linear(mlp_dim, out_dim) self.act = nn.GELU() if dropout_rate > 0.0: self.dropout1 = nn.Dropout(dropout_rate) self.dropout2 = nn.Dropout(dropout_rate) else: self.dropout1 = None self.dropout2 = None def forward(self, x): out = self.fc1(x) out = self.act(out) if self.dropout1: out = self.dropout1(out) out = self.fc2(out) out = self.dropout2(out) return out class LinearGeneral(nn.Module): def __init__(self, in_dim=(768,), feat_dim=(12, 64)): super(LinearGeneral, self).__init__() self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim)) self.bias = nn.Parameter(torch.zeros(*feat_dim)) def forward(self, x, dims): a = torch.tensordot(x, self.weight, dims=dims) + self.bias return a class SelfAttention(nn.Module): def __init__(self, in_dim, heads=8, dropout_rate=0.1): super(SelfAttention, self).__init__() self.heads = heads self.head_dim = in_dim // heads self.scale = self.head_dim ** 0.5 self.query = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.key = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.value = LinearGeneral((in_dim,), (self.heads, self.head_dim)) self.out = LinearGeneral((self.heads, self.head_dim), (in_dim,)) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None def forward(self, x): _b, _n, _ = x.shape q = self.query(x, dims=([2], [0])) k = self.key(x, dims=([2], [0])) v = self.value(x, dims=([2], [0])) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attn_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale attn_weights = F.softmax(attn_weights, dim=-1) out = torch.matmul(attn_weights, v) out = out.permute(0, 2, 1, 3) out = self.out(out, dims=([2, 3], [0, 1])) return out class EncoderBlockNew(nn.Module): def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attn_dropout_rate=0.1): super(EncoderBlockNew, self).__init__() self.norm1 = nn.LayerNorm(in_dim) self.attn = SelfAttention(in_dim, heads=num_heads, dropout_rate= attn_dropout_rate) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None self.norm2 = nn.LayerNorm(in_dim) self.mlp = MlpBlock(in_dim, mlp_dim, in_dim, dropout_rate) def forward(self, input_0): primals_2 = self.norm1.weight primals_3 = self.norm1.bias primals_4 = self.attn.query.weight primals_5 = self.attn.query.bias primals_6 = self.attn.key.weight primals_7 = self.attn.key.bias primals_8 = self.attn.value.weight primals_9 = self.attn.value.bias primals_10 = self.attn.out.weight primals_11 = self.attn.out.bias primals_12 = self.norm2.weight primals_13 = self.norm2.bias primals_14 = self.mlp.fc1.weight primals_15 = self.mlp.fc1.bias primals_16 = self.mlp.fc2.weight primals_17 = self.mlp.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
longxianlei/UtilsTools
EncoderBlock
false
10,507
[ "MIT" ]
0
f45c648eb679ed59bb512b61a1af52938e326ac3
https://github.com/longxianlei/UtilsTools/tree/f45c648eb679ed59bb512b61a1af52938e326ac3
FloorDivAssign
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2x/c2xxm2k57w4efpfutbr5mqaledczo4fgynnyyf7lgad47nyhueqf.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.floor_divide] # Source node to ATen node mapping: # x => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor_mode](args = (%arg0_1, %arg1_1), kwargs = {rounding_mode: floor}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %div), kwargs = {}) triton_poi_fused_floor_divide_0 = async_compile.triton('triton_poi_fused_floor_divide_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_divide_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr1 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.floor_divide] stream0 = get_raw_stream(0) triton_poi_fused_floor_divide_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FloorDivAssign(torch.nn.Module): def __init__(self): super(FloorDivAssign, self).__init__() def forward(self, x, y): x //= y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr1 + x0, tmp3, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_floor_divide_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class FloorDivAssignNew(torch.nn.Module): def __init__(self): super(FloorDivAssignNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FloorDivAssign
false
10,508
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
FloorDiv
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/y3/cy3bepoxjelvaqyj7nv3ki5rbi3sxvykydr7xjuzv3izweyzvfi7.py # Topologically Sorted Source Nodes: [floordiv], Original ATen: [aten.floor_divide] # Source node to ATen node mapping: # floordiv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor_mode](args = (%arg0_1, %arg1_1), kwargs = {rounding_mode: floor}) triton_poi_fused_floor_divide_0 = async_compile.triton('triton_poi_fused_floor_divide_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_divide_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [floordiv], Original ATen: [aten.floor_divide] stream0 = get_raw_stream(0) triton_poi_fused_floor_divide_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FloorDiv(torch.nn.Module): def __init__(self): super(FloorDiv, self).__init__() def forward(self, x, y): return x // y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_floor_divide_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class FloorDivNew(torch.nn.Module): def __init__(self): super(FloorDivNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FloorDiv
false
10,509
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
EncoderBasicBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wn/cwnd5vl7chiovijimp6gyf33q73wu654iac6mrzitydgjlqpr2ex.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/3r/c3rot5fjewsldwgbczopiyc7qwhwfli6vc5uev7vkn5tanr55gng.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wx/cwxualxl25mqlzjtq2gwr23zxftbfa4prri2qek4cspbzaea5fdd.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/46/c46y6vu7xon3jysuuwy4oi42oevud6urjwy74ouqpco7hbi4q5vr.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/nj/cnjoabcsytotmhzv63dkba5ikz7rpfo4ysgbo2qil7oex3tfkqpp.py # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.view] # Source node to ATen node mapping: # tensordot_3 => view_15 # Graph fragment: # %view_15 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%permute_11, [16, 4]), kwargs = {}) triton_poi_fused_view_6 = async_compile.triton('triton_poi_fused_view_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/y3/cy343ygrf3zylgiur4j73pg37nhtigadgeesjteptezp3oudyv2v.py # Topologically Sorted Source Nodes: [feat_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # feat_3 => add_5 # out_4 => add_6 # out_5 => var_mean_1 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_6, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (3)) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/hb/chbkdewdizlbmjt2qaf2a7gkjdbx2wvkpzaar7bh34dczfbiwzwv.py # Topologically Sorted Source Nodes: [feat_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # feat_3 => add_5 # out_4 => add_6 # out_5 => add_7, add_8, mul_2, mul_3, rsqrt_1, sub_2 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_7,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_12), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_13), kwargs = {}) triton_poi_fused_add_native_layer_norm_8 = async_compile.triton('triton_poi_fused_add_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dp/cdplbbjhtn7wjfs5zbdr7dqzrhv6sxravwmmbhqyrtfejnoccqhe.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.gelu] # Source node to ATen node mapping: # out_7 => add_9, erf, mul_4, mul_5, mul_6 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.5), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_5,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_9), kwargs = {}) triton_poi_fused_gelu_9 = async_compile.triton('triton_poi_fused_gelu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/xq/cxqpreily3qozkpwkovyqsc2vivjcbbuib5nbvfc77b24cb4ywwa.py # Topologically Sorted Source Nodes: [feat_3, out_4, out_11], Original ATen: [aten.add] # Source node to ATen node mapping: # feat_3 => add_5 # out_11 => add_10 # out_4 => add_6 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %primals_1), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_21, %add_6), kwargs = {}) triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_9, (4, 1), (1, 1)) assert_size_stride(primals_10, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), out=buf3) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (4, 1), 0), out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf3, primals_5, buf6, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf4, primals_7, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(buf8, buf9, buf10, 256, grid=grid(256), stream=stream0) del buf8 del buf9 buf11 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(buf5, primals_9, buf11, 16, 4, grid=grid(16, 4), stream=stream0) del primals_9 buf12 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.view] triton_poi_fused_view_6.run(buf12, buf13, 16, 4, grid=grid(16, 4), stream=stream0) buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.mm] extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (4, 4), (4, 1), 0), out=buf14) buf15 = buf1; del buf1 # reuse buf16 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [feat_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(buf14, primals_11, primals_1, buf15, buf16, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [feat_3, out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_8.run(buf14, primals_11, primals_1, buf15, buf16, primals_12, primals_13, buf17, 64, grid=grid(64), stream=stream0) del buf15 del buf16 del primals_13 buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_15 buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.gelu] triton_poi_fused_gelu_9.run(buf18, buf19, 64, grid=grid(64), stream=stream0) buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [feat_3, out_4, out_11], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf21, primals_17, buf14, primals_11, primals_1, 64, grid=grid(64), stream=stream0) del primals_17 return (buf21, primals_1, primals_11, primals_12, buf10, reinterpret_tensor(buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0), buf14, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), buf18, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), primals_16, primals_14, reinterpret_tensor(buf13, (4, 16), (1, 4), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MLPBlock(nn.Module): def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1): super(MLPBlock, self).__init__() self.fc1 = nn.Linear(in_dim, mlp_dim) self.fc2 = nn.Linear(mlp_dim, out_dim) self.Gelu = nn.GELU() if dropout_rate > 0: self.dropout1 = nn.Dropout(dropout_rate) self.dropout2 = nn.Dropout(dropout_rate) else: self.dropout1 = None self.dropout2 = None def forward(self, x): out = self.fc1(x) out = self.Gelu(out) if self.dropout1: out = self.dropout1(out) out = self.fc2(out) if self.dropout2: out = self.dropout2(out) return out class MatrixGeneral(nn.Module): def __init__(self, in_dim=(768,), feat_dim=(12, 64)): super(MatrixGeneral, self).__init__() self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim)) self.bias = nn.Parameter(torch.zeros(*feat_dim)) def forward(self, x, dims): feat = torch.tensordot(x, self.weight, dims=dims) + self.bias return feat class MultiHeadSelfAttention(nn.Module): def __init__(self, in_dim, heads=8, dropout_rate=0.1): super(MultiHeadSelfAttention, self).__init__() self.heads = heads self.head_dim = in_dim // heads self.scale = self.head_dim ** 0.5 self.query = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.key = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.value = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.out = MatrixGeneral((self.heads, self.head_dim), (in_dim,)) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None def forward(self, x): _b, _n, _ = x.shape q = self.query(x, dims=([2], [0])) k = self.key(x, dims=([2], [0])) v = self.value(x, dims=([2], [0])) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attention_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale attention_weights = F.softmax(attention_weights, dim=-1) out = torch.matmul(attention_weights, v) out = out.permute(0, 2, 1, 3) out = self.out(out, dims=([2, 3], [0, 1])) return out class EncoderBasicBlock(nn.Module): def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attention_dropout=0.1): super(EncoderBasicBlock, self).__init__() self.layer_norm1 = nn.LayerNorm(in_dim) self.multi_head_att = MultiHeadSelfAttention(in_dim, heads= num_heads, dropout_rate=attention_dropout) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None self.layer_norm2 = nn.LayerNorm(in_dim) self.mlp = MLPBlock(in_dim, mlp_dim, in_dim, dropout_rate) def forward(self, x): residual = x out = self.layer_norm1(x) out = self.multi_head_att(out) if self.dropout: out = self.dropout(out) out += residual residual = out out = self.layer_norm2(out) out = self.mlp(out) out += residual return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'mlp_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_view_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + 2) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + 3) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp40, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_gelu_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_9, (4, 1), (1, 1)) assert_size_stride(primals_10, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), out=buf3) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (4, 1), 0), out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_2[grid(16, 4)](buf3, primals_5, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = reinterpret_tensor(buf3, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf3 triton_poi_fused_2[grid(16, 4)](buf4, primals_7, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 0, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_3[grid(256)](buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_4[grid(256)](buf8, buf9, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del buf9 buf11 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf4 triton_poi_fused_5[grid(16, 4)](buf5, primals_9, buf11, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf12 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf10, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 0), 0), out=buf12) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_view_6[grid(16, 4)](buf12, buf13, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf14 = reinterpret_tensor(buf12, (16, 4), (4, 1), 0) del buf12 extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (4, 4), (4, 1), 0), out=buf14) buf15 = buf1 del buf1 buf16 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_7[grid(16)](buf14, primals_11, primals_1, buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_8[grid(64)](buf14, primals_11, primals_1, buf15, buf16, primals_12, primals_13, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf15 del buf16 del primals_13 buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_15 buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_gelu_9[grid(64)](buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0) del buf20 triton_poi_fused_add_10[grid(64)](buf21, primals_17, buf14, primals_11, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_17 return buf21, primals_1, primals_11, primals_12, buf10, reinterpret_tensor( buf11, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 4), 0 ), buf14, reinterpret_tensor(buf17, (16, 4), (4, 1), 0 ), buf18, reinterpret_tensor(buf19, (16, 4), (4, 1), 0 ), primals_16, primals_14, reinterpret_tensor(buf13, (4, 16), (1, 4), 0 ), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0 ), reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor( primals_8, (4, 4), (1, 4), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0) class MLPBlock(nn.Module): def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1): super(MLPBlock, self).__init__() self.fc1 = nn.Linear(in_dim, mlp_dim) self.fc2 = nn.Linear(mlp_dim, out_dim) self.Gelu = nn.GELU() if dropout_rate > 0: self.dropout1 = nn.Dropout(dropout_rate) self.dropout2 = nn.Dropout(dropout_rate) else: self.dropout1 = None self.dropout2 = None def forward(self, x): out = self.fc1(x) out = self.Gelu(out) if self.dropout1: out = self.dropout1(out) out = self.fc2(out) if self.dropout2: out = self.dropout2(out) return out class MatrixGeneral(nn.Module): def __init__(self, in_dim=(768,), feat_dim=(12, 64)): super(MatrixGeneral, self).__init__() self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim)) self.bias = nn.Parameter(torch.zeros(*feat_dim)) def forward(self, x, dims): feat = torch.tensordot(x, self.weight, dims=dims) + self.bias return feat class MultiHeadSelfAttention(nn.Module): def __init__(self, in_dim, heads=8, dropout_rate=0.1): super(MultiHeadSelfAttention, self).__init__() self.heads = heads self.head_dim = in_dim // heads self.scale = self.head_dim ** 0.5 self.query = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.key = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.value = MatrixGeneral((in_dim,), (self.heads, self.head_dim)) self.out = MatrixGeneral((self.heads, self.head_dim), (in_dim,)) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None def forward(self, x): _b, _n, _ = x.shape q = self.query(x, dims=([2], [0])) k = self.key(x, dims=([2], [0])) v = self.value(x, dims=([2], [0])) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attention_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale attention_weights = F.softmax(attention_weights, dim=-1) out = torch.matmul(attention_weights, v) out = out.permute(0, 2, 1, 3) out = self.out(out, dims=([2, 3], [0, 1])) return out class EncoderBasicBlockNew(nn.Module): def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attention_dropout=0.1): super(EncoderBasicBlockNew, self).__init__() self.layer_norm1 = nn.LayerNorm(in_dim) self.multi_head_att = MultiHeadSelfAttention(in_dim, heads= num_heads, dropout_rate=attention_dropout) if dropout_rate > 0: self.dropout = nn.Dropout(dropout_rate) else: self.dropout = None self.layer_norm2 = nn.LayerNorm(in_dim) self.mlp = MLPBlock(in_dim, mlp_dim, in_dim, dropout_rate) def forward(self, input_0): primals_2 = self.layer_norm1.weight primals_3 = self.layer_norm1.bias primals_4 = self.multi_head_att.query.weight primals_5 = self.multi_head_att.query.bias primals_6 = self.multi_head_att.key.weight primals_7 = self.multi_head_att.key.bias primals_8 = self.multi_head_att.value.weight primals_9 = self.multi_head_att.value.bias primals_10 = self.multi_head_att.out.weight primals_11 = self.multi_head_att.out.bias primals_12 = self.layer_norm2.weight primals_13 = self.layer_norm2.bias primals_14 = self.mlp.fc1.weight primals_15 = self.mlp.fc1.bias primals_16 = self.mlp.fc2.weight primals_17 = self.mlp.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
longxianlei/UtilsTools
EncoderBasicBlock
false
10,510
[ "MIT" ]
0
f45c648eb679ed59bb512b61a1af52938e326ac3
https://github.com/longxianlei/UtilsTools/tree/f45c648eb679ed59bb512b61a1af52938e326ac3
GT
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/oo/coocrqpipgemuyc3lkhsb7xfpsz2kbgvv5cqmrfukvj62n7puahy.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_gt_0 = async_compile.triton('triton_poi_fused_gt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] stream0 = get_raw_stream(0) triton_poi_fused_gt_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class GT(torch.nn.Module): def __init__(self): super(GT, self).__init__() def forward(self, x, y): return x > y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_gt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_gt_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class GTNew(torch.nn.Module): def __init__(self): super(GTNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
GT
false
10,511
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
IDiv
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/eg/ceghw55buy2kdxurnttygvw63vke5iiofs62xigwwfgbadj5oqov.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] # Source node to ATen node mapping: # x => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %div), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class IDiv(torch.nn.Module): def __init__(self): super(IDiv, self).__init__() def forward(self, x, y): x /= y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class IDivNew(torch.nn.Module): def __init__(self): super(IDivNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
IDiv
false
10,512
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
FunctionalRelu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FunctionalRelu(torch.nn.Module): def forward(self, x): return torch.nn.functional.relu(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class FunctionalReluNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FunctionalRelu
false
10,513
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
MaxPool1D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/eg/ceg5r5lesy4yjcsgwggyxi634wo4m2ibfbfrzibrfm7cykiqvg76.py # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool1d => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 4], [1, 4], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 1), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class MaxPool1D(torch.nn.Module): def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False): super().__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode def forward(self, x): return torch.nn.functional.max_pool1d(x, self.kernel_size, stride= self.stride, padding=self.padding, ceil_mode=self.ceil_mode) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 1), (1, 1), 0), class MaxPool1DNew(torch.nn.Module): def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False): super().__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
MaxPool1D
false
10,514
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
ModAssign
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6e/c6ezk6pk6hjduyx6ddqzdznkxdwuxqn3aomg7rzp3zogrfdszag6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.remainder] # Source node to ATen node mapping: # x => remainder # Graph fragment: # %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %remainder), kwargs = {}) triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_remainder_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr1 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.remainder] stream0 = get_raw_stream(0) triton_poi_fused_remainder_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ModAssign(torch.nn.Module): def __init__(self): super(ModAssign, self).__init__() def forward(self, x, y): x %= y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_remainder_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr1 + x0, tmp10, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_remainder_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class ModAssignNew(torch.nn.Module): def __init__(self): super(ModAssignNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
ModAssign
false
10,515
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
ISub
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/tk/ctkgmfmzjuitsqnampr3rgu2evmz4dngqwytnh7daxge4todv4py.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sub] # Source node to ATen node mapping: # x => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %sub), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ISub(torch.nn.Module): def __init__(self): super(ISub, self).__init__() def forward(self, x, y): x -= y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class ISubNew(torch.nn.Module): def __init__(self): super(ISubNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
ISub
false
10,516
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
LT
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/4h/c4hafdeeg2jl3rk254ws2m7bzvz6wbkt7uvyh3ocmzpvol2ipjko.py # Topologically Sorted Source Nodes: [lt], Original ATen: [aten.lt] # Source node to ATen node mapping: # lt => lt # Graph fragment: # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_lt_0 = async_compile.triton('triton_poi_fused_lt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_lt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 < tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [lt], Original ATen: [aten.lt] stream0 = get_raw_stream(0) triton_poi_fused_lt_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LT(torch.nn.Module): def __init__(self): super(LT, self).__init__() def forward(self, x, y): return x < y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_lt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 < tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_lt_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class LTNew(torch.nn.Module): def __init__(self): super(LTNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
LT
false
10,517
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
ModConst
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2r/c2r4pwkz4moq3drpyeanjh2h7yopvfd7lgl57zrnossdspcnfhhv.py # Topologically Sorted Source Nodes: [mod], Original ATen: [aten.remainder] # Source node to ATen node mapping: # mod => remainder # Graph fragment: # %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%arg0_1, 2.0), kwargs = {}) triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mod], Original ATen: [aten.remainder] stream0 = get_raw_stream(0) triton_poi_fused_remainder_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ModConst(torch.nn.Module): def __init__(self): super(ModConst, self).__init__() def forward(self, x): return x % 2.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_remainder_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ModConstNew(torch.nn.Module): def __init__(self): super(ModConstNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
ModConst
false
10,518
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
FunctionalConv3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/d4/cd4ygdjn67m65g44zq7u52lzpladubxfjg4l5h77qlkxilabiuwm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 4, grid=grid(4), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class FunctionalConv3d(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.conv = torch.nn.Conv3d(*args, **kwargs) def forward(self, x): x = torch.nn.functional.conv3d(x, self.conv.weight, self.conv.bias, self.conv.stride, self.conv.padding, self.conv.dilation, self. conv.groups) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(4)](buf1, primals_2, 4, XBLOCK= 4, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class FunctionalConv3dNew(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.conv = torch.nn.Conv3d(*args, **kwargs) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
FunctionalConv3d
false
10,519
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
Mod
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/qo/cqotcw2xqoq25f7ijx753kys3wd2g4ywfa7xsogawe3yqltqaulo.py # Topologically Sorted Source Nodes: [mod], Original ATen: [aten.remainder] # Source node to ATen node mapping: # mod => remainder # Graph fragment: # %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_remainder_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mod], Original ATen: [aten.remainder] stream0 = get_raw_stream(0) triton_poi_fused_remainder_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Mod(torch.nn.Module): def __init__(self): super(Mod, self).__init__() def forward(self, x, y): return x % y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_remainder_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_remainder_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class ModNew(torch.nn.Module): def __init__(self): super(ModNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
Mod
false
10,520
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TensorClampOptionMaxMin
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/kk/ckkvw2eootfbcqybp52nepeyub7pn2go6gqcxynwbaothewy66ku.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -0.1), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 0.1), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.1 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TensorClampOptionMaxMin(torch.nn.Module): def forward(self, x): return x.clamp(min=-0.1, max=0.1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.1 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorClampOptionMaxMinNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TensorClampOptionMaxMin
false
10,521
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RMulFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/kh/ckhkvtw63aixa5pww5plsf4f5xegmzknbm6a3stzheag7xjm7n63.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 10.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RMulFloat(torch.nn.Module): def __init__(self): super(RMulFloat, self).__init__() def forward(self, x): return 10.0 * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RMulFloatNew(torch.nn.Module): def __init__(self): super(RMulFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RMulFloat
false
10,522
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
IAdd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ex/cexeaqxslhznkuzencvh3uey3x5fj6oev5hgvga57qcwzylabzz5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] # Source node to ATen node mapping: # x => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class IAdd(torch.nn.Module): def __init__(self): super(IAdd, self).__init__() def forward(self, x, y): x += y return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class IAddNew(torch.nn.Module): def __init__(self): super(IAddNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
IAdd
false
10,523
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
Mul
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Mul(torch.nn.Module): def __init__(self): super(Mul, self).__init__() def forward(self, x, y): return x * y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class MulNew(torch.nn.Module): def __init__(self): super(MulNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
Mul
false
10,524
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RAddFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vq/cvq3k2pudyocnklorpznpn2x4uwcd75kitqtmbswq44pxwjzv5lf.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RAddFloat(torch.nn.Module): def __init__(self): super(RAddFloat, self).__init__() def forward(self, x): return 1.0 + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RAddFloatNew(torch.nn.Module): def __init__(self): super(RAddFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RAddFloat
false
10,525
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TensorClampOptionMin
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ze/czeklzdrq7mx354noxia6gyljbx5y2sqx7luubkbxnuxtk7cw5li.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -0.1), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TensorClampOptionMin(torch.nn.Module): def forward(self, x): return x.clamp(min=-0.1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorClampOptionMinNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TensorClampOptionMin
false
10,526
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TensorClampMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/tg/ctggfgjpksbppsxvi7yflqjzicnuldsi7ay5mnalfyyjmn4pnrxt.py # Topologically Sorted Source Nodes: [clamp_max], Original ATen: [aten.clamp_max] # Source node to ATen node mapping: # clamp_max => clamp_max # Graph fragment: # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 0.1), kwargs = {}) triton_poi_fused_clamp_max_0 = async_compile.triton('triton_poi_fused_clamp_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_max], Original ATen: [aten.clamp_max] stream0 = get_raw_stream(0) triton_poi_fused_clamp_max_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TensorClampMax(torch.nn.Module): def forward(self, x): return x.clamp_max(0.1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_max_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorClampMaxNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TensorClampMax
false
10,527
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RDivInt
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/co/ccog5rgtzipydkyy2hkzhhuz3xrmtwbjws5ymi42pi4qrtmk6eqe.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.reciprocal, aten.mul] # Source node to ATen node mapping: # truediv => mul, reciprocal # Graph fragment: # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 100), kwargs = {}) triton_poi_fused_mul_reciprocal_0 = async_compile.triton('triton_poi_fused_mul_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 100.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.reciprocal, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RDivInt(torch.nn.Module): def __init__(self): super(RDivInt, self).__init__() def forward(self, x): return 100 / x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 100.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reciprocal_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RDivIntNew(torch.nn.Module): def __init__(self): super(RDivIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RDivInt
false
10,528
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
NotEqualConst
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/xt/cxtugmrlud2uizebzmnx5pe5k6bc633gbit4mb26oxihhg3jxlh3.py # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] # Source node to ATen node mapping: # ne => ne # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg0_1, 13.62), kwargs = {}) triton_poi_fused_ne_0 = async_compile.triton('triton_poi_fused_ne_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ne_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 13.62 tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] stream0 = get_raw_stream(0) triton_poi_fused_ne_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class NotEqualConst(torch.nn.Module): def __init__(self): super(NotEqualConst, self).__init__() def forward(self, x): return x != 13.62 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_ne_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 13.62 tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_ne_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NotEqualConstNew(torch.nn.Module): def __init__(self): super(NotEqualConstNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
NotEqualConst
false
10,529
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TensorSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/rg/crgn6c7kb7sfbc6ij3j5r2ufm7sb3lducxeabudnnzg6pgowubma.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TensorSigmoid(torch.nn.Module): def __init__(self): super(TensorSigmoid, self).__init__() def forward(self, x): return x.sigmoid() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorSigmoidNew(torch.nn.Module): def __init__(self): super(TensorSigmoidNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TensorSigmoid
false
10,530
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RSubFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/27/c27mlt7y7rt3puwrn7flijok6xmn62zm5ireirvcu7xgcaebfhih.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.rsub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {}) triton_poi_fused_rsub_0 = async_compile.triton('triton_poi_fused_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_rsub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_rsub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RSubFloat(torch.nn.Module): def __init__(self): super(RSubFloat, self).__init__() def forward(self, x): return 1.0 - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_rsub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_rsub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RSubFloatNew(torch.nn.Module): def __init__(self): super(RSubFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RSubFloat
false
10,531
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RMulInt
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/kh/ckhkvtw63aixa5pww5plsf4f5xegmzknbm6a3stzheag7xjm7n63.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 10), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RMulInt(torch.nn.Module): def __init__(self): super(RMulInt, self).__init__() def forward(self, x): return 10 * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RMulIntNew(torch.nn.Module): def __init__(self): super(RMulIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RMulInt
false
10,532
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
VAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/om/com5yebxo5qsahe3lhucgobrzm6npeoi425wxqvff6fvddh4edcs.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (512*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ch/cch3iinpijackdsydi3hrg6pglgsbdydunloslucw4gdcbpn2p6h.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1024*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/mw/cmw4w7qoitvv5kqsyrijoedxjlmv5ve5fuecnzcjhskr4blyhoes.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (2048*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/gm/cgm6hfz4v2bpbe2t4jbahaxz6anppzpczxttpjbatt7im7ujyjgs.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (3200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/gi/cgimqxxs6qckr3romidticzvnpearx2sdhoesal5xonmke5jjfzs.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1600*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/xv/cxvk4hxlhqydhjboqjjssdmzk7437nxkgtiw27teoc6mhrmt3vqd.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (36*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/v5/cv5svvvhilc2gdshrvpw74aylu7fykrwl3gdvokeohnu3kdip4hq.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 1024], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 961 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (961*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (32*x2) + (30752*y1)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/on/concnfx3mqwrtmiem6f5pdg6scnydd74723w4msaayn75a7rf3c3.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/cl/ccl4udr4jxpg6mwurvh2p65ejlfsvbktwf7lbnwswommioowsrm2.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/yf/cyf5yo3c5bt2bcvraahbmsmosuxycj336sqsyx5byolvq7x3c47s.py # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (1024*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (256*x2) + (1024*y1)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ff/cffuq2ighbbcyeeoiruwanvdshkx72xld7upt7dfb6fbrrpweppo.py # Topologically Sorted Source Nodes: [sigma, mul, z], Original ATen: [aten.exp, aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # sigma => exp # z => add # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%addmm_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %addmm), kwargs = {}) triton_poi_fused_add_exp_mul_10 = async_compile.triton('triton_poi_fused_add_exp_mul_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/pd/cpdfpynqfap6iona2gp3nxuwlujao2wrogukflqpe7aejupbwek7.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_5 => relu_4 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/jt/cjtpxiva37awlkohcol574e6lhl4w57sal3wjf4k4naguzmiamhw.py # Topologically Sorted Source Nodes: [conv_transpose2d, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d => convolution_4 # x_7 => relu_5 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_1, %primals_16, %primals_17, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/nj/cnjur2xetqli7rasmjiytl3njc6ohut42tjrb4fxe66i3pd5t42q.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_8], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_5 # x_8 => relu_6 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_18, %primals_19, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 43264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/2p/c2plf2ajlmtj6y44uqmhsofzmoa2uy32chnnqkvfudwmtprichbq.py # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_2 => convolution_6 # x_9 => relu_7 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_20, %primals_21, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/mx/cmxhbstj4nser4ogt2ad3qpjswppvxftithmhcag6q3hyc5uqgsn.py # Topologically Sorted Source Nodes: [conv_transpose2d_3, reconstr], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv_transpose2d_3 => convolution_7 # reconstr => sigmoid # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_22, %primals_23, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_sigmoid_15 = async_compile.triton('triton_poi_fused_convolution_sigmoid_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args args.clear() assert_size_stride(primals_1, (32, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (4, 1024), (1024, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 1024), (1024, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (1024, 4), (4, 1)) assert_size_stride(primals_15, (1024, ), (1, )) assert_size_stride(primals_16, (1024, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_17, (128, ), (1, )) assert_size_stride(primals_18, (128, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 32, 6, 6), (1152, 36, 6, 1)) assert_size_stride(primals_21, (32, ), (1, )) assert_size_stride(primals_22, (32, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_23, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 2048, 16, grid=grid(2048, 16), stream=stream0) del primals_4 buf1 = empty_strided_cuda((128, 64, 4, 4), (1024, 1, 256, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 8192, 16, grid=grid(8192, 16), stream=stream0) del primals_6 buf2 = empty_strided_cuda((256, 128, 4, 4), (2048, 1, 512, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf2, 32768, 16, grid=grid(32768, 16), stream=stream0) del primals_8 buf3 = empty_strided_cuda((1024, 128, 5, 5), (3200, 1, 640, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_16, buf3, 131072, 25, grid=grid(131072, 25), stream=stream0) del primals_16 buf4 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_18, buf4, 8192, 25, grid=grid(8192, 25), stream=stream0) del primals_18 buf5 = empty_strided_cuda((64, 32, 6, 6), (1152, 1, 192, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_20, buf5, 2048, 36, grid=grid(2048, 36), stream=stream0) del primals_20 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 31, 31), (30752, 961, 31, 1)) buf7 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf6, primals_2, buf7, 128, 961, grid=grid(128, 961), stream=stream0) del buf6 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 14, 14), (12544, 1, 896, 64)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf9, primals_5, 50176, grid=grid(50176), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 6, 6), (4608, 1, 768, 128)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_7, 18432, grid=grid(18432), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 2, 2), (1024, 1, 512, 256)) buf13 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.float32) buf30 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf12, primals_9, buf13, buf30, 1024, 4, grid=grid(1024, 4), stream=stream0) del primals_9 buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf13, (4, 1024), (1024, 1), 0), reinterpret_tensor(primals_10, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf14) del primals_11 buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logsigma], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf13, (4, 1024), (1024, 1), 0), reinterpret_tensor(primals_12, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf15) del primals_13 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf16 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf17 = buf16 del buf16 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigma, mul, z], Original ATen: [aten.exp, aten.mul, aten.add] triton_poi_fused_add_exp_mul_10.run(buf17, buf15, buf14, buf18, 16, grid=grid(16), stream=stream0) buf19 = reinterpret_tensor(buf12, (4, 1024), (1024, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf18, reinterpret_tensor(primals_14, (4, 1024), (1, 4), 0), out=buf19) buf20 = buf19; del buf19 # reuse buf29 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_11.run(buf20, primals_15, buf29, 4096, grid=grid(4096), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 1024, 1, 1), (1024, 1, 0, 0), 0), buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 5, 5), (3200, 1, 640, 128)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf22, primals_17, 12800, grid=grid(12800), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 64, 13, 13), (10816, 1, 832, 64)) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf24, primals_19, 43264, grid=grid(43264), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 32, 30, 30), (28800, 1, 960, 32)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf26, primals_21, 115200, grid=grid(115200), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [conv_transpose2d_3], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, primals_22, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 1, 64, 64), (4096, 1, 64, 1)) buf28 = reinterpret_tensor(buf27, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_3, reconstr], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_15.run(buf28, primals_23, 16384, grid=grid(16384), stream=stream0) del primals_23 return (buf28, buf14, buf15, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, primals_22, buf7, buf9, buf11, reinterpret_tensor(buf13, (4, 1024), (1024, 1), 0), buf15, buf17, buf18, reinterpret_tensor(buf20, (4, 1024, 1, 1), (1024, 1, 1, 1), 0), buf22, buf24, buf26, buf28, buf29, primals_14, primals_12, primals_10, buf30, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1024, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 32, 6, 6), (1152, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, 1, 6, 6), (36, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def reparametrize(mu, logsigma): sigma = logsigma.exp() eps = torch.randn_like(sigma) z = eps.mul(sigma).add_(mu) return z class Decoder(nn.Module): def __init__(self, latent_size, m): super(Decoder, self).__init__() self.latent_size = latent_size self.fc = nn.Linear(latent_size, m) self.deconv1 = nn.ConvTranspose2d(m, 128, 5, stride=2) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, stride=2) self.deconv3 = nn.ConvTranspose2d(64, 32, 6, stride=2) self.deconv4 = nn.ConvTranspose2d(32, 1, 6, stride=2) def forward(self, x): x = torch.relu(self.fc(x)) x = x.unsqueeze(-1).unsqueeze(-1) x = torch.relu(self.deconv1(x)) x = torch.relu(self.deconv2(x)) x = torch.relu(self.deconv3(x)) reconstr = torch.sigmoid(self.deconv4(x)) return reconstr class Encoder(nn.Module): def __init__(self, latent_size, m): super(Encoder, self).__init__() self.latent_size = latent_size self.conv1 = nn.Conv2d(1, 32, 4, stride=2) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 4, stride=2) self.conv4 = nn.Conv2d(128, 256, 4, stride=2) self.fc_mu = nn.Linear(m, latent_size) self.fc_logsigma = nn.Linear(m, latent_size) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) x = torch.relu(self.conv4(x)) x = x.view(x.size(0), -1) mu = self.fc_mu(x) logsigma = self.fc_logsigma(x) return mu, logsigma class VAE(nn.Module): def __init__(self, latent_size): super(VAE, self).__init__() m = 1024 self.encoder = Encoder(latent_size, m) self.decoder = Decoder(latent_size, m) def forward(self, x): mu, logsigma = self.encoder(x) z = reparametrize(mu, logsigma) recon_x = self.decoder(z) return recon_x, mu, logsigma def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {'latent_size': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 512 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1024 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 2048 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 36 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 961 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 961 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 32 * x2 + 30752 * y1), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 1024 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 256 * x2 + 1024 * y1), tmp6, xmask) @triton.jit def triton_poi_fused_add_exp_mul_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 43264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 ) = args args.clear() assert_size_stride(primals_1, (32, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (4, 1024), (1024, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 1024), (1024, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (1024, 4), (4, 1)) assert_size_stride(primals_15, (1024,), (1,)) assert_size_stride(primals_16, (1024, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_17, (128,), (1,)) assert_size_stride(primals_18, (128, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 32, 6, 6), (1152, 36, 6, 1)) assert_size_stride(primals_21, (32,), (1,)) assert_size_stride(primals_22, (32, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_23, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 16)](primals_4, buf0, 2048, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((128, 64, 4, 4), (1024, 1, 256, 64), torch.float32) triton_poi_fused_1[grid(8192, 16)](primals_6, buf1, 8192, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((256, 128, 4, 4), (2048, 1, 512, 128), torch.float32) triton_poi_fused_2[grid(32768, 16)](primals_8, buf2, 32768, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((1024, 128, 5, 5), (3200, 1, 640, 128), torch.float32) triton_poi_fused_3[grid(131072, 25)](primals_16, buf3, 131072, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_16 buf4 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64), torch.float32) triton_poi_fused_4[grid(8192, 25)](primals_18, buf4, 8192, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_18 buf5 = empty_strided_cuda((64, 32, 6, 6), (1152, 1, 192, 32), torch .float32) triton_poi_fused_5[grid(2048, 36)](primals_20, buf5, 2048, 36, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_20 buf6 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 31, 31), (30752, 961, 31, 1)) buf7 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) triton_poi_fused_convolution_relu_6[grid(128, 961)](buf6, primals_2, buf7, 128, 961, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf6 del primals_2 buf8 = extern_kernels.convolution(buf7, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 14, 14), (12544, 1, 896, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_7[grid(50176)](buf9, primals_5, 50176, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 6, 6), (4608, 1, 768, 128)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(18432)](buf11, primals_7, 18432, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 2, 2), (1024, 1, 512, 256)) buf13 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch. float32) buf30 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(1024, 4)]( buf12, primals_9, buf13, buf30, 1024, 4, XBLOCK=1, YBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf13, (4, 1024 ), (1024, 1), 0), reinterpret_tensor(primals_10, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf14) del primals_11 buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf13, (4, 1024 ), (1024, 1), 0), reinterpret_tensor(primals_12, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf15) del primals_13 buf16 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf17 = buf16 del buf16 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_exp_mul_10[grid(16)](buf17, buf15, buf14, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = reinterpret_tensor(buf12, (4, 1024), (1024, 1), 0) del buf12 extern_kernels.mm(buf18, reinterpret_tensor(primals_14, (4, 1024), (1, 4), 0), out=buf19) buf20 = buf19 del buf19 buf29 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool) triton_poi_fused_relu_threshold_backward_11[grid(4096)](buf20, primals_15, buf29, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 1024, 1, 1), (1024, 1, 0, 0), 0), buf3, stride=(2, 2), padding= (0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 5, 5), (3200, 1, 640, 128)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_12[grid(12800)](buf22, primals_17, 12800, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf23 = extern_kernels.convolution(buf22, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 64, 13, 13), (10816, 1, 832, 64)) buf24 = buf23 del buf23 triton_poi_fused_convolution_relu_13[grid(43264)](buf24, primals_19, 43264, XBLOCK=512, num_warps=4, num_stages=1) del primals_19 buf25 = extern_kernels.convolution(buf24, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 32, 30, 30), (28800, 1, 960, 32)) buf26 = buf25 del buf25 triton_poi_fused_convolution_relu_14[grid(115200)](buf26, primals_21, 115200, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf27 = extern_kernels.convolution(buf26, primals_22, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 1, 64, 64), (4096, 1, 64, 1)) buf28 = reinterpret_tensor(buf27, (4, 1, 64, 64), (4096, 4096, 64, 1), 0) del buf27 triton_poi_fused_convolution_sigmoid_15[grid(16384)](buf28, primals_23, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 return (buf28, buf14, buf15, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, primals_22, buf7, buf9, buf11, reinterpret_tensor (buf13, (4, 1024), (1024, 1), 0), buf15, buf17, buf18, reinterpret_tensor(buf20, (4, 1024, 1, 1), (1024, 1, 1, 1), 0), buf22, buf24, buf26, buf28, buf29, primals_14, primals_12, primals_10, buf30) def reparametrize(mu, logsigma): sigma = logsigma.exp() eps = torch.randn_like(sigma) z = eps.mul(sigma).add_(mu) return z class Decoder(nn.Module): def __init__(self, latent_size, m): super(Decoder, self).__init__() self.latent_size = latent_size self.fc = nn.Linear(latent_size, m) self.deconv1 = nn.ConvTranspose2d(m, 128, 5, stride=2) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, stride=2) self.deconv3 = nn.ConvTranspose2d(64, 32, 6, stride=2) self.deconv4 = nn.ConvTranspose2d(32, 1, 6, stride=2) def forward(self, x): x = torch.relu(self.fc(x)) x = x.unsqueeze(-1).unsqueeze(-1) x = torch.relu(self.deconv1(x)) x = torch.relu(self.deconv2(x)) x = torch.relu(self.deconv3(x)) reconstr = torch.sigmoid(self.deconv4(x)) return reconstr class Encoder(nn.Module): def __init__(self, latent_size, m): super(Encoder, self).__init__() self.latent_size = latent_size self.conv1 = nn.Conv2d(1, 32, 4, stride=2) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 4, stride=2) self.conv4 = nn.Conv2d(128, 256, 4, stride=2) self.fc_mu = nn.Linear(m, latent_size) self.fc_logsigma = nn.Linear(m, latent_size) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) x = torch.relu(self.conv4(x)) x = x.view(x.size(0), -1) mu = self.fc_mu(x) logsigma = self.fc_logsigma(x) return mu, logsigma class VAENew(nn.Module): def __init__(self, latent_size): super(VAENew, self).__init__() m = 1024 self.encoder = Encoder(latent_size, m) self.decoder = Decoder(latent_size, m) def forward(self, input_0): primals_1 = self.encoder.conv1.weight primals_2 = self.encoder.conv1.bias primals_4 = self.encoder.conv2.weight primals_5 = self.encoder.conv2.bias primals_6 = self.encoder.conv3.weight primals_7 = self.encoder.conv3.bias primals_8 = self.encoder.conv4.weight primals_9 = self.encoder.conv4.bias primals_10 = self.encoder.fc_mu.weight primals_11 = self.encoder.fc_mu.bias primals_12 = self.encoder.fc_logsigma.weight primals_13 = self.encoder.fc_logsigma.bias primals_14 = self.decoder.fc.weight primals_15 = self.decoder.fc.bias primals_16 = self.decoder.deconv1.weight primals_17 = self.decoder.deconv1.bias primals_18 = self.decoder.deconv2.weight primals_19 = self.decoder.deconv2.bias primals_20 = self.decoder.deconv3.weight primals_21 = self.decoder.deconv3.bias primals_22 = self.decoder.deconv4.weight primals_23 = self.decoder.deconv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return output[0], output[1], output[2]
lshoek/creative-evo-controller
VAE
false
10,533
[ "MIT" ]
0
a5f1742c172255cca2338b76ae1c5b4db277bb0d
https://github.com/lshoek/creative-evo-controller/tree/a5f1742c172255cca2338b76ae1c5b4db277bb0d
RSubInt
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/27/c27mlt7y7rt3puwrn7flijok6xmn62zm5ireirvcu7xgcaebfhih.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.rsub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) triton_poi_fused_rsub_0 = async_compile.triton('triton_poi_fused_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_rsub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_rsub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RSubInt(torch.nn.Module): def __init__(self): super(RSubInt, self).__init__() def forward(self, x): return 1 - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_rsub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_rsub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RSubIntNew(torch.nn.Module): def __init__(self): super(RSubIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RSubInt
false
10,534
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RpowFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/lc/clcfvdilobek33revibf6ihdojxbgxqng6nkbsrggerexhylc52x.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Scalar](args = (2.0, %arg0_1), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.exp2(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RpowFloat(torch.nn.Module): def __init__(self): super(RpowFloat, self).__init__() def forward(self, x): return 2.0 ** x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.exp2(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RpowFloatNew(torch.nn.Module): def __init__(self): super(RpowFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RpowFloat
false
10,535
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchMod
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/to/ctoy2zxqu4whwj47tjgjchngvbfm3b7j3wa7xm5i3gx2iy3jh3eg.py # Topologically Sorted Source Nodes: [fmod], Original ATen: [aten.fmod] # Source node to ATen node mapping: # fmod => fmod # Graph fragment: # %fmod : [num_users=1] = call_function[target=torch.ops.aten.fmod.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_fmod_0 = async_compile.triton('triton_poi_fused_fmod_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fmod_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = libdevice.fmod(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [fmod], Original ATen: [aten.fmod] stream0 = get_raw_stream(0) triton_poi_fused_fmod_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchMod(torch.nn.Module): def __init__(self): super(TorchMod, self).__init__() def forward(self, x, y): return torch.fmod(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = libdevice.fmod(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fmod_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchModNew(torch.nn.Module): def __init__(self): super(TorchModNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchMod
false
10,536
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchDiv
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/i3/ci3wf6sq5envi5qqy36dg5xyilb5fmbazlijbvgfe3ony6kt56ir.py # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] # Source node to ATen node mapping: # div => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchDiv(torch.nn.Module): def __init__(self): super(TorchDiv, self).__init__() def forward(self, x, y): return torch.div(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchDivNew(torch.nn.Module): def __init__(self): super(TorchDivNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchDiv
false
10,537
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TensorClampMin
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/gd/cgd4op35ni7syid77iv67fyz4srypibp225bds5otckh3ocqyvrf.py # Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min] # Source node to ATen node mapping: # clamp_min => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -0.1), kwargs = {}) triton_poi_fused_clamp_min_0 = async_compile.triton('triton_poi_fused_clamp_min_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TensorClampMin(torch.nn.Module): def forward(self, x): return x.clamp_min(-0.1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -0.1 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorClampMinNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TensorClampMin
false
10,538
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RpowInt
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/lc/clcfvdilobek33revibf6ihdojxbgxqng6nkbsrggerexhylc52x.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Scalar](args = (2, %arg0_1), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.exp2(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RpowInt(torch.nn.Module): def __init__(self): super(RpowInt, self).__init__() def forward(self, x): return 2 ** x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.exp2(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RpowIntNew(torch.nn.Module): def __init__(self): super(RpowIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RpowInt
false
10,539
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
NotEqual
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vh/cvhfvk3pwuzx4n3ozsogpbil36dtmaja4i6tskt5nzdzznkni27d.py # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] # Source node to ATen node mapping: # ne => ne # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_ne_0 = async_compile.triton('triton_poi_fused_ne_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] stream0 = get_raw_stream(0) triton_poi_fused_ne_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class NotEqual(torch.nn.Module): def __init__(self): super(NotEqual, self).__init__() def forward(self, x, y): return x != y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_ne_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class NotEqualNew(torch.nn.Module): def __init__(self): super(NotEqualNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
NotEqual
false
10,540
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
Sub
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2x/c2xnwzkmtsschsc4kip66bb4tudxm35hzl4lx5aabvhr6szhgwdb.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Sub(torch.nn.Module): def __init__(self): super(Sub, self).__init__() def forward(self, x, y): return x - y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class SubNew(torch.nn.Module): def __init__(self): super(SubNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
Sub
false
10,541
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchFloorDiv
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/y3/cy3bepoxjelvaqyj7nv3ki5rbi3sxvykydr7xjuzv3izweyzvfi7.py # Topologically Sorted Source Nodes: [floor_divide], Original ATen: [aten.floor_divide] # Source node to ATen node mapping: # floor_divide => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor_mode](args = (%arg1_1, %arg0_1), kwargs = {rounding_mode: floor}) triton_poi_fused_floor_divide_0 = async_compile.triton('triton_poi_fused_floor_divide_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_floor_divide_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [floor_divide], Original ATen: [aten.floor_divide] stream0 = get_raw_stream(0) triton_poi_fused_floor_divide_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchFloorDiv(torch.nn.Module): def __init__(self): super(TorchFloorDiv, self).__init__() def forward(self, x, y): return torch.floor_divide(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_floor_divide_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 / tmp1 tmp3 = libdevice.floor(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_floor_divide_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchFloorDivNew(torch.nn.Module): def __init__(self): super(TorchFloorDivNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchFloorDiv
false
10,542
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RAddInt
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vq/cvq3k2pudyocnklorpznpn2x4uwcd75kitqtmbswq44pxwjzv5lf.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RAddInt(torch.nn.Module): def __init__(self): super(RAddInt, self).__init__() def forward(self, x): return 1 + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RAddIntNew(torch.nn.Module): def __init__(self): super(RAddIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RAddInt
false
10,543
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchClampOptionMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ob/cobbkvkoqvposl3b23hawoxlcj73gz43pznqo2momxipyniy7uqm.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max # Graph fragment: # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 0.1), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchClampOptionMax(torch.nn.Module): def forward(self, x): return torch.clamp(x, max=0.1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TorchClampOptionMaxNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchClampOptionMax
false
10,544
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchNotEqual
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vh/cvhfvk3pwuzx4n3ozsogpbil36dtmaja4i6tskt5nzdzznkni27d.py # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] # Source node to ATen node mapping: # ne => ne # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_ne_0 = async_compile.triton('triton_poi_fused_ne_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne] stream0 = get_raw_stream(0) triton_poi_fused_ne_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchNotEqual(torch.nn.Module): def __init__(self): super(TorchNotEqual, self).__init__() def forward(self, x, y): return torch.ne(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 != tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_ne_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchNotEqualNew(torch.nn.Module): def __init__(self): super(TorchNotEqualNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchNotEqual
false
10,545
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
Pow
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/rw/crw3qydkgjmifxnk2lsi7cnidtaocksbhyv6htmtnrfv2zqr2lbi.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Pow(torch.nn.Module): def __init__(self): super(Pow, self).__init__() def forward(self, x, y): return x ** y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class PowNew(torch.nn.Module): def __init__(self): super(PowNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
Pow
false
10,546
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchMul
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchMul(torch.nn.Module): def __init__(self): super(TorchMul, self).__init__() def forward(self, x, y): return torch.mul(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchMulNew(torch.nn.Module): def __init__(self): super(TorchMulNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchMul
false
10,547
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchPow
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/rw/crw3qydkgjmifxnk2lsi7cnidtaocksbhyv6htmtnrfv2zqr2lbi.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchPow(torch.nn.Module): def __init__(self): super(TorchPow, self).__init__() def forward(self, x, y): return torch.pow(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchPowNew(torch.nn.Module): def __init__(self): super(TorchPowNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchPow
false
10,548
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
RDivFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/co/ccog5rgtzipydkyy2hkzhhuz3xrmtwbjws5ymi42pi4qrtmk6eqe.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.reciprocal, aten.mul] # Source node to ATen node mapping: # truediv => mul, reciprocal # Graph fragment: # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 100.0), kwargs = {}) triton_poi_fused_mul_reciprocal_0 = async_compile.triton('triton_poi_fused_mul_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 100.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.reciprocal, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class RDivFloat(torch.nn.Module): def __init__(self): super(RDivFloat, self).__init__() def forward(self, x): return 100.0 / x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 100.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reciprocal_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RDivFloatNew(torch.nn.Module): def __init__(self): super(RDivFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RDivFloat
false
10,549
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchSub
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2x/c2xnwzkmtsschsc4kip66bb4tudxm35hzl4lx5aabvhr6szhgwdb.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchSub(torch.nn.Module): def __init__(self): super(TorchSub, self).__init__() def forward(self, x, y): return torch.sub(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchSubNew(torch.nn.Module): def __init__(self): super(TorchSubNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchSub
false
10,550
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
TorchAdd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchAdd(torch.nn.Module): def __init__(self): super(TorchAdd, self).__init__() def forward(self, x, y): return torch.add(x, y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class TorchAddNew(torch.nn.Module): def __init__(self): super(TorchAddNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
TorchAdd
false
10,551
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
WassersteinGeneratorLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ki/ckivxu6u7mrscvnpecxlyyzlxm7gqbwpixyjztmguny3ofhbig7t.py # Topologically Sorted Source Nodes: [mul, mean], Original ATen: [aten.mul, aten.mean] # Source node to ATen node mapping: # mean => mean # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -1.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_mean_mul_0 = async_compile.triton('triton_per_fused_mean_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = 256.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mean], Original ATen: [aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_mul_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd import torch.utils.data def reduce(x, reduction=None): """Applies reduction on a torch.Tensor. Args: x (torch.Tensor): The tensor on which reduction is to be applied. reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the above then the Tensor is returning without any change. Returns: As per the above ``reduction`` convention. """ if reduction == 'mean': return torch.mean(x) elif reduction == 'sum': return torch.sum(x) else: return x def wasserstein_generator_loss(fgz, reduction='mean'): return reduce(-1.0 * fgz, reduction) class GeneratorLoss(nn.Module): """Base class for all generator losses. .. note:: All Losses meant to be minimized for optimizing the Generator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(GeneratorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_generator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_generator, device, batch_size, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``generator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value = discriminator(fake)` 3. :math:`loss = loss\\_function(value)` 4. Backpropagate by computing :math:`\\nabla loss` 5. Run a step of the optimizer for generator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_generator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``generator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels) else: if labels is None and generator.label_type == 'required': raise Exception('GAN model requires labels for training') noise = torch.randn(batch_size, generator.encoding_dims, device =device) optimizer_generator.zero_grad() if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) elif generator.label_type == 'generated': fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake) elif generator.label_type == 'generated': dgz = discriminator(fake, label_gen) else: dgz = discriminator(fake, labels) loss = self.forward(dgz) loss.backward() optimizer_generator.step() return loss.item() class WassersteinGeneratorLoss(GeneratorLoss): """Wasserstein GAN generator loss from `"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper The loss can be described as: .. math:: L(G) = -f(G(z)) where - :math:`G` : Generator - :math:`f` : Critic/Discriminator - :math:`z` : A sample from the noise prior Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def forward(self, fgz): """Computes the loss for the given input. Args: dgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the dimensions (N, \\*) where \\* means any number of additional dimensions. Returns: scalar if reduction is applied else Tensor with dimensions (N, \\*). """ return wasserstein_generator_loss(fgz, self.reduction) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mul_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = 256.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_mul_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf1, def reduce(x, reduction=None): """Applies reduction on a torch.Tensor. Args: x (torch.Tensor): The tensor on which reduction is to be applied. reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the above then the Tensor is returning without any change. Returns: As per the above ``reduction`` convention. """ if reduction == 'mean': return torch.mean(x) elif reduction == 'sum': return torch.sum(x) else: return x def wasserstein_generator_loss(fgz, reduction='mean'): return reduce(-1.0 * fgz, reduction) class GeneratorLoss(nn.Module): """Base class for all generator losses. .. note:: All Losses meant to be minimized for optimizing the Generator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(GeneratorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_generator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_generator, device, batch_size, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``generator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value = discriminator(fake)` 3. :math:`loss = loss\\_function(value)` 4. Backpropagate by computing :math:`\\nabla loss` 5. Run a step of the optimizer for generator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_generator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``generator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(generator, discriminator, optimizer_generator, device, batch_size, labels) else: if labels is None and generator.label_type == 'required': raise Exception('GAN model requires labels for training') noise = torch.randn(batch_size, generator.encoding_dims, device =device) optimizer_generator.zero_grad() if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) elif generator.label_type == 'generated': fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake) elif generator.label_type == 'generated': dgz = discriminator(fake, label_gen) else: dgz = discriminator(fake, labels) loss = self.forward(dgz) loss.backward() optimizer_generator.step() return loss.item() class WassersteinGeneratorLossNew(GeneratorLoss): """Wasserstein GAN generator loss from `"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper The loss can be described as: .. math:: L(G) = -f(G(z)) where - :math:`G` : Generator - :math:`f` : Critic/Discriminator - :math:`z` : A sample from the noise prior Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
kayuksel/torchgan
WassersteinGeneratorLoss
false
10,552
[ "MIT" ]
0
739d97cef4c49fb80155de84e609471efafab107
https://github.com/kayuksel/torchgan/tree/739d97cef4c49fb80155de84e609471efafab107
MinimaxDiscriminatorLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ie/cielolrevovxc3jw6so752kawirsv5asxwujo5d3qeptlgin4mmh.py # Topologically Sorted Source Nodes: [loss, binary_cross_entropy_with_logits_1, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.add] # Source node to ATen node mapping: # binary_cross_entropy_with_logits_1 => abs_2, exp_1, full_default_3, log1p_1, mean_1, minimum_1, neg_1, sub_4, sub_5 # loss => abs_1, exp, full_default, full_default_1, log1p, mean, minimum, mul_1, neg, sub_1, sub_2 # loss_1 => add # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %arg0_1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_3, %arg1_1), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_1), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %sub_4), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) triton_per_fused_add_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp13 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.0 tmp2 = tmp1 * tmp0 tmp3 = triton_helpers.minimum(tmp1, tmp0) tmp4 = tl_math.abs(tmp0) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 - tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = triton_helpers.minimum(tmp1, tmp13) tmp15 = tl_math.abs(tmp13) tmp16 = -tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = libdevice.log1p(tmp17) tmp19 = tmp14 - tmp18 tmp20 = tmp13 - tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 256.0 tmp25 = tmp12 / tmp24 tmp26 = tmp23 / tmp24 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss, binary_cross_entropy_with_logits_1, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd import torch.utils.data import torch.nn.functional as F def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'): target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing) target_zeros = torch.zeros_like(dx) loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction= reduction) loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction =reduction) return loss class DiscriminatorLoss(nn.Module): """Base class for all discriminator losses. .. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(DiscriminatorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value_1 = discriminator(fake)` 3. :math:`value_2 = discriminator(real)` 4. :math:`loss = loss\\_function(value_1, value_2)` 5. Backpropagate by computing :math:`\\nabla loss` 6. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if labels is None and (generator.label_type == 'required' or discriminator.label_type == 'required'): raise Exception('GAN model requires labels for training') batch_size = real_inputs.size(0) noise = torch.randn(batch_size, generator.encoding_dims, device =device) if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) optimizer_discriminator.zero_grad() if discriminator.label_type == 'none': dx = discriminator(real_inputs) elif discriminator.label_type == 'required': dx = discriminator(real_inputs, labels) else: dx = discriminator(real_inputs, label_gen) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) else: fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake.detach()) elif generator.label_type == 'generated': dgz = discriminator(fake.detach(), label_gen) else: dgz = discriminator(fake.detach(), labels) loss = self.forward(dx, dgz) loss.backward() optimizer_discriminator.step() return loss.item() class MinimaxDiscriminatorLoss(DiscriminatorLoss): """Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_ The loss can be described as: .. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))] where - :math:`G` : Generator - :math:`D` : Discriminator - :math:`x` : A sample from the data distribution - :math:`z` : A sample from the noise prior Args: label_smoothing (float, optional): The factor by which the labels (1 in this case) needs to be smoothened. For example, label_smoothing = 0.2 changes the value of the real labels to 0.8. reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def __init__(self, label_smoothing=0.0, reduction='mean', override_train_ops=None): super(MinimaxDiscriminatorLoss, self).__init__(reduction, override_train_ops) self.label_smoothing = label_smoothing def forward(self, dx, dgz): """Computes the loss for the given input. Args: dx (torch.Tensor) : Output of the Discriminator with real data. It must have the dimensions (N, \\*) where \\* means any number of additional dimensions. dgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the dimensions (N, \\*) where \\* means any number of additional dimensions. Returns: scalar if reduction is applied else Tensor with dimensions (N, \\*). """ return minimax_discriminator_loss(dx, dgz, label_smoothing=self. label_smoothing, reduction=self.reduction) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.autograd import torch.utils.data import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp13 = tl.load(in_ptr1 + r0, None) tmp1 = 0.0 tmp2 = tmp1 * tmp0 tmp3 = triton_helpers.minimum(tmp1, tmp0) tmp4 = tl_math.abs(tmp0) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 - tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = triton_helpers.minimum(tmp1, tmp13) tmp15 = tl_math.abs(tmp13) tmp16 = -tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = libdevice.log1p(tmp17) tmp19 = tmp14 - tmp18 tmp20 = tmp13 - tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 256.0 tmp25 = tmp12 / tmp24 tmp26 = tmp23 / tmp24 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, def minimax_discriminator_loss(dx, dgz, label_smoothing=0.0, reduction='mean'): target_ones = torch.ones_like(dgz) * (1.0 - label_smoothing) target_zeros = torch.zeros_like(dx) loss = F.binary_cross_entropy_with_logits(dx, target_ones, reduction= reduction) loss += F.binary_cross_entropy_with_logits(dgz, target_zeros, reduction =reduction) return loss class DiscriminatorLoss(nn.Module): """Base class for all discriminator losses. .. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(DiscriminatorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value_1 = discriminator(fake)` 3. :math:`value_2 = discriminator(real)` 4. :math:`loss = loss\\_function(value_1, value_2)` 5. Backpropagate by computing :math:`\\nabla loss` 6. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if labels is None and (generator.label_type == 'required' or discriminator.label_type == 'required'): raise Exception('GAN model requires labels for training') batch_size = real_inputs.size(0) noise = torch.randn(batch_size, generator.encoding_dims, device =device) if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) optimizer_discriminator.zero_grad() if discriminator.label_type == 'none': dx = discriminator(real_inputs) elif discriminator.label_type == 'required': dx = discriminator(real_inputs, labels) else: dx = discriminator(real_inputs, label_gen) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) else: fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake.detach()) elif generator.label_type == 'generated': dgz = discriminator(fake.detach(), label_gen) else: dgz = discriminator(fake.detach(), labels) loss = self.forward(dx, dgz) loss.backward() optimizer_discriminator.step() return loss.item() class MinimaxDiscriminatorLossNew(DiscriminatorLoss): """Minimax game discriminator loss from the original GAN paper `"Generative Adversarial Networks by Goodfellow et. al." <https://arxiv.org/abs/1406.2661>`_ The loss can be described as: .. math:: L(D) = -[log(D(x)) + log(1 - D(G(z)))] where - :math:`G` : Generator - :math:`D` : Discriminator - :math:`x` : A sample from the data distribution - :math:`z` : A sample from the noise prior Args: label_smoothing (float, optional): The factor by which the labels (1 in this case) needs to be smoothened. For example, label_smoothing = 0.2 changes the value of the real labels to 0.8. reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def __init__(self, label_smoothing=0.0, reduction='mean', override_train_ops=None): super(MinimaxDiscriminatorLossNew, self).__init__(reduction, override_train_ops) self.label_smoothing = label_smoothing def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
kayuksel/torchgan
MinimaxDiscriminatorLoss
false
10,553
[ "MIT" ]
0
739d97cef4c49fb80155de84e609471efafab107
https://github.com/kayuksel/torchgan/tree/739d97cef4c49fb80155de84e609471efafab107
WassersteinDiscriminatorLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/b3/cb3pc2vp6wrlkpzdz67xefuwj5y5w37f2osmgvolg5bcw2n4mtuq.py # Topologically Sorted Source Nodes: [sub, mean], Original ATen: [aten.sub, aten.mean] # Source node to ATen node mapping: # mean => mean # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_mean_sub_0 = async_compile.triton('triton_per_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = 256.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, mean], Original ATen: [aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd import torch.utils.data def reduce(x, reduction=None): """Applies reduction on a torch.Tensor. Args: x (torch.Tensor): The tensor on which reduction is to be applied. reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the above then the Tensor is returning without any change. Returns: As per the above ``reduction`` convention. """ if reduction == 'mean': return torch.mean(x) elif reduction == 'sum': return torch.sum(x) else: return x def wasserstein_discriminator_loss(fx, fgz, reduction='mean'): return reduce(fgz - fx, reduction) class DiscriminatorLoss(nn.Module): """Base class for all discriminator losses. .. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(DiscriminatorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value_1 = discriminator(fake)` 3. :math:`value_2 = discriminator(real)` 4. :math:`loss = loss\\_function(value_1, value_2)` 5. Backpropagate by computing :math:`\\nabla loss` 6. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if labels is None and (generator.label_type == 'required' or discriminator.label_type == 'required'): raise Exception('GAN model requires labels for training') batch_size = real_inputs.size(0) noise = torch.randn(batch_size, generator.encoding_dims, device =device) if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) optimizer_discriminator.zero_grad() if discriminator.label_type == 'none': dx = discriminator(real_inputs) elif discriminator.label_type == 'required': dx = discriminator(real_inputs, labels) else: dx = discriminator(real_inputs, label_gen) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) else: fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake.detach()) elif generator.label_type == 'generated': dgz = discriminator(fake.detach(), label_gen) else: dgz = discriminator(fake.detach(), labels) loss = self.forward(dx, dgz) loss.backward() optimizer_discriminator.step() return loss.item() class WassersteinDiscriminatorLoss(DiscriminatorLoss): """Wasserstein GAN generator loss from `"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper The loss can be described as: .. math:: L(D) = f(G(z)) - f(x) where - :math:`G` : Generator - :math:`f` : Critic/Discriminator - :math:`x` : A sample from the data distribution - :math:`z` : A sample from the noise prior Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. clip (tuple, optional): Tuple that specifies the maximum and minimum parameter clamping to be applied, as per the original version of the Wasserstein loss without Gradient Penalty. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def __init__(self, reduction='mean', clip=None, override_train_ops=None): super(WassersteinDiscriminatorLoss, self).__init__(reduction, override_train_ops) if (isinstance(clip, tuple) or isinstance(clip, list)) and len(clip ) > 1: self.clip = clip else: self.clip = None def forward(self, fx, fgz): """Computes the loss for the given input. Args: fx (torch.Tensor) : Output of the Discriminator with real data. It must have the dimensions (N, \\*) where \\* means any number of additional dimensions. fgz (torch.Tensor) : Output of the Discriminator with generated data. It must have the dimensions (N, \\*) where \\* means any number of additional dimensions. Returns: scalar if reduction is applied else Tensor with dimensions (N, \\*). """ return wasserstein_discriminator_loss(fx, fgz, self.reduction) def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by wasserstein discriminator loss. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. Clamp the discriminator parameters to satisfy :math:`lipschitz\\ condition` 2. :math:`fake = generator(noise)` 3. :math:`value_1 = discriminator(fake)` 4. :math:`value_2 = discriminator(real)` 5. :math:`loss = loss\\_function(value_1, value_2)` 6. Backpropagate by computing :math:`\\nabla loss` 7. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if self.clip is not None: for p in discriminator.parameters(): p.data.clamp_(self.clip[0], self.clip[1]) return super(WassersteinDiscriminatorLoss, self).train_ops( generator, discriminator, optimizer_discriminator, real_inputs, device, labels) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = 256.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp7, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def reduce(x, reduction=None): """Applies reduction on a torch.Tensor. Args: x (torch.Tensor): The tensor on which reduction is to be applied. reduction (str, optional): The reduction to be applied. If ``mean`` the mean value of the Tensor is returned. If ``sum`` the elements of the Tensor will be summed. If none of the above then the Tensor is returning without any change. Returns: As per the above ``reduction`` convention. """ if reduction == 'mean': return torch.mean(x) elif reduction == 'sum': return torch.sum(x) else: return x def wasserstein_discriminator_loss(fx, fgz, reduction='mean'): return reduce(fgz - fx, reduction) class DiscriminatorLoss(nn.Module): """Base class for all discriminator losses. .. note:: All Losses meant to be minimized for optimizing the Discriminator must subclass this. Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the outputs are averaged over batch size. If ``sum`` the elements of the output are summed. override_train_ops (function, optional): Function to be used in place of the default ``train_ops`` """ def __init__(self, reduction='mean', override_train_ops=None): super(DiscriminatorLoss, self).__init__() self.reduction = reduction self.override_train_ops = override_train_ops self.arg_map = {} def set_arg_map(self, value): """Updates the ``arg_map`` for passing a different value to the ``train_ops``. Args: value (dict): A mapping of the ``argument name`` in the method signature and the variable name in the ``Trainer`` it corresponds to. .. note:: If the ``train_ops`` signature is ``train_ops(self, gen, disc, optimizer_discriminator, device, batch_size, labels=None)`` then we need to map ``gen`` to ``generator`` and ``disc`` to ``discriminator``. In this case we make the following function call ``loss.set_arg_map({"gen": "generator", "disc": "discriminator"})``. """ self.arg_map.update(value) def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by most losses. Losses which have a different training procedure can either ``subclass`` it **(recommended approach)** or make use of ``override_train_ops`` argument. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. :math:`fake = generator(noise)` 2. :math:`value_1 = discriminator(fake)` 3. :math:`value_2 = discriminator(real)` 4. :math:`loss = loss\\_function(value_1, value_2)` 5. Backpropagate by computing :math:`\\nabla loss` 6. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. batch_size (int): Batch Size of the data infered from the ``DataLoader`` by the ``Trainer``. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if labels is None and (generator.label_type == 'required' or discriminator.label_type == 'required'): raise Exception('GAN model requires labels for training') batch_size = real_inputs.size(0) noise = torch.randn(batch_size, generator.encoding_dims, device =device) if generator.label_type == 'generated': label_gen = torch.randint(0, generator.num_classes, ( batch_size,), device=device) optimizer_discriminator.zero_grad() if discriminator.label_type == 'none': dx = discriminator(real_inputs) elif discriminator.label_type == 'required': dx = discriminator(real_inputs, labels) else: dx = discriminator(real_inputs, label_gen) if generator.label_type == 'none': fake = generator(noise) elif generator.label_type == 'required': fake = generator(noise, labels) else: fake = generator(noise, label_gen) if discriminator.label_type == 'none': dgz = discriminator(fake.detach()) elif generator.label_type == 'generated': dgz = discriminator(fake.detach(), label_gen) else: dgz = discriminator(fake.detach(), labels) loss = self.forward(dx, dgz) loss.backward() optimizer_discriminator.step() return loss.item() class WassersteinDiscriminatorLossNew(DiscriminatorLoss): """Wasserstein GAN generator loss from `"Wasserstein GAN by Arjovsky et. al." <https://arxiv.org/abs/1701.07875>`_ paper The loss can be described as: .. math:: L(D) = f(G(z)) - f(x) where - :math:`G` : Generator - :math:`f` : Critic/Discriminator - :math:`x` : A sample from the data distribution - :math:`z` : A sample from the noise prior Args: reduction (str, optional): Specifies the reduction to apply to the output. If ``none`` no reduction will be applied. If ``mean`` the mean of the output. If ``sum`` the elements of the output will be summed. clip (tuple, optional): Tuple that specifies the maximum and minimum parameter clamping to be applied, as per the original version of the Wasserstein loss without Gradient Penalty. override_train_ops (function, optional): A function is passed to this argument, if the default ``train_ops`` is not to be used. """ def __init__(self, reduction='mean', clip=None, override_train_ops=None): super(WassersteinDiscriminatorLossNew, self).__init__(reduction, override_train_ops) if (isinstance(clip, tuple) or isinstance(clip, list)) and len(clip ) > 1: self.clip = clip else: self.clip = None def train_ops(self, generator, discriminator, optimizer_discriminator, real_inputs, device, labels=None): """Defines the standard ``train_ops`` used by wasserstein discriminator loss. The ``standard optimization algorithm`` for the ``discriminator`` defined in this train_ops is as follows: 1. Clamp the discriminator parameters to satisfy :math:`lipschitz\\ condition` 2. :math:`fake = generator(noise)` 3. :math:`value_1 = discriminator(fake)` 4. :math:`value_2 = discriminator(real)` 5. :math:`loss = loss\\_function(value_1, value_2)` 6. Backpropagate by computing :math:`\\nabla loss` 7. Run a step of the optimizer for discriminator Args: generator (torchgan.models.Generator): The model to be optimized. discriminator (torchgan.models.Discriminator): The discriminator which judges the performance of the generator. optimizer_discriminator (torch.optim.Optimizer): Optimizer which updates the ``parameters`` of the ``discriminator``. real_inputs (torch.Tensor): The real data to be fed to the ``discriminator``. device (torch.device): Device on which the ``generator`` and ``discriminator`` is present. labels (torch.Tensor, optional): Labels for the data. Returns: Scalar value of the loss. """ if self.override_train_ops is not None: return self.override_train_ops(generator, discriminator, optimizer_discriminator, real_inputs, device, labels) else: if self.clip is not None: for p in discriminator.parameters(): p.data.clamp_(self.clip[0], self.clip[1]) return super(WassersteinDiscriminatorLossNew, self).train_ops( generator, discriminator, optimizer_discriminator, real_inputs, device, labels) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
kayuksel/torchgan
WassersteinDiscriminatorLoss
false
10,554
[ "MIT" ]
0
739d97cef4c49fb80155de84e609471efafab107
https://github.com/kayuksel/torchgan/tree/739d97cef4c49fb80155de84e609471efafab107
VirtualBatchNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/23/c23jg33pa2prp4iwyevdetkedocjv56blfdlx3hu2waow3n2qbb3.py # Topologically Sorted Source Nodes: [mu, var], Original ATen: [aten.mean, aten.var] # Source node to ATen node mapping: # mu => mean # var => var # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [0], True), kwargs = {}) # %var : [num_users=2] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 1, keepdim: True}) triton_poi_fused_mean_var_0 = async_compile.triton('triton_poi_fused_mean_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/w2/cw2sqrlevlzzmj3khrkrchps3gaeoh3ly45dxijk5luzkvnebeie.py # Topologically Sorted Source Nodes: [add, std, sub, x, mul, out], Original ATen: [aten.add, aten.sqrt, aten.sub, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # out => add_1 # std => sqrt # sub => sub # x => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_1), kwargs = {}) triton_poi_fused_add_div_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-05 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 / tmp6 tmp9 = tmp7 * tmp8 tmp11 = tmp9 + tmp10 tl.store(out_ptr0 + (x3), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, var], Original ATen: [aten.mean, aten.var] stream0 = get_raw_stream(0) triton_poi_fused_mean_var_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, std, sub, x, mul, out], Original ATen: [aten.add, aten.sqrt, aten.sub, aten.div, aten.mul] triton_poi_fused_add_div_mul_sqrt_sub_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf2, buf1, buf0, primals_1, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd import torch.utils.data class VirtualBatchNorm(nn.Module): """Virtual Batch Normalization Module as proposed in the paper `"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_ Performs Normalizes the features of a batch based on the statistics collected on a reference batch of samples that are chosen once and fixed from the start, as opposed to regular batch normalization that uses the statistics of the batch being normalized Virtual Batch Normalization requires that the size of the batch being normalized is at least a multiple of (and ideally equal to) the size of the reference batch. Keep this in mind while choosing the batch size in ```torch.utils.data.DataLoader``` or use ```drop_last=True``` .. math:: y = \\frac{x - \\mathrm{E}[x_{ref}]}{\\sqrt{\\mathrm{Var}[x_{ref}] + \\epsilon}} * \\gamma + \\beta where - :math:`x` : Batch Being Normalized - :math:`x_{ref}` : Reference Batch Args: in_features (int): Size of the input dimension to be normalized eps (float, optional): Value to be added to variance for numerical stability while normalizing """ def __init__(self, in_features, eps=1e-05): super(VirtualBatchNorm, self).__init__() self.in_features = in_features self.scale = nn.Parameter(torch.ones(in_features)) self.bias = nn.Parameter(torch.zeros(in_features)) self.ref_mu = None self.ref_var = None self.eps = eps def _batch_stats(self, x): """Computes the statistics of the batch ``x``. Args: x (torch.Tensor): Tensor whose statistics need to be computed. Returns: A tuple of the mean and variance of the batch ``x``. """ mu = torch.mean(x, dim=0, keepdim=True) var = torch.var(x, dim=0, keepdim=True) return mu, var def _normalize(self, x, mu, var): """Normalizes the tensor ``x`` using the statistics ``mu`` and ``var``. Args: x (torch.Tensor): The Tensor to be normalized. mu (torch.Tensor): Mean using which the Tensor is to be normalized. var (torch.Tensor): Variance used in the normalization of ``x``. Returns: Normalized Tensor ``x``. """ std = torch.sqrt(self.eps + var) x = (x - mu) / std sizes = list(x.size()) for dim, i in enumerate(x.size()): if dim != 1: sizes[dim] = 1 scale = self.scale.view(*sizes) bias = self.bias.view(*sizes) return x * scale + bias def forward(self, x): """Computes the output of the Virtual Batch Normalization Args: x (torch.Tensor): A Torch Tensor of dimension at least 2 which is to be Normalized Returns: Torch Tensor of the same dimension after normalizing with respect to the statistics of the reference batch """ assert x.size(1) == self.in_features if self.ref_mu is None or self.ref_var is None: self.ref_mu, self.ref_var = self._batch_stats(x) self.ref_mu = self.ref_mu.clone().detach() self.ref_var = self.ref_var.clone().detach() out = self._normalize(x, self.ref_mu, self.ref_var) else: out = self._normalize(x, self.ref_mu, self.ref_var) self.ref_mu = None self.ref_var = None return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.autograd import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp21, xmask) @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-05 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 / tmp6 tmp9 = tmp7 * tmp8 tmp11 = tmp9 + tmp10 tl.store(out_ptr0 + x3, tmp11, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_var_0[grid(64)](primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_sqrt_sub_1[grid(256)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf2, buf1, buf0, primals_1, buf0, buf1 class VirtualBatchNormNew(nn.Module): """Virtual Batch Normalization Module as proposed in the paper `"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_ Performs Normalizes the features of a batch based on the statistics collected on a reference batch of samples that are chosen once and fixed from the start, as opposed to regular batch normalization that uses the statistics of the batch being normalized Virtual Batch Normalization requires that the size of the batch being normalized is at least a multiple of (and ideally equal to) the size of the reference batch. Keep this in mind while choosing the batch size in ```torch.utils.data.DataLoader``` or use ```drop_last=True``` .. math:: y = \\frac{x - \\mathrm{E}[x_{ref}]}{\\sqrt{\\mathrm{Var}[x_{ref}] + \\epsilon}} * \\gamma + \\beta where - :math:`x` : Batch Being Normalized - :math:`x_{ref}` : Reference Batch Args: in_features (int): Size of the input dimension to be normalized eps (float, optional): Value to be added to variance for numerical stability while normalizing """ def __init__(self, in_features, eps=1e-05): super(VirtualBatchNormNew, self).__init__() self.in_features = in_features self.scale = nn.Parameter(torch.ones(in_features)) self.bias = nn.Parameter(torch.zeros(in_features)) self.ref_mu = None self.ref_var = None self.eps = eps def _batch_stats(self, x): """Computes the statistics of the batch ``x``. Args: x (torch.Tensor): Tensor whose statistics need to be computed. Returns: A tuple of the mean and variance of the batch ``x``. """ mu = torch.mean(x, dim=0, keepdim=True) var = torch.var(x, dim=0, keepdim=True) return mu, var def _normalize(self, x, mu, var): """Normalizes the tensor ``x`` using the statistics ``mu`` and ``var``. Args: x (torch.Tensor): The Tensor to be normalized. mu (torch.Tensor): Mean using which the Tensor is to be normalized. var (torch.Tensor): Variance used in the normalization of ``x``. Returns: Normalized Tensor ``x``. """ std = torch.sqrt(self.eps + var) x = (x - mu) / std sizes = list(x.size()) for dim, i in enumerate(x.size()): if dim != 1: sizes[dim] = 1 scale = self.scale.view(*sizes) bias = self.bias.view(*sizes) return x * scale + bias def forward(self, input_0): primals_2 = self.scale primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
kayuksel/torchgan
VirtualBatchNorm
false
10,555
[ "MIT" ]
0
739d97cef4c49fb80155de84e609471efafab107
https://github.com/kayuksel/torchgan/tree/739d97cef4c49fb80155de84e609471efafab107
ConvCIFAR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/gg/cggqqflhkhqdd7l65fhxf46rp4ojstdyhgqwxbuxs5neow766hgx.py # Topologically Sorted Source Nodes: [conv2d, elu], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d => convolution # elu => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wv/cwvbqoeoejapbgndrhbrpz4jclygh534si5gupfqhs3itjn73dzb.py # Topologically Sorted Source Nodes: [conv2d_1, elu_1], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # elu_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) triton_poi_fused_convolution_elu_2 = async_compile.triton('triton_poi_fused_convolution_elu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/sl/cslt5l3xmtdam7zb3lrn7z66vqcvz67j3v3rg67cspk6scfpnm42.py # Topologically Sorted Source Nodes: [conv2d_2, elu_2], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # elu_2 => expm1_2, gt_2, mul_6, mul_8, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 1.0), kwargs = {}) # %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_6,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.0), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_6, %mul_8), kwargs = {}) triton_poi_fused_convolution_elu_4 = async_compile.triton('triton_poi_fused_convolution_elu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/d7/cd7dlllooeliz3bs2l73lk2rb3tjxl3mumog5puomi3btrjasxlo.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => _low_memory_max_pool2d_with_offsets_2, getitem_5 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/zw/czwzpeftmrldfkthkyz2px6cvev3vdmnfz434cvypaamdmdcxttx.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_5 => expm1_3, gt_3, mul_11, mul_9, where_3 # Graph fragment: # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm, 0), kwargs = {}) # %mul_9 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm, 1.0), kwargs = {}) # %expm1_3 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_9,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_3, 1.0), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_9, %mul_11), kwargs = {}) triton_poi_fused_elu_6 = async_compile.triton('triton_poi_fused_elu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (500, 1024), (1024, 1)) assert_size_stride(primals_9, (500, ), (1, )) assert_size_stride(primals_10, (10, 500), (500, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, elu], Original ATen: [aten.convolution, aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_elu_0.run(buf1, primals_2, buf2, 262144, grid=grid(262144), stream=stream0) del primals_2 buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) buf4 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf2, buf3, buf4, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf6 = buf5; del buf5 # reuse buf7 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, elu_1], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_2.run(buf6, primals_5, buf7, 131072, grid=grid(131072), stream=stream0) del primals_5 buf8 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf9 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf7, buf8, buf9, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 16, 16), (16384, 256, 16, 1)) buf11 = buf10; del buf10 # reuse buf12 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, elu_2], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_4.run(buf11, primals_7, buf12, 65536, grid=grid(65536), stream=stream0) del primals_7 buf13 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8) buf14 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf12, buf13, buf14, 16384, grid=grid(16384), stream=stream0) buf15 = empty_strided_cuda((16, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf14, (16, 1024), (1024, 1), 0), reinterpret_tensor(primals_8, (1024, 500), (1, 1024), 0), alpha=1, beta=1, out=buf15) del primals_9 buf16 = empty_strided_cuda((16, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.elu] triton_poi_fused_elu_6.run(buf15, buf16, 8000, grid=grid(8000), stream=stream0) buf17 = empty_strided_cuda((16, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf16, reinterpret_tensor(primals_10, (500, 10), (1, 500), 0), alpha=1, beta=1, out=buf17) del primals_11 return (buf17, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf4, buf6, buf7, buf8, buf9, buf11, buf12, buf13, reinterpret_tensor(buf14, (16, 1024), (1024, 1), 0), buf15, buf16, primals_10, primals_8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((500, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ConvCIFAR(nn.Module): def __init__(self): super(ConvCIFAR, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * 4 * 4, 500) self.fc2 = nn.Linear(500, 10) self.dropout = nn.Dropout(0.25) def forward(self, x): x = self.pool(F.elu(self.conv1(x))) x = self.pool(F.elu(self.conv2(x))) x = self.pool(F.elu(self.conv3(x))) x = x.view(-1, 64 * 4 * 4) x = self.dropout(x) x = F.elu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_elu_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (500, 1024), (1024, 1)) assert_size_stride(primals_9, (500,), (1,)) assert_size_stride(primals_10, (10, 500), (500, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_elu_0[grid(262144)](buf1, primals_2, buf2, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32) buf4 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf2, buf3, buf4, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf6 = buf5 del buf5 buf7 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) triton_poi_fused_convolution_elu_2[grid(131072)](buf6, primals_5, buf7, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf8 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf9 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf7, buf8, buf9, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 16, 16), (16384, 256, 16, 1)) buf11 = buf10 del buf10 buf12 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) triton_poi_fused_convolution_elu_4[grid(65536)](buf11, primals_7, buf12, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf13 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8) buf14 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch. float32) triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf12, buf13, buf14, 16384, XBLOCK=128, num_warps=4, num_stages=1) buf15 = empty_strided_cuda((16, 500), (500, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf14, (16, 1024 ), (1024, 1), 0), reinterpret_tensor(primals_8, (1024, 500), (1, 1024), 0), alpha=1, beta=1, out=buf15) del primals_9 buf16 = empty_strided_cuda((16, 500), (500, 1), torch.float32) triton_poi_fused_elu_6[grid(8000)](buf15, buf16, 8000, XBLOCK=256, num_warps=4, num_stages=1) buf17 = empty_strided_cuda((16, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf16, reinterpret_tensor( primals_10, (500, 10), (1, 500), 0), alpha=1, beta=1, out=buf17) del primals_11 return (buf17, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf4, buf6, buf7, buf8, buf9, buf11, buf12, buf13, reinterpret_tensor(buf14, (16, 1024), (1024, 1), 0), buf15, buf16, primals_10, primals_8) class ConvCIFARNew(nn.Module): def __init__(self): super(ConvCIFARNew, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(64 * 4 * 4, 500) self.fc2 = nn.Linear(500, 10) self.dropout = nn.Dropout(0.25) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
mnguyen0226/soo_non_convex_ml
ConvCIFAR
false
10,556
[ "MIT" ]
0
2ffbedbe5eb536e017c643f725cc08551a5b1e9f
https://github.com/mnguyen0226/soo_non_convex_ml/tree/2ffbedbe5eb536e017c643f725cc08551a5b1e9f
GGCL_D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/d7/cd7df6o2bztwlhxijl2yejs3lglxjb2fepdlkoglvnrqr4i7cuzf.py # Topologically Sorted Source Nodes: [miu_1, sigma_1, mul, Att, mul_1, mul_2, mul_3], Original ATen: [aten.elu, aten.relu, aten.mul, aten.exp] # Source node to ATen node mapping: # Att => exp # miu_1 => expm1, gt, mul, mul_2, where # mul => mul_3 # mul_1 => mul_4 # mul_2 => mul_5 # mul_3 => mul_6 # sigma_1 => relu # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, -1), kwargs = {}) # %exp : [num_users=3] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %exp), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %exp), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %exp), kwargs = {}) triton_poi_fused_elu_exp_mul_relu_0 = async_compile.triton('triton_poi_fused_elu_exp_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_exp_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_exp_mul_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp8 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = -1.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp7 * tmp13 tmp15 = tmp10 * tmp13 tmp16 = tmp15 * tmp13 tl.store(out_ptr0 + (x0), tmp14, xmask) tl.store(out_ptr1 + (x0), tmp15, xmask) tl.store(out_ptr2 + (x0), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), primals_3, out=buf0) del primals_3 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_4, out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [miu_1, sigma_1, mul, Att, mul_1, mul_2, mul_3], Original ATen: [aten.elu, aten.relu, aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_elu_exp_mul_relu_0.run(buf0, buf1, buf2, buf4, buf5, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean_out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf6 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [sigma_out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), out=buf6) del buf5 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf0, buf1, buf4, reinterpret_tensor(primals_6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_5, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter class GGCL_D(Module): """Graph Gaussian Convolution Layer (GGCL) when the input is distribution""" def __init__(self, in_features, out_features, dropout): super(GGCL_D, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.weight_miu = Parameter(torch.FloatTensor(in_features, out_features)) self.weight_sigma = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight_miu) torch.nn.init.xavier_uniform_(self.weight_sigma) def forward(self, miu, sigma, adj_norm1, adj_norm2, gamma=1): miu = F.dropout(miu, self.dropout, training=self.training) sigma = F.dropout(sigma, self.dropout, training=self.training) miu = F.elu(miu @ self.weight_miu) sigma = F.relu(sigma @ self.weight_sigma) Att = torch.exp(-gamma * sigma) mean_out = adj_norm1 @ (miu * Att) sigma_out = adj_norm2 @ (sigma * Att * Att) return mean_out, sigma_out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import Module from torch.nn.modules.module import Module from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_exp_mul_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp8 = tl.load(in_ptr1 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = -1.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp7 * tmp13 tmp15 = tmp10 * tmp13 tmp16 = tmp15 * tmp13 tl.store(out_ptr0 + x0, tmp14, xmask) tl.store(out_ptr1 + x0, tmp15, xmask) tl.store(out_ptr2 + x0, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), primals_3, out=buf0) del primals_3 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_4, out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_exp_mul_relu_0[grid(256)](buf0, buf1, buf2, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf6 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(primals_6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), out=buf6) del buf5 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf0, buf1, buf4, reinterpret_tensor(primals_6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_5, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0 ), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0) class GGCL_DNew(Module): """Graph Gaussian Convolution Layer (GGCL) when the input is distribution""" def __init__(self, in_features, out_features, dropout): super(GGCL_DNew, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.weight_miu = Parameter(torch.FloatTensor(in_features, out_features)) self.weight_sigma = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight_miu) torch.nn.init.xavier_uniform_(self.weight_sigma) def forward(self, input_0, input_1, input_2, input_3): primals_3 = self.weight_miu primals_4 = self.weight_sigma primals_1 = input_0 primals_2 = input_1 primals_5 = input_2 primals_6 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
marblet/DeepRobust
GGCL_D
false
10,557
[ "MIT" ]
0
126c05818e38062c2423cd40dc8937ccc43c738b
https://github.com/marblet/DeepRobust/tree/126c05818e38062c2423cd40dc8937ccc43c738b
Autoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/oa/coaoyy2tzwhkubpw5yl7y66o2j6ncc2opezn233rb4fu2ccncu3h.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dm/cdmwswo2a3b5co6wkdwypnmj4gzx64sdfddgavtexpjem2lue6v7.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_5 => relu_5 # Graph fragment: # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_11,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 64), (64, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128), (128, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (4, 256), (256, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf18 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf18, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf17, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf16, 4096, grid=grid(4096), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 128), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf6 # reuse buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf7, primals_9, buf15, 8192, grid=grid(8192), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 128), (128, 1), 0), reinterpret_tensor(primals_10, (128, 256), (1, 128), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf8 # reuse buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf9, primals_11, buf14, 16384, grid=grid(16384), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf10 # reuse buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf11, primals_13, buf13, 256, grid=grid(256), stream=stream0) del primals_13 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_15 return (reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(buf7, (64, 128), (128, 1), 0), reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(buf11, (64, 4), (4, 1), 0), primals_14, buf13, primals_12, buf14, primals_10, buf15, primals_8, buf16, primals_6, buf17, primals_4, buf18, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Autoencoder(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(Autoencoder, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.layer1 = nn.Linear(in_features=self.input_length, out_features =256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer3 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=64 * self.neuron_multiplier) self.layer4 = nn.Linear(in_features=64 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=self.output_length) self.out = nn.Linear(in_features=self.output_length, out_features= self.output_length) def forward(self, x): if self.drop: drp = nn.Dropout(p=self.drop_pct) x = F.relu(self.layer1(x)) if self.drop: x = drp(x) x = F.relu(self.layer2(x)) if self.drop: x = drp(x) x = F.relu(self.layer3(x)) if self.drop: x = drp(x) x = F.relu(self.layer4(x)) if self.drop: x = drp(x) x = F.relu(self.layer5(x)) if self.drop: x = drp(x) x = F.relu(self.layer6(x)) if self.drop: x = drp(x) if self.sigmoid: x = torch.sigmoid(self.out(x)) if not self.sigmoid: x = self.out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_length': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64), (64, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128), (128, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (4, 256), (256, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf18 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf18, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf17, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf4 buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) triton_poi_fused_relu_threshold_backward_2[grid(4096)](buf5, primals_7, buf16, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 128), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf6 buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf7, primals_9, buf15, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 128), (128, 1), 0), reinterpret_tensor(primals_10, (128, 256), (1, 128), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf8 buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf9, primals_11, buf14, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf10 buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(256)](buf11, primals_13, buf13, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_15 return (reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor( buf7, (64, 128), (128, 1), 0), reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(buf11, (64, 4), (4, 1), 0), primals_14, buf13, primals_12, buf14, primals_10, buf15, primals_8, buf16, primals_6, buf17, primals_4, buf18) class AutoencoderNew(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(AutoencoderNew, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.layer1 = nn.Linear(in_features=self.input_length, out_features =256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer3 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=64 * self.neuron_multiplier) self.layer4 = nn.Linear(in_features=64 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=self.output_length) self.out = nn.Linear(in_features=self.output_length, out_features= self.output_length) def forward(self, input_0): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_6 = self.layer3.weight primals_7 = self.layer3.bias primals_8 = self.layer4.weight primals_9 = self.layer4.bias primals_10 = self.layer5.weight primals_11 = self.layer5.bias primals_12 = self.layer6.weight primals_13 = self.layer6.bias primals_14 = self.out.weight primals_15 = self.out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
mariajmolina/ML-for-S2S
Autoencoder
false
10,558
[ "MIT" ]
0
3de32e72042ba7e8b37a433579fa9c5630246d8c
https://github.com/mariajmolina/ML-for-S2S/tree/3de32e72042ba7e8b37a433579fa9c5630246d8c
GGCL_F
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/je/cjedcbkvvnoswxifdtng5oxnmrakhobgg4qz3clks3hazlgefrjw.py # Topologically Sorted Source Nodes: [elu, relu, mul, Att, mul_1, mul_2, mul_3], Original ATen: [aten.elu, aten.relu, aten.mul, aten.exp] # Source node to ATen node mapping: # Att => exp # elu => expm1, gt, mul, mul_2, where # mul => mul_3 # mul_1 => mul_4 # mul_2 => mul_5 # mul_3 => mul_6 # relu => relu # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%mm_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, -1), kwargs = {}) # %exp : [num_users=3] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %exp), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %exp), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %exp), kwargs = {}) triton_poi_fused_elu_exp_mul_relu_0 = async_compile.triton('triton_poi_fused_elu_exp_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_exp_mul_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_exp_mul_relu_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp8 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = -1.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp7 * tmp13 tmp15 = tmp10 * tmp13 tmp16 = tmp15 * tmp13 tl.store(out_ptr0 + (x0), tmp7, xmask) tl.store(in_out_ptr0 + (x0), tmp10, xmask) tl.store(out_ptr1 + (x0), tmp14, xmask) tl.store(out_ptr2 + (x0), tmp15, xmask) tl.store(out_ptr3 + (x0), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_3, out=buf2) del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [elu, relu, mul, Att, mul_1, mul_2, mul_3], Original ATen: [aten.elu, aten.relu, aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_elu_exp_mul_relu_0.run(buf3, buf0, buf1, buf4, buf6, buf7, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, Att, mul_1, miu_out], Original ATen: [aten.mul, aten.exp, aten.mm] extern_kernels.mm(primals_4, buf4, out=buf5) buf8 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [mul, Att, mul_3, sigma_out], Original ATen: [aten.mul, aten.exp, aten.mm] extern_kernels.mm(primals_5, buf7, out=buf8) del buf7 return (buf5, buf8, buf3, buf1, buf0, buf1, buf3, buf6, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter class GGCL_F(Module): """Graph Gaussian Convolution Layer (GGCL) when the input is feature""" def __init__(self, in_features, out_features, dropout=0.6): super(GGCL_F, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.weight_miu = Parameter(torch.FloatTensor(in_features, out_features)) self.weight_sigma = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight_miu) torch.nn.init.xavier_uniform_(self.weight_sigma) def forward(self, features, adj_norm1, adj_norm2, gamma=1): features = F.dropout(features, self.dropout, training=self.training) self.miu = F.elu(torch.mm(features, self.weight_miu)) self.sigma = F.relu(torch.mm(features, self.weight_sigma)) Att = torch.exp(-gamma * self.sigma) miu_out = adj_norm1 @ (self.miu * Att) sigma_out = adj_norm2 @ (self.sigma * Att * Att) return miu_out, sigma_out def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import Module from torch.nn.modules.module import Module from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_exp_mul_relu_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp8 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = -1.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp7 * tmp13 tmp15 = tmp10 * tmp13 tmp16 = tmp15 * tmp13 tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(in_out_ptr0 + x0, tmp10, xmask) tl.store(out_ptr1 + x0, tmp14, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) tl.store(out_ptr3 + x0, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_3, out=buf2) del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_exp_mul_relu_0[grid(16)](buf3, buf0, buf1, buf4, buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, buf4, out=buf5) buf8 = buf4 del buf4 extern_kernels.mm(primals_5, buf7, out=buf8) del buf7 return buf5, buf8, buf3, buf1, buf0, buf1, buf3, buf6, reinterpret_tensor( primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0) class GGCL_FNew(Module): """Graph Gaussian Convolution Layer (GGCL) when the input is feature""" def __init__(self, in_features, out_features, dropout=0.6): super(GGCL_FNew, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.weight_miu = Parameter(torch.FloatTensor(in_features, out_features)) self.weight_sigma = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight_miu) torch.nn.init.xavier_uniform_(self.weight_sigma) def forward(self, input_0, input_1, input_2): primals_1 = self.weight_miu primals_2 = self.weight_sigma primals_3 = input_0 primals_4 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
marblet/DeepRobust
GGCL_F
false
10,559
[ "MIT" ]
0
126c05818e38062c2423cd40dc8937ccc43c738b
https://github.com/marblet/DeepRobust/tree/126c05818e38062c2423cd40dc8937ccc43c738b
MinibatchDiscrimination1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/qj/cqjzt26fu5t4hqresf5x3iq3urrpyjfmcfaj3pqbi57msamyo7jz.py # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, neg, exp], Original ATen: [aten.sub, aten.abs, aten.sum, aten.neg, aten.exp] # Source node to ATen node mapping: # abs_1 => abs_1 # exp => exp # neg => neg # sub => sub # sum_1 => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %permute), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [3]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) triton_per_fused_abs_exp_neg_sub_sum_0 = async_compile.triton('triton_per_fused_abs_exp_neg_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_exp_neg_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_exp_neg_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x5 = xindex % 16 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (r3 + (16*x5)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr0 + (r3 + (16*x0) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/qh/cqhzpumg4wbpb7oef2bjhb6pmbbehhgep2m33qeyftdvpglrcodp.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %sub_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr1 + (16 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr1 + (32 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.load(in_ptr1 + (48 + (4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = 1.0 tmp17 = tmp15 - tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 16), (64, 16, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [M], Original ATen: [aten.mm] extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, neg, exp], Original ATen: [aten.sub, aten.abs, aten.sum, aten.neg, aten.exp] stream0 = get_raw_stream(0) triton_per_fused_abs_exp_neg_sub_sum_0.run(buf2, buf0, 64, 16, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_2, buf2, buf3, 32, grid=grid(32), stream=stream0) return (buf3, buf0, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 16), (64, 16, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd import torch.utils.data class MinibatchDiscrimination1d(nn.Module): """1D Minibatch Discrimination Module as proposed in the paper `"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_ Allows the Discriminator to easily detect mode collapse by augmenting the activations to the succeeding layer with side information that allows it to determine the 'closeness' of the minibatch examples with each other .. math :: M_i = T * f(x_{i}) .. math :: c_b(x_{i}, x_{j}) = \\exp(-||M_{i, b} - M_{j, b}||_1) \\in \\mathbb{R}. .. math :: o(x_{i})_b &= \\sum_{j=1}^{n} c_b(x_{i},x_{j}) \\in \\mathbb{R} \\\\ .. math :: o(x_{i}) &= \\Big[ o(x_{i})_1, o(x_{i})_2, \\dots, o(x_{i})_B \\Big] \\in \\mathbb{R}^B \\\\ .. math :: o(X) \\in \\mathbb{R}^{n \\times B} This is followed by concatenating :math:`o(x_{i})` and :math:`f(x_{i})` where - :math:`f(x_{i}) \\in \\mathbb{R}^A` : Activations from an intermediate layer - :math:`f(x_{i}) \\in \\mathbb{R}^A` : Parameter Tensor for generating minibatch discrimination matrix Args: in_features (int): Features input corresponding to dimension :math:`A` out_features (int): Number of output features that are to be concatenated corresponding to dimension :math:`B` intermediate_features (int): Intermediate number of features corresponding to dimension :math:`C` Returns: A Tensor of size :math:`(N, in_features + out_features)` where :math:`N` is the batch size """ def __init__(self, in_features, out_features, intermediate_features=16): super(MinibatchDiscrimination1d, self).__init__() self.in_features = in_features self.out_features = out_features self.intermediate_features = intermediate_features self.T = nn.Parameter(torch.Tensor(in_features, out_features, intermediate_features)) nn.init.normal_(self.T) def forward(self, x): """Computes the output of the Minibatch Discrimination Layer Args: x (torch.Tensor): A Torch Tensor of dimensions :math: `(N, infeatures)` Returns: 3D Torch Tensor of size :math: `(N,infeatures + outfeatures)` after applying Minibatch Discrimination """ M = torch.mm(x, self.T.view(self.in_features, -1)) M = M.view(-1, self.out_features, self.intermediate_features ).unsqueeze(0) M_t = M.permute(1, 0, 2, 3) out = torch.sum(torch.exp(-torch.abs(M - M_t).sum(3)), dim=0) - 1 return torch.cat([x, out], 1) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.autograd import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_abs_exp_neg_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x5 = xindex % 16 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (r3 + 16 * x5), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = tl.load(in_ptr0 + (r3 + 16 * x0 + 64 * x2), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr1 + (16 + 4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr1 + (32 + 4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.load(in_ptr1 + (48 + 4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = 1.0 tmp17 = tmp15 - tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 16), (64, 16, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_exp_neg_sub_sum_0[grid(64)](buf2, buf0, 64, 16, XBLOCK=8, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_2, buf2, buf3, 32, XBLOCK= 32, num_warps=1, num_stages=1) return buf3, buf0, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class MinibatchDiscrimination1dNew(nn.Module): """1D Minibatch Discrimination Module as proposed in the paper `"Improved Techniques for Training GANs by Salimans et. al." <https://arxiv.org/abs/1805.08318>`_ Allows the Discriminator to easily detect mode collapse by augmenting the activations to the succeeding layer with side information that allows it to determine the 'closeness' of the minibatch examples with each other .. math :: M_i = T * f(x_{i}) .. math :: c_b(x_{i}, x_{j}) = \\exp(-||M_{i, b} - M_{j, b}||_1) \\in \\mathbb{R}. .. math :: o(x_{i})_b &= \\sum_{j=1}^{n} c_b(x_{i},x_{j}) \\in \\mathbb{R} \\\\ .. math :: o(x_{i}) &= \\Big[ o(x_{i})_1, o(x_{i})_2, \\dots, o(x_{i})_B \\Big] \\in \\mathbb{R}^B \\\\ .. math :: o(X) \\in \\mathbb{R}^{n \\times B} This is followed by concatenating :math:`o(x_{i})` and :math:`f(x_{i})` where - :math:`f(x_{i}) \\in \\mathbb{R}^A` : Activations from an intermediate layer - :math:`f(x_{i}) \\in \\mathbb{R}^A` : Parameter Tensor for generating minibatch discrimination matrix Args: in_features (int): Features input corresponding to dimension :math:`A` out_features (int): Number of output features that are to be concatenated corresponding to dimension :math:`B` intermediate_features (int): Intermediate number of features corresponding to dimension :math:`C` Returns: A Tensor of size :math:`(N, in_features + out_features)` where :math:`N` is the batch size """ def __init__(self, in_features, out_features, intermediate_features=16): super(MinibatchDiscrimination1dNew, self).__init__() self.in_features = in_features self.out_features = out_features self.intermediate_features = intermediate_features self.T = nn.Parameter(torch.Tensor(in_features, out_features, intermediate_features)) nn.init.normal_(self.T) def forward(self, input_0): primals_1 = self.T primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
kayuksel/torchgan
MinibatchDiscrimination1d
false
10,560
[ "MIT" ]
0
739d97cef4c49fb80155de84e609471efafab107
https://github.com/kayuksel/torchgan/tree/739d97cef4c49fb80155de84e609471efafab107
Generator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/b5/cb5rpanyyg54a6znprxobt2gcqogx7d6wlahjtyirfd6j4iq5ygi.py # Topologically Sorted Source Nodes: [tanh, log_softmax], Original ATen: [aten.tanh, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%tanh, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%tanh, %amax), kwargs = {}) triton_poi_fused__log_softmax_tanh_0 = async_compile.triton('triton_poi_fused__log_softmax_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = libdevice.tanh(tmp0) tmp3 = libdevice.tanh(tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = triton_helpers.maximum(tmp3, tmp5) tmp8 = libdevice.tanh(tmp7) tmp9 = triton_helpers.maximum(tmp6, tmp8) tmp11 = libdevice.tanh(tmp10) tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp13 = tmp1 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/32/c32vfxouqe74ea5scuzrdhpd7r6adxwu4bzarm4icjfnb47jbizg.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, log_softmax], Original ATen: [aten.tanh, aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_tanh_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Generator(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, emb_size, vocab_size): super(Generator, self).__init__() self.proj = nn.Linear(emb_size, vocab_size, bias=False) def forward(self, x): return F.log_softmax(torch.tanh(self.proj(x)), dim=-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'emb_size': 4, 'vocab_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = libdevice.tanh(tmp0) tmp3 = libdevice.tanh(tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = triton_helpers.maximum(tmp3, tmp5) tmp8 = libdevice.tanh(tmp7) tmp9 = triton_helpers.maximum(tmp6, tmp8) tmp11 = libdevice.tanh(tmp10) tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp13 = tmp1 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_tanh_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(256)](buf1, buf2, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf2 class GeneratorNew(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, emb_size, vocab_size): super(GeneratorNew, self).__init__() self.proj = nn.Linear(emb_size, vocab_size, bias=False) def forward(self, input_0): primals_1 = self.proj.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
msobrevillac/Multilingual-RDF-Verbalizer
Generator
false
10,561
[ "MIT" ]
0
ba396693f65eaf74d1f60eb9aed3e78ab9593b22
https://github.com/msobrevillac/Multilingual-RDF-Verbalizer/tree/ba396693f65eaf74d1f60eb9aed3e78ab9593b22
MVloss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/sq/csqgonr2ftmtan5ae5wt6katcjbjmbk4r24twvemzewivp5wzwse.py # Topologically Sorted Source Nodes: [mul, mul_1, add, mul_2, add_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %arg3_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg4_1, %arg5_1), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_2), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp4 = tl.load(in_ptr3 + (x0), xmask) tmp7 = tl.load(in_ptr4 + (x0), xmask) tmp8 = tl.load(in_ptr5 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/bg/cbg32drchyezvbfwshguvyopixmzwi2llws7xkhvpdruis76tr2t.py # Topologically Sorted Source Nodes: [loss_multiview], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # loss_multiview => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/js/cjss65qmcxnfhiofwf7byaqh2nn3lfi6gry3b6wa6wqt5qkfnnec.py # Topologically Sorted Source Nodes: [loss_multiview], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # loss_multiview => div, exp, log, mul_3, neg, sub_1, sum_1, sum_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg6_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_sum_2 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, add, mul_2, add_1], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 del arg5_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [loss_multiview], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0) del buf0 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [loss_multiview], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] triton_per_fused__log_softmax_div_mul_neg_sum_2.run(buf3, buf1, arg6_1, 1, 256, grid=grid(1), stream=stream0) del arg6_1 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg6_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.distributed import torch.nn as nn class MVloss(nn.Module): def __init__(self): super(MVloss, self).__init__() def forward(self, xRA0, xRA20, xRA_20, target, wRA0, wRA20, wRA_20): criterion_MV = torch.nn.CrossEntropyLoss() loss_multiview = criterion_MV(wRA0 * xRA0 + wRA20 * xRA20 + wRA_20 * xRA_20, target) return loss_multiview def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.distributed import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp4 = tl.load(in_ptr3 + x0, xmask) tmp7 = tl.load(in_ptr4 + x0, xmask) tmp8 = tl.load(in_ptr5 + x0, xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 del arg5_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(256)](buf0, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_div_mul_neg_sum_2[grid(1)](buf3, buf1, arg6_1, 1, 256, num_warps=2, num_stages=1) del arg6_1 del buf1 return buf3, class MVlossNew(nn.Module): def __init__(self): super(MVlossNew, self).__init__() def forward(self, input_0, input_1, input_2, input_3, input_4, input_5, input_6): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 arg4_1 = input_4 arg5_1 = input_5 arg6_1 = input_6 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1]) return output[0]
muzammilbehzad/MultiviewTransformer
MVloss
false
10,562
[ "MIT" ]
0
c6c7c34c8d156e187a986e35268e1fc4a5d0175d
https://github.com/muzammilbehzad/MultiviewTransformer/tree/c6c7c34c8d156e187a986e35268e1fc4a5d0175d
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/5n/c5nrdtm7xc47oepqydwpsjhr67s36cjqrfqqxmrfz3zlnzwqr4t3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = (xindex // 260) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 260, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-256) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wg/cwg736mhwxvn37qfn5fl6onhi7fw7vmlellutxa2b7h3p3kncuoi.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # xs => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128, ), (1, )) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 1040, grid=grid(1040), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 128), (1, 260), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_6, 512, grid=grid(512), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 256), (256, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf6, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_2 return (buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, 260), (260, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = xindex // 260 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 260, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-256 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128,), (1,)) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1040)](buf0, primals_2, primals_4, buf1, 1040, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 128), ( 1, 260), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(512)](buf3, primals_6, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 256), (256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(1024)](buf0, primals_2, buf6, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
moritzzzzz/Continuous_Control
Critic
false
10,563
[ "Apache-2.0" ]
0
655530bdbbe77eb285c95246331be4636c0d076c
https://github.com/moritzzzzz/Continuous_Control/tree/655530bdbbe77eb285c95246331be4636c0d076c
Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/dt/cdt77ec7ps4ciubqwn7h5oseadtfty7dkma7fnm4ei3ukh2kj6fz.py # Topologically Sorted Source Nodes: [t, mul, loss, loss_1], Original ATen: [aten.sum, aten.mul, aten.add, aten.mean] # Source node to ATen node mapping: # loss => add # loss_1 => mean # mul => mul # t => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%slice_2, [1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %sum_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {}) triton_per_fused_add_mean_mul_sum_0 = async_compile.triton('triton_per_fused_add_mean_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp9 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp13 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp14 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp7 + tmp11 tmp15 = tmp13 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tmp12 + tmp16 tmp18 = tmp1 * tmp17 tmp19 = tmp3 + tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = 64.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [t, mul, loss, loss_1], Original ATen: [aten.sum, aten.mul, aten.add, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_sum_0.run(buf1, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class Loss(nn.Module): def __init__(self): super(Loss, self).__init__() def forward(self, x, y): z = (x - y) ** 2 t = z[:, 1:].sum(dim=1) loss = z[:, 0] + y[:, 0] * t loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp9 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp13 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp14 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp7 + tmp11 tmp15 = tmp13 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tmp12 + tmp16 tmp18 = tmp1 * tmp17 tmp19 = tmp3 + tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = 64.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_sum_0[grid(1)](buf1, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class LossNew(nn.Module): def __init__(self): super(LossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
medric49/lookatme
Loss
false
10,564
[ "Apache-2.0" ]
0
bbd3d9ae8e5787d7ec53955df9aaba80959f46e5
https://github.com/medric49/lookatme/tree/bbd3d9ae8e5787d7ec53955df9aaba80959f46e5
EqualLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] # Source node to ATen node mapping: # bias => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_1, buf1, 4, grid=grid(4), stream=stream0) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn from torch.nn import functional as F class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_1, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), ( 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class EqualLinearNew(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinearNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) def forward(self, input_0): primals_2 = self.weight primals_1 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
naarkhoo/GFPGAN
EqualLinear
false
10,565
[ "BSD-3-Clause" ]
0
73559ec44a734fe084b6a0e28107295c5e98f335
https://github.com/naarkhoo/GFPGAN/tree/73559ec44a734fe084b6a0e28107295c5e98f335
traspose_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/rt/crtl2uflkpzaahgylzxqr7exxk7iqxvunrip5ve3cxc376eng2so.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 2, 2, 2), (8, 4, 2, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 8, 8), (128, 64, 8, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 2, 2, 2), (8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class traspose_conv(nn.Module): def __init__(self, num_of_channels): super(traspose_conv, self).__init__() self.trasnpose_conv = nn.ConvTranspose2d(num_of_channels, int( num_of_channels / 2), kernel_size=2, stride=2) def forward(self, x): x = self.trasnpose_conv(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_of_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 2, 2, 2), (8, 4, 2, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 8, 8), (128, 64, 8, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(512)](buf1, primals_2, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class traspose_convNew(nn.Module): def __init__(self, num_of_channels): super(traspose_convNew, self).__init__() self.trasnpose_conv = nn.ConvTranspose2d(num_of_channels, int( num_of_channels / 2), kernel_size=2, stride=2) def forward(self, input_0): primals_1 = self.trasnpose_conv.weight primals_2 = self.trasnpose_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mhakyash/UNet-MNIST-denoising
traspose_conv
false
10,566
[ "MIT" ]
0
0e3c20cbb3f34af575e33209425ae4d7cb0bcd82
https://github.com/mhakyash/UNet-MNIST-denoising/tree/0e3c20cbb3f34af575e33209425ae4d7cb0bcd82
DeepAutoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2j/c2jdoj4tcaujecuntbzcpssdm46qqc55mrqjpjrmi7wwyblphesm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_6 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/e7/ce7ewq7bv76ie5hdmfxjj46viiuxlajdhtbost7f4gwclfa3hk4i.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/h7/ch7av6xnulewt5b7odqowg5upc5aaxv4uylilvlgoap3w6rnompj.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/zc/czceyy3ftbhqvnwurndgm4txtqjadfwymx4w7nltg7o5smxtucvx.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/o7/co7cl37yu5xdwxammabqbyexb45r6cbckqzsws3e4k6r5lhudgyy.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_6 => relu_6 # Graph fragment: # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 512), (512, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (128, 256), (256, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (64, 128), (128, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64), (64, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (256, 128), (128, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (4, 256), (256, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf0 # reuse buf21 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf21, 32768, grid=grid(32768), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 256), (1, 512), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf20 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf20, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 128), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse buf19 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf19, 8192, grid=grid(8192), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 64), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf6 # reuse buf18 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf18, 4096, grid=grid(4096), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 128), (1, 64), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf8 # reuse buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf9, primals_11, buf17, 8192, grid=grid(8192), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 128), (128, 1), 0), reinterpret_tensor(primals_12, (128, 256), (1, 128), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf10 # reuse buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf11, primals_13, buf16, 16384, grid=grid(16384), stream=stream0) del primals_13 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (64, 256), (256, 1), 0), reinterpret_tensor(primals_14, (256, 4), (1, 256), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf13, primals_15, buf15, 256, grid=grid(256), stream=stream0) del primals_15 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf14) del primals_17 return (reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(buf9, (64, 128), (128, 1), 0), reinterpret_tensor(buf11, (64, 256), (256, 1), 0), reinterpret_tensor(buf13, (64, 4), (4, 1), 0), primals_16, buf15, primals_14, buf16, primals_12, buf17, primals_10, buf18, primals_8, buf19, primals_6, buf20, primals_4, buf21, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DeepAutoencoder(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense deep autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(DeepAutoencoder, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.inplay = nn.Linear(in_features=self.input_length, out_features =2 * (256 * self.neuron_multiplier)) self.layer1 = nn.Linear(in_features=2 * (256 * self. neuron_multiplier), out_features=256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer3 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=64 * self.neuron_multiplier) self.layer4 = nn.Linear(in_features=64 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=self.output_length) self.out = nn.Linear(in_features=self.output_length, out_features= self.output_length) def forward(self, x): if self.drop: drp = nn.Dropout(p=self.drop_pct) x = F.relu(self.inplay(x)) if self.drop: x = drp(x) x = F.relu(self.layer1(x)) if self.drop: x = drp(x) x = F.relu(self.layer2(x)) if self.drop: x = drp(x) x = F.relu(self.layer3(x)) if self.drop: x = drp(x) x = F.relu(self.layer4(x)) if self.drop: x = drp(x) x = F.relu(self.layer5(x)) if self.drop: x = drp(x) x = F.relu(self.layer6(x)) if self.drop: x = drp(x) if self.sigmoid: x = torch.sigmoid(self.out(x)) if not self.sigmoid: x = self.out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_length': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 512), (512, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (128, 256), (256, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (64, 128), (128, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64), (64, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (256, 128), (128, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (4, 256), (256, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf0 buf21 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(32768)](buf1, primals_2, buf21, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 256), (1, 512), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf20 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf3, primals_5, buf20, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 128), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf4 buf19 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf5, primals_7, buf19, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 64), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf6 buf18 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) triton_poi_fused_relu_threshold_backward_3[grid(4096)](buf7, primals_9, buf18, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 128), (1, 64), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf8 buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf9, primals_11, buf17, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 128), (128, 1), 0), reinterpret_tensor(primals_12, (128, 256), (1, 128), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 256), (4096, 1024, 256, 1), 0) del buf10 buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf11, primals_13, buf16, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 256), (256, 1), 0), reinterpret_tensor(primals_14, (256, 4), (1, 256), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf12 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(256)](buf13, primals_15, buf15, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_17, reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf14) del primals_17 return (reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor( buf9, (64, 128), (128, 1), 0), reinterpret_tensor(buf11, (64, 256), (256, 1), 0), reinterpret_tensor(buf13, (64, 4), (4, 1), 0), primals_16, buf15, primals_14, buf16, primals_12, buf17, primals_10, buf18, primals_8, buf19, primals_6, buf20, primals_4, buf21) class DeepAutoencoderNew(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense deep autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(DeepAutoencoderNew, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.inplay = nn.Linear(in_features=self.input_length, out_features =2 * (256 * self.neuron_multiplier)) self.layer1 = nn.Linear(in_features=2 * (256 * self. neuron_multiplier), out_features=256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer3 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=64 * self.neuron_multiplier) self.layer4 = nn.Linear(in_features=64 * self.neuron_multiplier, out_features=128 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=128 * self.neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=self.output_length) self.out = nn.Linear(in_features=self.output_length, out_features= self.output_length) def forward(self, input_0): primals_1 = self.inplay.weight primals_2 = self.inplay.bias primals_4 = self.layer1.weight primals_5 = self.layer1.bias primals_6 = self.layer2.weight primals_7 = self.layer2.bias primals_8 = self.layer3.weight primals_9 = self.layer3.bias primals_10 = self.layer4.weight primals_11 = self.layer4.bias primals_12 = self.layer5.weight primals_13 = self.layer5.bias primals_14 = self.layer6.weight primals_15 = self.layer6.bias primals_16 = self.out.weight primals_17 = self.out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
mariajmolina/ML-for-S2S
DeepAutoencoder
false
10,567
[ "MIT" ]
0
3de32e72042ba7e8b37a433579fa9c5630246d8c
https://github.com/mariajmolina/ML-for-S2S/tree/3de32e72042ba7e8b37a433579fa9c5630246d8c
DeeperAutoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/e7/ce7ewq7bv76ie5hdmfxjj46viiuxlajdhtbost7f4gwclfa3hk4i.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/m4/cm4azzfm4zj6itqoajuuckxjzya2wb3utcyd7oca2pcy5tt7ppcd.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_4 => relu_4 # Graph fragment: # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 5 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 1024), (1024, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (1024, 256), (256, 1)) assert_size_stride(primals_7, (1024, ), (1, )) assert_size_stride(primals_8, (4, 1024), (1024, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (5, 4), (4, 1)) assert_size_stride(primals_11, (5, ), (1, )) assert_size_stride(primals_12, (4, 5), (5, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 65536, grid=grid(65536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 256), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf14, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 1024), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf4 # reuse buf13 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf13, 65536, grid=grid(65536), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_8, (1024, 4), (1, 1024), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf7, primals_9, buf12, 256, grid=grid(256), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 5), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 5), (80, 20, 5, 1), 0); del buf8 # reuse buf11 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf9, primals_11, buf11, 320, grid=grid(320), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 5), (5, 1), 0), reinterpret_tensor(primals_12, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf10) del primals_13 return (reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(buf9, (64, 5), (5, 1), 0), primals_12, buf11, primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1024, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((5, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DeeperAutoencoder(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense deeper autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(DeeperAutoencoder, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.layer1 = nn.Linear(in_features=self.input_length, out_features =4 * 256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=4 * 256 * self. neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=4 * 256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=4 * 256 * self. neuron_multiplier, out_features=self.output_length) self.layer7 = nn.Linear(in_features=self.output_length, out_features=int(self.input_length / 3) + self.input_length) self.out = nn.Linear(in_features=int(self.input_length / 3) + self. input_length, out_features=self.output_length) def forward(self, x): x = F.relu(self.layer1(x)) x = F.relu(self.layer2(x)) x = F.relu(self.layer5(x)) x = F.relu(self.layer6(x)) x = F.relu(self.layer7(x)) if self.sigmoid: x = torch.sigmoid(self.out(x)) if not self.sigmoid: x = self.out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_length': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 5 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 1024), (1024, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (1024, 256), (256, 1)) assert_size_stride(primals_7, (1024,), (1,)) assert_size_stride(primals_8, (4, 1024), (1024, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (5, 4), (4, 1)) assert_size_stride(primals_11, (5,), (1,)) assert_size_stride(primals_12, (4, 5), (5, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf0 buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1, primals_2, buf15, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_4, (1024, 256), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf3, primals_5, buf14, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 1024), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf4 buf13 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf5, primals_7, buf13, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_8, (1024, 4), (1, 1024), 0), out=buf6 ) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf7, primals_9, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 5), (5, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 5), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 5), (80, 20, 5, 1), 0) del buf8 buf11 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(320)](buf9, primals_11, buf11, 320, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 5), (5, 1), 0), reinterpret_tensor(primals_12, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf10) del primals_13 return (reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor( buf9, (64, 5), (5, 1), 0), primals_12, buf11, primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15) class DeeperAutoencoderNew(nn.Module): def __init__(self, input_length, output_length=None, neuron_multiplier= 1, sigmoid=False, drop=False, drop_pct=0.3): """ Dense deeper autoencoder. Args: input_length (int): Length (i.e., size) of input sample. output_length (int): Length of output sample. Defaults to None, leave as default if input and output are equal size. neuron_multiplier (int): Number to augment the set number of neurons. Defaults to 1. sigmoid (boolean): Defaults to False. Leave as default if output is nn.Linear (not sigmoid). drop (boolean): Defaults to False. True activates dropout for each layer except final. drop_pct (float): Amount of dropout to use (if drop is True). Defaults to 0.3. """ super(DeeperAutoencoderNew, self).__init__() self.input_length = input_length if not output_length: self.output_length = input_length if output_length: self.output_length = output_length self.neuron_multiplier = neuron_multiplier self.sigmoid = sigmoid self.drop = drop self.drop_pct = drop_pct self.layer1 = nn.Linear(in_features=self.input_length, out_features =4 * 256 * self.neuron_multiplier) self.layer2 = nn.Linear(in_features=4 * 256 * self. neuron_multiplier, out_features=256 * self.neuron_multiplier) self.layer5 = nn.Linear(in_features=256 * self.neuron_multiplier, out_features=4 * 256 * self.neuron_multiplier) self.layer6 = nn.Linear(in_features=4 * 256 * self. neuron_multiplier, out_features=self.output_length) self.layer7 = nn.Linear(in_features=self.output_length, out_features=int(self.input_length / 3) + self.input_length) self.out = nn.Linear(in_features=int(self.input_length / 3) + self. input_length, out_features=self.output_length) def forward(self, input_0): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_6 = self.layer5.weight primals_7 = self.layer5.bias primals_8 = self.layer6.weight primals_9 = self.layer6.bias primals_10 = self.layer7.weight primals_11 = self.layer7.bias primals_12 = self.out.weight primals_13 = self.out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
mariajmolina/ML-for-S2S
DeeperAutoencoder
false
10,568
[ "MIT" ]
0
3de32e72042ba7e8b37a433579fa9c5630246d8c
https://github.com/mariajmolina/ML-for-S2S/tree/3de32e72042ba7e8b37a433579fa9c5630246d8c
ConveRTOuterFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/br/cbrnrys7jaupndcfezx4bc5o6rugxur5cgmsqu45lnlyuncurgdg.py # Topologically Sorted Source Nodes: [layer_norm, gelu], Original ATen: [aten.native_layer_norm, aten.gelu] # Source node to ATen node mapping: # gelu => add_2, erf, mul_2, mul_3, mul_4 # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_3,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_2), kwargs = {}) triton_poi_fused_gelu_native_layer_norm_1 = async_compile.triton('triton_poi_fused_gelu_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_native_layer_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_native_layer_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = 0.7071067811865476 tmp12 = tmp8 * tmp11 tmp13 = libdevice.erf(tmp12) tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp10 * tmp15 tl.store(in_out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_5 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [layer_norm, gelu], Original ATen: [aten.native_layer_norm, aten.gelu] triton_poi_fused_gelu_native_layer_norm_1.run(buf6, buf2, buf3, buf4, primals_8, primals_9, 256, grid=grid(256), stream=stream0) del buf3 del buf4 return (buf6, primals_8, primals_9, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf1, buf2, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as fnn from torch.nn.modules.normalization import LayerNorm class ConveRTOuterFeedForward(nn.Module): """Fully-Connected 3-layer Linear Model""" def __init__(self, input_hidden: 'int', intermediate_hidden: 'int', dropout_rate: 'float'=0.0): """ :param input_hidden: first-hidden layer input embed-dim :type input_hidden: int :param intermediate_hidden: layer-(hidden)-layer middle point weight :type intermediate_hidden: int :param dropout_rate: dropout rate, defaults to None :type dropout_rate: float, optional """ super().__init__() self.linear_1 = nn.Linear(input_hidden, intermediate_hidden) self.dropout = nn.Dropout(dropout_rate) self.linear_2 = nn.Linear(intermediate_hidden, intermediate_hidden) self.dropout = nn.Dropout(dropout_rate) self.linear_3 = nn.Linear(intermediate_hidden, intermediate_hidden) self.norm = LayerNorm(intermediate_hidden) def forward(self, x: 'torch.Tensor') ->torch.Tensor: """forward through fully-connected 3-layer :param x: fnn input :type x: torch.Tensor :return: return fnn output :rtype: torch.Tensor """ x = self.linear_1(x) x = self.linear_2(self.dropout(x)) x = self.linear_3(self.dropout(x)) return fnn.gelu(self.norm(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_hidden': 4, 'intermediate_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.modules.normalization import LayerNorm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_gelu_native_layer_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = 0.7071067811865476 tmp12 = tmp8 * tmp11 tmp13 = libdevice.erf(tmp12) tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp10 * tmp15 tl.store(in_out_ptr0 + x2, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_5 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf5 del buf5 triton_poi_fused_gelu_native_layer_norm_1[grid(256)](buf6, buf2, buf3, buf4, primals_8, primals_9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del buf4 return buf6, primals_8, primals_9, reinterpret_tensor(primals_3, (64, 4 ), (4, 1), 0), buf0, buf1, buf2, primals_6, primals_4 class ConveRTOuterFeedForwardNew(nn.Module): """Fully-Connected 3-layer Linear Model""" def __init__(self, input_hidden: 'int', intermediate_hidden: 'int', dropout_rate: 'float'=0.0): """ :param input_hidden: first-hidden layer input embed-dim :type input_hidden: int :param intermediate_hidden: layer-(hidden)-layer middle point weight :type intermediate_hidden: int :param dropout_rate: dropout rate, defaults to None :type dropout_rate: float, optional """ super().__init__() self.linear_1 = nn.Linear(input_hidden, intermediate_hidden) self.dropout = nn.Dropout(dropout_rate) self.linear_2 = nn.Linear(intermediate_hidden, intermediate_hidden) self.dropout = nn.Dropout(dropout_rate) self.linear_3 = nn.Linear(intermediate_hidden, intermediate_hidden) self.norm = LayerNorm(intermediate_hidden) def forward(self, input_0): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_6 = self.linear_3.weight primals_7 = self.linear_3.bias primals_8 = self.norm.weight primals_9 = self.norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
luweishuang/ConveRT-pytorch
ConveRTOuterFeedForward
false
10,569
[ "Apache-2.0" ]
0
e14aaf2287eb3a78ee7d83ea02d9bd322863227f
https://github.com/luweishuang/ConveRT-pytorch/tree/e14aaf2287eb3a78ee7d83ea02d9bd322863227f
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/pl/cplt5m53mw55u2enxhypq6lcixcodl7gkkjem6hdgv42ez3g6qer.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 0.8408964152537145), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 4 x2 = (xindex // 8) % 2 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (2*x2) + (4*x1) + (16*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (2*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.8408964152537145 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/vg/cvgklrur4cpjzorfi3ii57j2rp62cz3najykqdfcleka257fklcz.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default_3, 0.8408964152537145), kwargs = {}) # %clone_default_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.8408964152537145 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/fj/cfjgmw74nd3dj77nmscqxgxfdk5z6zhtilmmhai5n5qavl7luozj.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wh/cwhqiqysy52okztvslbyjaxgpchft25sndcga35ioegclup3sepj.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 2, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/zw/czwhaipxd7pjgwtshyk3hsf37jklsm4pdcxyqkup2kcbtg7swaux.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 4 x2 = (xindex // 8) % 2 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (2*x2) + (4*x1) + (16*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (2*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/bz/cbztm3anl2kkwti3dz4rfj3onjbbsxy5rown7wlnl3so665i4pou.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) % 4 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (2*x2) + (8*x1) + (16*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 2, 4, 2), (16, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 64, grid=grid(64), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 2, 2, 4), (16, 8, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (8, 4, 2), (8, 2, 1), 0), reinterpret_tensor(buf4, (8, 2, 4), (8, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, 128, grid=grid(128), stream=stream0) buf7 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf5, buf6, buf7, 128, grid=grid(128), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 2, 4, 2), (16, 8, 2, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(buf2, primals_7, buf8, 64, grid=grid(64), stream=stream0) del primals_7 buf9 = reinterpret_tensor(buf2, (8, 4, 2), (8, 2, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (8, 4, 2), (8, 2, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf9, buf10, 64, grid=grid(64), stream=stream0) del buf9 return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (8, 2, 4), (8, 1, 2), 0), reinterpret_tensor(buf3, (8, 2, 4), (8, 1, 2), 0), reinterpret_tensor(buf4, (8, 4, 2), (8, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn from typing import Optional class MultiheadAttention(nn.Module): """Multi-Head Attention Implemenetation from huggingface/transformer""" def __init__(self, config: 'ConveRTModelConfig'): super().__init__() self.num_attention_heads = 2 self.num_attn_proj = config.num_embed_hidden self.attention_head_size = int(self.num_attn_proj / self. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.key = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.value = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.dropout = nn.Dropout(config.dropout_rate) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states: 'torch.Tensor', attention_mask: 'Optional[torch.Tensor]'=None, head_mask: 'Optional[torch.Tensor]'= None, encoder_hidden_states: 'Optional[torch.Tensor]'=None, encoder_attention_mask: 'Optional[torch.Tensor]'=None) ->torch.Tensor: mixed_query_layer = self.query(hidden_states) if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - attention_mask) * -10000.0 attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. num_attn_proj,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(num_embed_hidden=4, dropout_rate=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 4 x2 = xindex // 8 % 2 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 2 * x2 + 4 * x1 + 16 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 2 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp3 = 0.8408964152537145 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.8408964152537145 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 4 x2 = xindex // 8 % 2 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 2 * x2 + 4 * x1 + 16 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 2 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 % 4 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 2 * x2 + 8 * x1 + 16 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 2, 4, 2), (16, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(64)](buf0, primals_2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 2, 2, 4), (16, 8, 4, 1), 0) del buf0 triton_poi_fused_1[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (8, 4, 2), (8, 2, 1), 0 ), reinterpret_tensor(buf4, (8, 2, 4), (8, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(128)](buf5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) triton_poi_fused_3[grid(128)](buf5, buf6, buf7, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 2, 4, 2), (16, 8, 2, 1), 0) del buf1 triton_poi_fused_4[grid(64)](buf2, primals_7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf9 = reinterpret_tensor(buf2, (8, 4, 2), (8, 2, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (8, 4, 2), (8, 2, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_clone_5[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf9 return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (8, 2, 4), (8, 1, 2), 0 ), reinterpret_tensor(buf3, (8, 2, 4), (8, 1, 2), 0 ), reinterpret_tensor(buf4, (8, 4, 2), (8, 1, 4), 0) class MultiheadAttentionNew(nn.Module): """Multi-Head Attention Implemenetation from huggingface/transformer""" def __init__(self, config: 'ConveRTModelConfig'): super().__init__() self.num_attention_heads = 2 self.num_attn_proj = config.num_embed_hidden self.attention_head_size = int(self.num_attn_proj / self. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.key = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.value = nn.Linear(config.num_embed_hidden, self.num_attn_proj) self.dropout = nn.Dropout(config.dropout_rate) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, input_0): primals_1 = self.query.weight primals_2 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
luweishuang/ConveRT-pytorch
MultiheadAttention
false
10,570
[ "Apache-2.0" ]
0
e14aaf2287eb3a78ee7d83ea02d9bd322863227f
https://github.com/luweishuang/ConveRT-pytorch/tree/e14aaf2287eb3a78ee7d83ea02d9bd322863227f
Keypoint2DLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/lj/cljoq2rpoigaajnspglpmdaahb2j5mbwzk3zdko2krt4dvyz3kye.py # Topologically Sorted Source Nodes: [conf, l1_loss, mul, loss], Original ATen: [aten.clone, aten.sub, aten.abs, aten.mul, aten.sum] # Source node to ATen node mapping: # conf => clone # l1_loss => abs_1, sub # loss => sum_1 # mul => mul # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unsqueeze,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %slice_7), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone, %abs_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {}) triton_per_fused_abs_clone_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_clone_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_clone_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_clone_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 12 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = (rindex // 3) x0 = xindex r3 = rindex r1 = rindex % 3 tmp0 = tl.load(in_ptr0 + (3 + (4*r2) + (16*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + (12*x0)), rmask & xmask, other=0.0) tmp2 = tl.load(in_ptr0 + (r1 + (4*r2) + (16*x0)), rmask & xmask, other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask & xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 3), (48, 12, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [conf, l1_loss, mul, loss], Original ATen: [aten.clone, aten.sub, aten.abs, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_clone_mul_sub_sum_0.run(arg0_1, arg1_1, buf0, 16, 12, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 3), (48, 12, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Keypoint2DLoss(nn.Module): def __init__(self, loss_type: 'str'='l1'): """ 2D keypoint loss module. Args: loss_type (str): Choose between l1 and l2 losses. """ super(Keypoint2DLoss, self).__init__() if loss_type == 'l1': self.loss_fn = nn.L1Loss(reduction='none') elif loss_type == 'l2': self.loss_fn = nn.MSELoss(reduction='none') else: raise NotImplementedError('Unsupported loss function') def forward(self, pred_keypoints_2d: 'torch.Tensor', gt_keypoints_2d: 'torch.Tensor') ->torch.Tensor: """ Compute 2D reprojection loss on the keypoints. Args: pred_keypoints_2d (torch.Tensor): Tensor of shape [B, S, N, 2] containing projected 2D keypoints (B: batch_size, S: num_samples, N: num_keypoints) gt_keypoints_2d (torch.Tensor): Tensor of shape [B, S, N, 3] containing the ground truth 2D keypoints and confidence. Returns: torch.Tensor: 2D keypoint loss. """ conf = gt_keypoints_2d[:, :, :, -1].unsqueeze(-1).clone() conf.shape[0] loss = (conf * self.loss_fn(pred_keypoints_2d, gt_keypoints_2d[:, :, :, :-1])).sum(dim=(2, 3)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 3]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_clone_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 rnumel = 12 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex // 3 x0 = xindex r3 = rindex r1 = rindex % 3 tmp0 = tl.load(in_ptr0 + (3 + 4 * r2 + 16 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + 12 * x0), rmask & xmask, other=0.0) tmp2 = tl.load(in_ptr0 + (r1 + 4 * r2 + 16 * x0), rmask & xmask, other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask & xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 3), (48, 12, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_abs_clone_mul_sub_sum_0[grid(16)](arg0_1, arg1_1, buf0, 16, 12, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class Keypoint2DLossNew(nn.Module): def __init__(self, loss_type: 'str'='l1'): """ 2D keypoint loss module. Args: loss_type (str): Choose between l1 and l2 losses. """ super(Keypoint2DLossNew, self).__init__() if loss_type == 'l1': self.loss_fn = nn.L1Loss(reduction='none') elif loss_type == 'l2': self.loss_fn = nn.MSELoss(reduction='none') else: raise NotImplementedError('Unsupported loss function') def forward(self, input_0, input_1): arg1_1 = input_0 arg0_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
michael-p-sachen/ProHMR
Keypoint2DLoss
false
10,571
[ "BSD-3-Clause" ]
0
0167d05a9a45939a217d02b4ef8fd67977c15f82
https://github.com/michael-p-sachen/ProHMR/tree/0167d05a9a45939a217d02b4ef8fd67977c15f82
TripletMarginCosineLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/22/c22t3m2br7hgqdlgiod7padpqrdnbmxprpxldd42gr2e3scv77bk.py # Topologically Sorted Source Nodes: [d_p, d_n], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] # Source node to ATen node mapping: # d_n => clamp_min_2, clamp_min_3, div_2, div_3, mul_1, pow_5, pow_6, pow_7, pow_8, sum_4, sum_5 # d_p => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_6, 1e-08), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_2), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg2_1, 2), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [1], True), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_8, 1e-08), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg2_1, %clamp_min_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %div_2), kwargs = {}) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x2), xmask) tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (x2), xmask) tmp33 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tmp34 = tmp33 * tmp33 tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp42 = tmp41 * tmp41 tmp43 = tmp40 + tmp42 tmp44 = libdevice.sqrt(tmp43) tmp45 = triton_helpers.maximum(tmp44, tmp13) tmp46 = tmp32 / tmp45 tmp47 = tmp15 * tmp46 tl.store(out_ptr0 + (x2), tmp31, xmask) tl.store(out_ptr1 + (x2), tmp47, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/o7/co7kr4omnfirqsjlyhnflytkfq4k5up53wygkibqdwnu4jn2meb5.py # Topologically Sorted Source Nodes: [d_p, sub, d_n, add, dist_hinge, loss], Original ATen: [aten.sum, aten.rsub, aten.add, aten.clamp, aten.mean] # Source node to ATen node mapping: # add => add # d_n => sum_6 # d_p => sum_3 # dist_hinge => clamp_min_4 # loss => mean # sub => sub # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sum_3), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %sum_6), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min_4,), kwargs = {}) triton_per_fused_add_clamp_mean_rsub_sum_1 = async_compile.triton('triton_per_fused_add_clamp_mean_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp15 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp22 = 4.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [d_p, d_n], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 del arg2_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [d_p, sub, d_n, add, dist_hinge, loss], Original ATen: [aten.sum, aten.rsub, aten.add, aten.clamp, aten.mean] triton_per_fused_add_clamp_mean_rsub_sum_1.run(buf3, buf0, buf1, 1, 4, grid=grid(1), stream=stream0) del buf0 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch.nn.functional import cosine_similarity def triplet_margin_cosine_loss(anchor, positive, negative, margin=1.0, eps= 1e-08, sum_loss=False): 'Creates a criterion that measures the triplet cosine loss given input\n tensors x1, x2, x3 and a margin with a value greater than 0.\n This is used for measuring a relative similarity between samples. A triplet\n is composed by `a`, `p` and `n`: anchor, positive example and negative\n example(s) respectively. The shape of the anchor and positive variables should \n be\n math:`(N, D)`.\n The shape of the negative variable should be\n math:`(N, D)`, for 1 negative sample, or\n math:`(N, m, D)`, for m negative samples.\n\n\n .. math::\n L(a, p, n) = \x0crac{1}{N} \\left( \\sum_{i=1}^N \\max \\{0, margin - cos(a_i, p_i) + cos(a_i, n_i)\\} \right)\n\n Args:\n anchor: anchor input tensor\n positive: positive input tensor\n negative: negative input tensor\n margin: the margin value. Default: 1\n eps: small epsilon value to avoid numerical issues. Default: 1e-6\n sum_loss: if True the hinge loss will be summed across batch instances\n\n Shape:\n - Input: :math:`(N, D)` where `D = vector dimension`\n - Output: :math:`(N, 1)`\n\n Example::\n\n >>> input1 = autograd.Variable(torch.randn(100, 128))\n >>> input2 = autograd.Variable(torch.randn(100, 128))\n >>> input3 = autograd.Variable(torch.randn(100, 10, 128))\n >>> output = triplet_margin_cosine_loss(input1, input2, input3)\n >>> output.backward()\n ' assert anchor.size() == positive.size( ), 'Input sizes between anchor and positive must be equal.' assert anchor.dim() == 2, 'Anchor and positive must be 2D matrices.' assert negative.dim( ) <= 3, 'Negative must be 2D (1 negative sample) or 3D matrix (multiple negatives).' assert margin > 0.0, 'Margin should be positive value.' if negative.dim() == 2: assert anchor.size() == negative.size( ), 'Input sizes between anchor and negative must be equal (if 1 negative sample).' d_p = cosine_similarity(anchor, positive, eps=eps) d_n = cosine_similarity(anchor, negative, eps=eps) dist_hinge = torch.clamp(margin - d_p + d_n, min=0.0) else: assert anchor.size()[0] == negative.size()[0] and anchor.size()[1 ] == negative.size()[2 ], 'If using multiple negatives samples, their size: [B, #neg, emb_size].' d_p = cosine_similarity(anchor, positive, eps=eps) d_n = cosine_similarity(anchor.unsqueeze(1), negative, dim=2, eps=eps) dist_hinge = torch.clamp(margin - d_p.unsqueeze(1) + d_n, min=0.0).sum( dim=1) if not sum_loss: loss = torch.mean(dist_hinge) else: loss = torch.sum(dist_hinge) return loss class TripletMarginCosineLoss(Module): 'Creates a criterion that measures the triplet cosine loss given an input\n tensors x1, x2, x3 and a margin with a value greater than 0.\n This is used for measuring a relative similarity between samples. A triplet\n is composed by `a`, `p` and `n`: anchor, positive examples and negative\n example(s) respectively. The shape of the anchor and positive variables should \n be\n math:`(N, D)`.\n The shape of the negative variable should be\n math:`(N, D)`, for 1 negative sample, or\n math:`(N, m, D)`, for m negative samples.\n\n\n .. math::\n L(a, p, n) = \x0crac{1}{N} \\left( \\sum_{i=1}^N \\max \\{0, margin - cos(a_i, p_i) + cos(a_i, n_i)\\} \right)\n\n Args:\n anchor: anchor input tensor\n positive: positive input tensor\n negative: negative input tensor\n\n Shape:\n - Input: :math:`(N, D)` where `D = vector dimension`\n - Output: :math:`(N, 1)`\n\n >>> triplet_loss = nn.TripletMarginCosineLoss(margin=1.0, p=2)\n >>> input1 = autograd.Variable(torch.randn(100, 128))\n >>> input2 = autograd.Variable(torch.randn(100, 128))\n >>> input3 = autograd.Variable(torch.randn(100, 10, 128))\n >>> output = triplet_loss(input1, input2, input3)\n >>> output.backward()\n ' def __init__(self, margin=1.0, eps=1e-08, sum_loss=False): super(TripletMarginCosineLoss, self).__init__() self.margin = margin self.eps = eps self.sum_loss = sum_loss def forward(self, anchor, positive, negative): return triplet_margin_cosine_loss(anchor, positive, negative, self. margin, self.eps, self.sum_loss) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch.nn.functional import cosine_similarity assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + x2, xmask) tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr2 + x2, xmask) tmp33 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp38 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp41 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tmp34 = tmp33 * tmp33 tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp42 = tmp41 * tmp41 tmp43 = tmp40 + tmp42 tmp44 = libdevice.sqrt(tmp43) tmp45 = triton_helpers.maximum(tmp44, tmp13) tmp46 = tmp32 / tmp45 tmp47 = tmp15 * tmp46 tl.store(out_ptr0 + x2, tmp31, xmask) tl.store(out_ptr1 + x2, tmp47, xmask) @triton.jit def triton_per_fused_add_clamp_mean_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp15 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp22 = 4.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(16)]( arg0_1, arg1_1, arg2_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused_add_clamp_mean_rsub_sum_1[grid(1)](buf3, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 return buf3, def triplet_margin_cosine_loss(anchor, positive, negative, margin=1.0, eps= 1e-08, sum_loss=False): 'Creates a criterion that measures the triplet cosine loss given input\n tensors x1, x2, x3 and a margin with a value greater than 0.\n This is used for measuring a relative similarity between samples. A triplet\n is composed by `a`, `p` and `n`: anchor, positive example and negative\n example(s) respectively. The shape of the anchor and positive variables should \n be\n math:`(N, D)`.\n The shape of the negative variable should be\n math:`(N, D)`, for 1 negative sample, or\n math:`(N, m, D)`, for m negative samples.\n\n\n .. math::\n L(a, p, n) = \x0crac{1}{N} \\left( \\sum_{i=1}^N \\max \\{0, margin - cos(a_i, p_i) + cos(a_i, n_i)\\} \right)\n\n Args:\n anchor: anchor input tensor\n positive: positive input tensor\n negative: negative input tensor\n margin: the margin value. Default: 1\n eps: small epsilon value to avoid numerical issues. Default: 1e-6\n sum_loss: if True the hinge loss will be summed across batch instances\n\n Shape:\n - Input: :math:`(N, D)` where `D = vector dimension`\n - Output: :math:`(N, 1)`\n\n Example::\n\n >>> input1 = autograd.Variable(torch.randn(100, 128))\n >>> input2 = autograd.Variable(torch.randn(100, 128))\n >>> input3 = autograd.Variable(torch.randn(100, 10, 128))\n >>> output = triplet_margin_cosine_loss(input1, input2, input3)\n >>> output.backward()\n ' assert anchor.size() == positive.size( ), 'Input sizes between anchor and positive must be equal.' assert anchor.dim() == 2, 'Anchor and positive must be 2D matrices.' assert negative.dim( ) <= 3, 'Negative must be 2D (1 negative sample) or 3D matrix (multiple negatives).' assert margin > 0.0, 'Margin should be positive value.' if negative.dim() == 2: assert anchor.size() == negative.size( ), 'Input sizes between anchor and negative must be equal (if 1 negative sample).' d_p = cosine_similarity(anchor, positive, eps=eps) d_n = cosine_similarity(anchor, negative, eps=eps) dist_hinge = torch.clamp(margin - d_p + d_n, min=0.0) else: assert anchor.size()[0] == negative.size()[0] and anchor.size()[1 ] == negative.size()[2 ], 'If using multiple negatives samples, their size: [B, #neg, emb_size].' d_p = cosine_similarity(anchor, positive, eps=eps) d_n = cosine_similarity(anchor.unsqueeze(1), negative, dim=2, eps=eps) dist_hinge = torch.clamp(margin - d_p.unsqueeze(1) + d_n, min=0.0).sum( dim=1) if not sum_loss: loss = torch.mean(dist_hinge) else: loss = torch.sum(dist_hinge) return loss class TripletMarginCosineLossNew(Module): 'Creates a criterion that measures the triplet cosine loss given an input\n tensors x1, x2, x3 and a margin with a value greater than 0.\n This is used for measuring a relative similarity between samples. A triplet\n is composed by `a`, `p` and `n`: anchor, positive examples and negative\n example(s) respectively. The shape of the anchor and positive variables should \n be\n math:`(N, D)`.\n The shape of the negative variable should be\n math:`(N, D)`, for 1 negative sample, or\n math:`(N, m, D)`, for m negative samples.\n\n\n .. math::\n L(a, p, n) = \x0crac{1}{N} \\left( \\sum_{i=1}^N \\max \\{0, margin - cos(a_i, p_i) + cos(a_i, n_i)\\} \right)\n\n Args:\n anchor: anchor input tensor\n positive: positive input tensor\n negative: negative input tensor\n\n Shape:\n - Input: :math:`(N, D)` where `D = vector dimension`\n - Output: :math:`(N, 1)`\n\n >>> triplet_loss = nn.TripletMarginCosineLoss(margin=1.0, p=2)\n >>> input1 = autograd.Variable(torch.randn(100, 128))\n >>> input2 = autograd.Variable(torch.randn(100, 128))\n >>> input3 = autograd.Variable(torch.randn(100, 10, 128))\n >>> output = triplet_loss(input1, input2, input3)\n >>> output.backward()\n ' def __init__(self, margin=1.0, eps=1e-08, sum_loss=False): super(TripletMarginCosineLossNew, self).__init__() self.margin = margin self.eps = eps self.sum_loss = sum_loss def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
monkeyhjy/aspect_summarization
TripletMarginCosineLoss
false
10,572
[ "MIT" ]
0
3018815cd0aeccb752e9f51a4d49453c4f441650
https://github.com/monkeyhjy/aspect_summarization/tree/3018815cd0aeccb752e9f51a4d49453c4f441650
ParameterLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vr/cvrmnqjmljpuzdanvtybzr5yqi4lpte5pyaukqduurixtqnfpceh.py # Topologically Sorted Source Nodes: [mse_loss, loss_param], Original ATen: [aten.mse_loss, aten.mul] # Source node to ATen node mapping: # loss_param => mul # mse_loss => pow_1, sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %pow_1), kwargs = {}) triton_poi_fused_mse_loss_mul_0 = async_compile.triton('triton_poi_fused_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mse_loss_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mse_loss_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2), xmask) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(arg1_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mse_loss, loss_param], Original ATen: [aten.mse_loss, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mse_loss_mul_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ParameterLoss(nn.Module): def __init__(self): """ SMPL parameter loss module. """ super(ParameterLoss, self).__init__() self.loss_fn = nn.MSELoss(reduction='none') def forward(self, pred_param: 'torch.Tensor', gt_param: 'torch.Tensor', has_param: 'torch.Tensor'): """ Compute SMPL parameter loss. Args: pred_param (torch.Tensor): Tensor of shape [B, S, ...] containing the predicted parameters (body pose / global orientation / betas) gt_param (torch.Tensor): Tensor of shape [B, S, ...] containing the ground truth SMPL parameters. Returns: torch.Tensor: L2 parameter loss loss. """ batch_size = pred_param.shape[0] num_samples = pred_param.shape[1] num_dims = len(pred_param.shape) mask_dimension = [batch_size, num_samples] + [1] * (num_dims - 2) has_param = has_param.type(pred_param.type()).view(*mask_dimension) loss_param = has_param * self.loss_fn(pred_param, gt_param) return loss_param def get_inputs(): return [torch.rand([4, 4, 1, 1]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 1, 1])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mse_loss_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x2, xmask) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(arg1_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mse_loss_mul_0[grid(256)](arg1_1, arg0_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class ParameterLossNew(nn.Module): def __init__(self): """ SMPL parameter loss module. """ super(ParameterLossNew, self).__init__() self.loss_fn = nn.MSELoss(reduction='none') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg2_1 = input_1 arg1_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
michael-p-sachen/ProHMR
ParameterLoss
false
10,573
[ "BSD-3-Clause" ]
0
0167d05a9a45939a217d02b4ef8fd67977c15f82
https://github.com/michael-p-sachen/ProHMR/tree/0167d05a9a45939a217d02b4ef8fd67977c15f82
double_decoder_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/cp/ccpm2rc3cohajsucjilmian5aydpml7ivg7frstqwp7fovfahaai.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %relu), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py # Topologically Sorted Source Nodes: [x, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # relu_1 => relu_1 # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/w5/cw5gytijzzkwnfpq2a2axdsj4pfxgxmwiuzizuyd4bw5uwnanzw7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class double_decoder_conv(nn.Module): def __init__(self, input_channels1, output_channels1, output_channels2): super(double_decoder_conv, self).__init__() self.conv1 = nn.Conv2d(input_channels1, output_channels1, kernel_size=3, padding='same') self.conv2 = nn.Conv2d(output_channels1, output_channels2, kernel_size=3, padding='same') self.relu_activation = nn.ReLU(inplace=True) def forward(self, x): x = self.conv1(self.relu_activation(x)) x = self.conv2(self.relu_activation(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels1': 4, 'output_channels1': 4, 'output_channels2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(256)](buf4, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf4, primals_2, primals_4, buf0, buf2 class double_decoder_convNew(nn.Module): def __init__(self, input_channels1, output_channels1, output_channels2): super(double_decoder_convNew, self).__init__() self.conv1 = nn.Conv2d(input_channels1, output_channels1, kernel_size=3, padding='same') self.conv2 = nn.Conv2d(output_channels1, output_channels2, kernel_size=3, padding='same') self.relu_activation = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mhakyash/UNet-MNIST-denoising
double_decoder_conv
false
10,574
[ "MIT" ]
0
0e3c20cbb3f34af575e33209425ae4d7cb0bcd82
https://github.com/mhakyash/UNet-MNIST-denoising/tree/0e3c20cbb3f34af575e33209425ae4d7cb0bcd82
Keypoint3DLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/vd/cvdtr4ao7x6zrbugepukbuoqv4ehfb7iogqbzllki54se67vx3rv.py # Topologically Sorted Source Nodes: [conf, pred_keypoints_3d, l1_loss, mul, loss], Original ATen: [aten.clone, aten.sub, aten.abs, aten.mul, aten.sum] # Source node to ATen node mapping: # conf => clone_1 # l1_loss => abs_1, sub_2 # loss => sum_1 # mul => mul # pred_keypoints_3d => sub # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unsqueeze_3,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %unsqueeze), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %slice_35), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone_1, %abs_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {}) triton_per_fused_abs_clone_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_clone_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_clone_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_clone_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 120 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = (rindex // 3) x0 = xindex r3 = rindex r1 = rindex % 3 tmp7 = tl.load(in_ptr0 + (3 + (4*r2) + (160*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + (r3 + (120*x0)), rmask & xmask, other=0.0) tmp10 = tl.load(in_ptr1 + (117 + r1 + (120*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr0 + (r1 + (4*r2) + (160*x0)), rmask & xmask, other=0.0) tmp0 = tl.full([1, 1], 3, tl.int64) tmp1 = tmp0 < tmp0 tmp2 = tl.load(in_ptr0 + (3 + (4*r2) + (160*x0)), rmask & tmp1 & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr0 + (tl.broadcast_to(159 + (160*x0), [XBLOCK, RBLOCK])), rmask & tmp1 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tmp2 - tmp3 tmp5 = tl.full(tmp4.shape, 0.0, tmp4.dtype) tmp6 = tl.where(tmp1, tmp4, tmp5) tmp8 = tl.where(tmp1, tmp6, tmp7) tmp11 = tmp9 - tmp10 tmp12 = r1 tmp13 = tmp12 < tmp0 tmp14 = tl.load(in_ptr0 + (r1 + (4*r2) + (160*x0)), rmask & tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr0 + (156 + r1 + (160*x0)), rmask & tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 - tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp20 = tl.where(tmp13, tmp18, tmp19) tmp21 = tmp11 - tmp20 tmp22 = tl_math.abs(tmp21) tmp23 = tmp8 * tmp22 tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.where(rmask & xmask, tmp24, 0) tmp27 = tl.sum(tmp26, 1)[:, None] tl.store(out_ptr0 + (x0), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 40, 3), (480, 120, 3, 1)) assert_size_stride(arg1_1, (4, 4, 40, 4), (640, 160, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [conf, pred_keypoints_3d, l1_loss, mul, loss], Original ATen: [aten.clone, aten.sub, aten.abs, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_clone_mul_sub_sum_0.run(arg1_1, arg0_1, buf0, 16, 120, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 40, 3), (480, 120, 3, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 40, 4), (640, 160, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Keypoint3DLoss(nn.Module): def __init__(self, loss_type: 'str'='l1'): """ 3D keypoint loss module. Args: loss_type (str): Choose between l1 and l2 losses. """ super(Keypoint3DLoss, self).__init__() if loss_type == 'l1': self.loss_fn = nn.L1Loss(reduction='none') elif loss_type == 'l2': self.loss_fn = nn.MSELoss(reduction='none') else: raise NotImplementedError('Unsupported loss function') def forward(self, pred_keypoints_3d: 'torch.Tensor', gt_keypoints_3d: 'torch.Tensor', pelvis_id: 'int'=39): """ Compute 3D keypoint loss. Args: pred_keypoints_3d (torch.Tensor): Tensor of shape [B, S, N, 3] containing the predicted 3D keypoints (B: batch_size, S: num_samples, N: num_keypoints) gt_keypoints_3d (torch.Tensor): Tensor of shape [B, S, N, 4] containing the ground truth 3D keypoints and confidence. Returns: torch.Tensor: 3D keypoint loss. """ pred_keypoints_3d.shape[0] gt_keypoints_3d = gt_keypoints_3d.clone() pred_keypoints_3d = pred_keypoints_3d - pred_keypoints_3d[:, :, pelvis_id, :].unsqueeze(dim=2) gt_keypoints_3d[:, :, :, :-1] = gt_keypoints_3d[:, :, :, :-1 ] - gt_keypoints_3d[:, :, pelvis_id, :-1].unsqueeze(dim=2) conf = gt_keypoints_3d[:, :, :, -1].unsqueeze(-1).clone() gt_keypoints_3d = gt_keypoints_3d[:, :, :, :-1] loss = (conf * self.loss_fn(pred_keypoints_3d, gt_keypoints_3d)).sum( dim=(2, 3)) return loss def get_inputs(): return [torch.rand([4, 4, 40, 3]), torch.rand([4, 4, 40, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_clone_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 rnumel = 120 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex // 3 x0 = xindex r3 = rindex r1 = rindex % 3 tmp7 = tl.load(in_ptr0 + (3 + 4 * r2 + 160 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + (r3 + 120 * x0), rmask & xmask, other=0.0) tmp10 = tl.load(in_ptr1 + (117 + r1 + 120 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr0 + (r1 + 4 * r2 + 160 * x0), rmask & xmask, other=0.0) tmp0 = tl.full([1, 1], 3, tl.int64) tmp1 = tmp0 < tmp0 tmp2 = tl.load(in_ptr0 + (3 + 4 * r2 + 160 * x0), rmask & tmp1 & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr0 + tl.broadcast_to(159 + 160 * x0, [XBLOCK, RBLOCK]), rmask & tmp1 & xmask, eviction_policy='evict_last', other=0.0 ) tmp4 = tmp2 - tmp3 tmp5 = tl.full(tmp4.shape, 0.0, tmp4.dtype) tmp6 = tl.where(tmp1, tmp4, tmp5) tmp8 = tl.where(tmp1, tmp6, tmp7) tmp11 = tmp9 - tmp10 tmp12 = r1 tmp13 = tmp12 < tmp0 tmp14 = tl.load(in_ptr0 + (r1 + 4 * r2 + 160 * x0), rmask & tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr0 + (156 + r1 + 160 * x0), rmask & tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 - tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp20 = tl.where(tmp13, tmp18, tmp19) tmp21 = tmp11 - tmp20 tmp22 = tl_math.abs(tmp21) tmp23 = tmp8 * tmp22 tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.where(rmask & xmask, tmp24, 0) tmp27 = tl.sum(tmp26, 1)[:, None] tl.store(out_ptr0 + x0, tmp27, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 40, 3), (480, 120, 3, 1)) assert_size_stride(arg1_1, (4, 4, 40, 4), (640, 160, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_abs_clone_mul_sub_sum_0[grid(16)](arg1_1, arg0_1, buf0, 16, 120, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class Keypoint3DLossNew(nn.Module): def __init__(self, loss_type: 'str'='l1'): """ 3D keypoint loss module. Args: loss_type (str): Choose between l1 and l2 losses. """ super(Keypoint3DLossNew, self).__init__() if loss_type == 'l1': self.loss_fn = nn.L1Loss(reduction='none') elif loss_type == 'l2': self.loss_fn = nn.MSELoss(reduction='none') else: raise NotImplementedError('Unsupported loss function') def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
michael-p-sachen/ProHMR
Keypoint3DLoss
false
10,575
[ "BSD-3-Clause" ]
0
0167d05a9a45939a217d02b4ef8fd67977c15f82
https://github.com/michael-p-sachen/ProHMR/tree/0167d05a9a45939a217d02b4ef8fd67977c15f82
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6i/c6izufdhyugygy5vofn7kiwo3naddsgzasfpozj6en2ohguxouw6.py # Topologically Sorted Source Nodes: [mul, scores], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # scores => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %slice_4), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 12) x1 = (xindex // 4) % 3 x3 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), xmask) tmp3 = tl.load(in_ptr0 + (52 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (4 + x0 + (16*x1) + (64*x2)), xmask) tmp7 = tl.load(in_ptr0 + (56 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (8 + x0 + (16*x1) + (64*x2)), xmask) tmp11 = tl.load(in_ptr0 + (60 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (12 + x0 + (16*x1) + (64*x2)), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x3), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ul/cul34e6oym44f4our3y3poy7kbtb6d3etfdtwkm4ecknsnzypxi2.py # Topologically Sorted Source Nodes: [add, sub, cost, mean], Original ATen: [aten.add, aten.sub, aten.clamp, aten.mean] # Source node to ATen node mapping: # add => add # cost => clamp_min # mean => mean # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_8, 0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {}) triton_per_fused_add_clamp_mean_sub_1 = async_compile.triton('triton_per_fused_add_clamp_mean_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_sub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 32 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 8) r3 = rindex % 8 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r3 + (12*r2)), None) tmp3 = tl.load(in_ptr0 + (8 + r0 + (12*r2)), None, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = triton_helpers.maximum(tmp4, tmp1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = 32.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, scores], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_mul_sum_0.run(arg0_1, buf0, 48, grid=grid(48), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, sub, cost, mean], Original ATen: [aten.add, aten.sub, aten.clamp, aten.mean] triton_per_fused_add_clamp_mean_sub_1.run(buf2, buf0, 1, 32, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.init import torch.utils.data import torch.utils.data.distributed def cosine_sim(im, s): return im.mm(s.t()) class ContrastiveLoss(nn.Module): def __init__(self, margin=0): super(ContrastiveLoss, self).__init__() self.margin = margin self.sim = cosine_sim def forward(self, hs): hs.size(1) tgt = hs[:, -1, :] src = hs[:, 0:-1, :] tgt = tgt.unsqueeze(1) scores = (tgt * src).sum(dim=2) d = scores[:, -1] d = d.unsqueeze(1) scores = scores[:, 0:-1] d = d.expand_as(scores) cost = (self.margin + scores - d).clamp(min=0) return cost.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.init import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 12 x1 = xindex // 4 % 3 x3 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), xmask) tmp3 = tl.load(in_ptr0 + (52 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (4 + x0 + 16 * x1 + 64 * x2), xmask) tmp7 = tl.load(in_ptr0 + (56 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (8 + x0 + 16 * x1 + 64 * x2), xmask) tmp11 = tl.load(in_ptr0 + (60 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (12 + x0 + 16 * x1 + 64 * x2), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x3, tmp14, xmask) @triton.jit def triton_per_fused_add_clamp_mean_sub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 8 r3 = rindex % 8 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r3 + 12 * r2), None) tmp3 = tl.load(in_ptr0 + (8 + r0 + 12 * r2), None, eviction_policy= 'evict_last') tmp1 = 0.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = triton_helpers.maximum(tmp4, tmp1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = 32.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(48)](arg0_1, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_clamp_mean_sub_1[grid(1)](buf2, buf0, 1, 32, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, def cosine_sim(im, s): return im.mm(s.t()) class ContrastiveLossNew(nn.Module): def __init__(self, margin=0): super(ContrastiveLossNew, self).__init__() self.margin = margin self.sim = cosine_sim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
nfyfamr/ActionEstimation
ContrastiveLoss
false
10,576
[ "MIT" ]
0
8f18dba49d9558b28a277ea82c70fb4e3425bbbb
https://github.com/nfyfamr/ActionEstimation/tree/8f18dba49d9558b28a277ea82c70fb4e3425bbbb
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/4d/c4d7os35bf4bckecmik4nlyqqsirmteh4sh3yxnab5lmuntnmwk2.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wv/cwvtp6qflpb42kxrujmda5zselv7wvkz3fgp2tryo2ftsisaildr.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/tl/ctlxctn7eg6nwvpdhdhyqadp63cm2ogdwxsotfynexn2zw62nfbb.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ku/ckuw5gg26ddjp4n4da74yttcx6jxcy2y4vb2npxdoq42pzni2oot.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/m3/cm3haovccm7lav2s6wgp3wthu7in42r335z2o7yva4d7olh5begj.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ir/cirx6nbkabstacj3yb3umtzb7ustxzn5ha5etdpsewqc2v53x42u.py # Topologically Sorted Source Nodes: [conv2d_3, x_act], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_act => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (4*x2) + (64*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/mx/cmxxnyyr5kmtzdpzon3a5fqr6k4jayrantx3iscrc5pevtb6lc52.py # Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # x_act_2 => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_per_fused__log_softmax_8 = async_compile.triton('triton_per_fused__log_softmax_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_8(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + (16*x0)), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/er/cerrhd6dfklfkghffr4w4v6k4tkknpp6pjf2fpylkzd3qma7oygl.py # Topologically Sorted Source Nodes: [conv2d_4, x_val], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_val => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 2 y1 = (yindex // 2) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (2*x2) + (32*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dy/cdyy4l65r6roouxfxf2rt7jc3yi26kd72lw6ykhtgaiqpacjtrts.py # Topologically Sorted Source Nodes: [x_val_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_val_2 => relu_5 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_15), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_10 = async_compile.triton('triton_poi_fused_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/jp/cjpw3qv3xbeeitqrvxn6apmx6vcxqlrxpbbtjnzsyqgtt4tatr6q.py # Topologically Sorted Source Nodes: [x_val_4], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_val_4 => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_17), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_11 = async_compile.triton('triton_poi_fused_tanh_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (4, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (16, 64), (64, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_13, (2, ), (1, )) assert_size_stride(primals_14, (64, 32), (32, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (1, 64), (64, 1)) assert_size_stride(primals_17, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 128, 9, grid=grid(128, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 4, 4), (512, 1, 128, 32)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf5, primals_2, 2048, grid=grid(2048), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf7, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf9, primals_7, 8192, grid=grid(8192), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4)) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_act], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf10, primals_9, buf11, buf23, 16, 16, grid=grid(16, 16), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 16), (1, 64), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_8.run(buf12, buf15, 4, 16, grid=grid(4), stream=stream0) del buf12 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 2, 4, 4), (32, 1, 8, 2)) buf17 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) buf22 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, x_val], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf16, primals_13, buf17, buf22, 8, 16, grid=grid(8, 16), stream=stream0) del buf16 del primals_13 buf18 = reinterpret_tensor(buf10, (4, 64), (64, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf17, (4, 32), (32, 1), 0), reinterpret_tensor(primals_14, (32, 64), (1, 32), 0), out=buf18) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_val_2], Original ATen: [aten.relu] triton_poi_fused_relu_10.run(buf19, primals_15, 256, grid=grid(256), stream=stream0) del primals_15 buf20 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf19, reinterpret_tensor(primals_16, (64, 1), (1, 64), 0), out=buf20) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [x_val_4], Original ATen: [aten.tanh] triton_poi_fused_tanh_11.run(buf21, primals_17, 4, grid=grid(4), stream=stream0) del primals_17 return (buf15, buf21, buf0, buf1, buf2, buf3, primals_8, primals_12, buf5, buf7, buf9, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf15, reinterpret_tensor(buf17, (4, 32), (32, 1), 0), buf19, buf21, primals_16, primals_14, buf22, primals_10, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((2, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): """policy-value network module""" def __init__(self, board_width, board_height): super(Net, self).__init__() self.board_width = board_width self.board_height = board_height self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1) self.act_fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height) self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1) self.val_fc1 = nn.Linear(2 * board_width * board_height, 64) self.val_fc2 = nn.Linear(64, 1) def forward(self, state_input): x = F.relu(self.conv1(state_input)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x_act = F.relu(self.act_conv1(x)) x_act = x_act.view(-1, 4 * self.board_width * self.board_height) x_act = F.log_softmax(self.act_fc1(x_act), dim=1) x_val = F.relu(self.val_conv1(x)) x_val = x_val.view(-1, 2 * self.board_width * self.board_height) x_val = F.relu(self.val_fc1(x_val)) x_val = self.val_fc2(x_val) x_val = torch.nn.Tanh()(x_val) return x_act, x_val def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'board_width': 4, 'board_height': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 4 * x2 + 64 * y1), tmp6, xmask & ymask) @triton.jit def triton_per_fused__log_softmax_8(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 16 * x0), tmp12, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 8 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 2 y1 = yindex // 2 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 2 * x2 + 32 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_tanh_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (4, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (16, 64), (64, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_13, (2,), (1,)) assert_size_stride(primals_14, (64, 32), (32, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (1, 64), (64, 1)) assert_size_stride(primals_17, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(128, 9)](primals_1, buf0, 128, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_2[grid(2048, 9)](primals_4, buf2, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 4, 4), (512, 1, 128, 32)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_4[grid(2048)](buf5, primals_2, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_5[grid(4096)](buf7, primals_5, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_6[grid(8192)](buf9, primals_7, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4)) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(16, 16)]( buf10, primals_9, buf11, buf23, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 16), (1, 64), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_per_fused__log_softmax_8[grid(4)](buf12, buf15, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf12 buf16 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 2, 4, 4), (32, 1, 8, 2)) buf17 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) buf22 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(8, 16)]( buf16, primals_13, buf17, buf22, 8, 16, XBLOCK=16, YBLOCK=8, num_warps=4, num_stages=1) del buf16 del primals_13 buf18 = reinterpret_tensor(buf10, (4, 64), (64, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf17, (4, 32), (32, 1), 0), reinterpret_tensor(primals_14, (32, 64), (1, 32), 0), out=buf18) buf19 = buf18 del buf18 triton_poi_fused_relu_10[grid(256)](buf19, primals_15, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_15 buf20 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf19, reinterpret_tensor(primals_16, (64, 1), (1, 64), 0), out=buf20) buf21 = buf20 del buf20 triton_poi_fused_tanh_11[grid(4)](buf21, primals_17, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_17 return (buf15, buf21, buf0, buf1, buf2, buf3, primals_8, primals_12, buf5, buf7, buf9, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf15, reinterpret_tensor(buf17, (4, 32), (32, 1), 0), buf19, buf21, primals_16, primals_14, buf22, primals_10, buf23) class NetNew(nn.Module): """policy-value network module""" def __init__(self, board_width, board_height): super(NetNew, self).__init__() self.board_width = board_width self.board_height = board_height self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1) self.act_fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height) self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1) self.val_fc1 = nn.Linear(2 * board_width * board_height, 64) self.val_fc2 = nn.Linear(64, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.act_conv1.weight primals_9 = self.act_conv1.bias primals_10 = self.act_fc1.weight primals_11 = self.act_fc1.bias primals_12 = self.val_conv1.weight primals_13 = self.val_conv1.bias primals_14 = self.val_fc1.weight primals_15 = self.val_fc1.bias primals_16 = self.val_fc2.weight primals_17 = self.val_fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0], output[1]
moddent/Gomoku_Deep
Net
false
10,577
[ "MIT" ]
0
5d9bca97e6b30db4f99a4686152bcef7a6160ac6
https://github.com/moddent/Gomoku_Deep/tree/5d9bca97e6b30db4f99a4686152bcef7a6160ac6
ExpLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/v6/cv6odvhmmcyvquog4eo62pdliew53orxzwe2wfzampr64jy3ppa7.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.add] # Source node to ATen node mapping: # z => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/er/cerzq5qgbmqek3zb37s63lb4gfmqevdkumoq42pos3qmspzppljw.py # Topologically Sorted Source Nodes: [trace, new_ones, logabsdet], Original ATen: [aten.trace, aten.new_ones, aten.mul] # Source node to ATen node mapping: # logabsdet => mul # new_ones => full_default # trace => diagonal_copy, sum_1 # Graph fragment: # %diagonal_copy : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%primals_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%diagonal_copy,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %full_default), kwargs = {}) triton_per_fused_mul_new_ones_trace_1 = async_compile.triton('triton_per_fused_mul_new_ones_trace_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_new_ones_trace_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_new_ones_trace_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 1.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.linalg_matrix_exp] buf0 = torch.ops.aten.linalg_matrix_exp.default(primals_1) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, out=buf2) del buf1 buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [z], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf3, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf5 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [trace, new_ones, logabsdet], Original ATen: [aten.trace, aten.new_ones, aten.mul] triton_per_fused_mul_new_ones_trace_1.run(primals_1, buf5, 1, 4, grid=grid(1), stream=stream0) return (buf3, buf5, primals_1, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn from scipy.linalg import logm class InverseNotAvailable(Exception): """Exception to be thrown when a transform does not have an inverse.""" pass class Transform(nn.Module): """Base class for all transform objects.""" def forward(self, inputs, context=None): raise NotImplementedError() def inverse(self, inputs, context=None): raise InverseNotAvailable() class ExpLinear(Transform): def __init__(self, d): super().__init__() self.d = d dummy = nn.Linear(d, d) self.A = nn.Parameter(torch.tensor(logm(dummy.weight.detach().numpy ()), dtype=torch.float32)) self.b = nn.Parameter(dummy.bias.detach()) def forward(self, x, context=None): W = torch.matrix_exp(self.A) z = torch.matmul(x, W) + self.b logabsdet = torch.trace(self.A) * x.new_ones(z.shape[0]) return z, logabsdet def inverse(self, z, context=None): W_inv = torch.matrix_exp(-self.A) x = torch.matmul(z - self.b, W_inv) logabsdet = -torch.trace(self.A) * z.new_ones(x.shape[0]) return x, logabsdet def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn from scipy.linalg import logm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_per_fused_mul_new_ones_trace_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 1.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp5, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.linalg_matrix_exp.default(primals_1) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, out=buf2) del buf1 buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf3, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mul_new_ones_trace_1[grid(1)](primals_1, buf5, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) return buf3, buf5, primals_1, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0) class InverseNotAvailable(Exception): """Exception to be thrown when a transform does not have an inverse.""" pass class Transform(nn.Module): """Base class for all transform objects.""" def forward(self, inputs, context=None): raise NotImplementedError() def inverse(self, inputs, context=None): raise InverseNotAvailable() class ExpLinearNew(Transform): def __init__(self, d): super().__init__() self.d = d dummy = nn.Linear(d, d) self.A = nn.Parameter(torch.tensor(logm(dummy.weight.detach().numpy ()), dtype=torch.float32)) self.b = nn.Parameter(dummy.bias.detach()) def inverse(self, z, context=None): W_inv = torch.matrix_exp(-self.A) x = torch.matmul(z - self.b, W_inv) logabsdet = -torch.trace(self.A) * z.new_ones(x.shape[0]) return x, logabsdet def forward(self, input_0): primals_1 = self.A primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
mshakerinava/nflows
ExpLinear
false
10,578
[ "MIT" ]
0
d86cb1478ff36ffd3e005e980d92a3b0bbffbf02
https://github.com/mshakerinava/nflows/tree/d86cb1478ff36ffd3e005e980d92a3b0bbffbf02
SingleConv3DBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/dq/cdqln5h7mdv4sg4lweijkvma3pdseel2ohobukl6lpm6brka3uwu.py # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 108 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 27) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 3, 3, 3), (108, 27, 9, 3, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 108, grid=grid(108), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 3, 3, 3), (27, 9, 3, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch._utils class SingleConv3DBlock(nn.Module): def __init__(self, in_planes, out_planes, kernel_size): super().__init__() self.block = nn.Conv3d(in_planes, out_planes, kernel_size= kernel_size, stride=1, padding=(kernel_size - 1) // 2) def forward(self, x): return self.block(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'out_planes': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 108 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 27 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 3, 3, 3), (108, 27, 9, 3, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(108)](buf1, primals_2, 108, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 3, 3, 3), (27, 9, 3, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class SingleConv3DBlockNew(nn.Module): def __init__(self, in_planes, out_planes, kernel_size): super().__init__() self.block = nn.Conv3d(in_planes, out_planes, kernel_size= kernel_size, stride=1, padding=(kernel_size - 1) // 2) def forward(self, input_0): primals_1 = self.block.weight primals_2 = self.block.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ilcessadecalcular/segmentation
SingleConv3DBlock
false
10,579
[ "MIT" ]
0
24ba499a399efdba212ec5e2235b72ed8270cc24
https://github.com/ilcessadecalcular/segmentation/tree/24ba499a399efdba212ec5e2235b72ed8270cc24
MeanMaxPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/kk/ckkldgqeubujntq4nizqgdpskghwtppv2yxb3fg2b4buottsstxq.py # Topologically Sorted Source Nodes: [entity_states, max_1, sum_1, mean_pooled], Original ATen: [aten.mul, aten.max, aten.sum, aten.div] # Source node to ATen node mapping: # entity_states => mul # max_1 => max_1 # mean_pooled => div # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %unsqueeze_2), kwargs = {}) triton_poi_fused_div_max_mul_sum_0 = async_compile.triton('triton_poi_fused_div_max_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_max_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_max_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) % 4 x4 = (xindex // 256) x5 = xindex % 64 x6 = xindex % 16 x7 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (64*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + (256*x4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (4*x2) + (64*x3)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (64 + x5 + (256*x4)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + x0 + (4*x2) + (64*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (128 + x5 + (256*x4)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (4*x2) + (64*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (192 + x5 + (256*x4)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (x6 + (16*x7)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp16 = tmp14 / tmp15 tmp17 = triton_helpers.maximum(tmp2, tmp5) tmp18 = triton_helpers.maximum(tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp18, tmp13) tl.store(out_ptr0 + (x5 + (128*x7)), tmp16, xmask) tl.store(out_ptr1 + (x5 + (128*x7)), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 8, 4, 4), (512, 128, 16, 4, 1), torch.float32) buf0 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4, 1), 64) # alias buf1 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [entity_states, max_1, sum_1, mean_pooled], Original ATen: [aten.mul, aten.max, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_max_mul_sum_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, 1024, grid=grid(1024), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MeanMaxPooling(nn.Module): def __init__(self): super(MeanMaxPooling, self).__init__() def forward(self, doc_state, entity_mapping, entity_lens): """ :param doc_state: N x L x d :param entity_mapping: N x E x L :param entity_lens: N x E :return: N x E x 2d """ entity_states = entity_mapping.unsqueeze(3) * doc_state.unsqueeze(1) max_pooled = torch.max(entity_states, dim=2)[0] mean_pooled = torch.sum(entity_states, dim=2) / entity_lens.unsqueeze(2 ) output = torch.cat([max_pooled, mean_pooled], dim=2) return output def get_inputs(): return [torch.rand([4, 4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch. rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_max_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 % 4 x4 = xindex // 256 x5 = xindex % 64 x6 = xindex % 16 x7 = xindex // 64 tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 64 * x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + 256 * x4), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 4 * x2 + 64 * x3), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (64 + x5 + 256 * x4), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (32 + x0 + 4 * x2 + 64 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (128 + x5 + 256 * x4), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 4 * x2 + 64 * x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (192 + x5 + 256 * x4), xmask, eviction_policy ='evict_last') tmp15 = tl.load(in_ptr2 + (x6 + 16 * x7), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp16 = tmp14 / tmp15 tmp17 = triton_helpers.maximum(tmp2, tmp5) tmp18 = triton_helpers.maximum(tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp18, tmp13) tl.store(out_ptr0 + (x5 + 128 * x7), tmp16, xmask) tl.store(out_ptr1 + (x5 + 128 * x7), tmp19, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 8, 4, 4), (512, 128, 16, 4, 1), torch.float32) buf0 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4, 1), 64) buf1 = reinterpret_tensor(buf2, (4, 4, 4, 4, 4), (512, 128, 16, 4, 1), 0) get_raw_stream(0) triton_poi_fused_div_max_mul_sum_0[grid(1024)](arg0_1, arg1_1, arg2_1, buf0, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class MeanMaxPoolingNew(nn.Module): def __init__(self): super(MeanMaxPoolingNew, self).__init__() def forward(self, input_0, input_1, input_2): arg1_1 = input_0 arg0_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
mottled233/DFGN-pytorch
MeanMaxPooling
false
10,580
[ "MIT" ]
0
7d9f6a75404cfa429f1e2b57ec5055df382ed0a4
https://github.com/mottled233/DFGN-pytorch/tree/7d9f6a75404cfa429f1e2b57ec5055df382ed0a4
SphereLoss
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py # Topologically Sorted Source Nodes: [x_norm_1], Original ATen: [aten.div] # Source node to ATen node mapping: # x_norm_1 => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/xe/cxewggzrfqe57dzglxrzfhfgpsywlh36utvtdulp5oi75wfs7ml3.py # Topologically Sorted Source Nodes: [w_norm_1], Original ATen: [aten.div] # Source node to ATen node mapping: # w_norm_1 => div_1 # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/e5/ce5akhyvdv4fpeqnubeuvpnjgv6rzi737kzdu7duqhlui7osmftt.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 14), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 14.0 tmp16 = tmp14 * tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/op/copiginn4pvi756w33hhe2t44pm2lyqjahcjh565sxn7sxvfa6wx.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # loss => div_2, exp, log, mul_1, neg, sub_1, sum_3, sum_4 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %log), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_4,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 4), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_sum_3 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r2), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp19 = -tmp18 tmp20 = 0.25 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_norm_1], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [w_norm_1], Original ATen: [aten.div] triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [w_norm_1, cos_th], Original ATen: [aten.div, aten.mm] extern_kernels.mm(buf0, buf1, out=buf2) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] triton_per_fused__log_softmax_div_mul_neg_sum_3.run(buf5, buf3, primals_3, 1, 16, grid=grid(1), stream=stream0) del buf3 return (buf5, primals_2, primals_3, buf2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision.transforms import * class SphereLoss(nn.Module): def __init__(self, in_feats, n_classes, scale=14, *args, **kwargs): super(SphereLoss, self).__init__(*args, **kwargs) self.scale = scale self.cross_entropy = nn.CrossEntropyLoss() self.W = torch.nn.Parameter(torch.randn(in_feats, n_classes), requires_grad=True) nn.init.xavier_normal_(self.W, gain=1) def forward(self, x, label): x_norm = torch.norm(x, 2, 1, True).clamp(min=1e-12).expand_as(x) x_norm = x / x_norm w_norm = torch.norm(self.W, 2, 0, True).clamp(min=1e-12).expand_as(self .W) w_norm = self.W / w_norm cos_th = torch.mm(x_norm, w_norm) s_cos_th = self.scale * cos_th loss = self.cross_entropy(s_cos_th, label) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_feats': 4, 'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 14.0 tmp16 = tmp14 * tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + r2, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp19 = -tmp18 tmp20 = 0.25 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp21, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, buf1, out=buf2) buf3 = buf1 del buf1 triton_poi_fused_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4 del buf4 triton_per_fused__log_softmax_div_mul_neg_sum_3[grid(1)](buf5, buf3, primals_3, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf3 return buf5, primals_2, primals_3, buf2, reinterpret_tensor(buf0, (4, 4 ), (1, 4), 0) class SphereLossNew(nn.Module): def __init__(self, in_feats, n_classes, scale=14, *args, **kwargs): super(SphereLossNew, self).__init__(*args, **kwargs) self.scale = scale self.cross_entropy = nn.CrossEntropyLoss() self.W = torch.nn.Parameter(torch.randn(in_feats, n_classes), requires_grad=True) nn.init.xavier_normal_(self.W, gain=1) def forward(self, input_0, input_1): primals_1 = self.W primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
modricwang/SphereReID
SphereLoss
false
10,581
[ "MIT" ]
0
d0c39d2ce52cbc35e4d3adc1e90c0e54585aa492
https://github.com/modricwang/SphereReID/tree/d0c39d2ce52cbc35e4d3adc1e90c0e54585aa492
CNNAutoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/bk/cbke76b7qyqlrnlznamm5xris6ehahg6xijfc7bv2f4shkasqepx.py # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d => _low_memory_max_pool2d_offsets_to_indices, _low_memory_max_pool2d_with_offsets, getitem # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %_low_memory_max_pool2d_offsets_to_indices : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_1, 2, 64, [2, 2], [0, 0]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x4 = xindex x2 = (xindex // 32) % 32 tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2*x2 tmp22 = tmp21 + tmp18 tmp23 = 2*x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 64, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + (x4), tmp6, None) tl.store(out_ptr1 + (x4), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/j6/cj6faeofhfnxsh5iuwazughjlau4igyajnmvjequyelq7apzs4qm.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ph/cphyepthxn4zyv7c4e27kevokra5sqk3s2nzqonofdaerqekm5q3.py # Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d_1 => _low_memory_max_pool2d_offsets_to_indices_1, _low_memory_max_pool2d_with_offsets_1, getitem_2 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %_low_memory_max_pool2d_offsets_to_indices_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_3, 2, 32, [2, 2], [0, 0]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x4 = xindex x2 = (xindex // 16) % 16 tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2*x2 tmp22 = tmp21 + tmp18 tmp23 = 2*x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 32, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + (x4), tmp6, None) tl.store(out_ptr1 + (x4), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/c3/cc37wvituo2asffgdbn2cnuhsr4nuj5pzt75pvxxxx4t7tdtdkqj.py # Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_4 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/te/ctehnuxvs6sxs2w2o6ycqq6smwtzf2gr5stvgvqrjiym2p3qxudx.py # Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d_2 => _low_memory_max_pool2d_offsets_to_indices_2, _low_memory_max_pool2d_with_offsets_2, getitem_4 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %_low_memory_max_pool2d_offsets_to_indices_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_5, 2, 16, [2, 2], [0, 0]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x4 = xindex x2 = (xindex // 8) % 8 tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2*x2 tmp22 = tmp21 + tmp18 tmp23 = 2*x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 16, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + (x4), tmp6, None) tl.store(out_ptr1 + (x4), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/32/c32h5hcxdi6fahiardcxqxpdy7jawxvnjkkoyyfapoigyfbt3lzc.py # Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_6 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ft/cft4i5wzg73wfe5xik5uzcuibkdtygxl5o7flno4d53rba73ex7p.py # Topologically Sorted Source Nodes: [conv_transpose2d, x_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv_transpose2d => convolution_4 # x_8 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%max_unpool2d, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/64/c64hj3lezay57gelahpcacn3bsbtpyj7xvdxemmr6nxw74ddhv7u.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_5 # x_10 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%max_unpool2d_1, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/kc/ckccwlmoiftf7dbzfgmmf4lkdlfmsynnqgyfqc3nohgymj765rjy.py # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_12], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_2 => convolution_6 # x_12 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%max_unpool2d_2, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/a5/ca5vovie4nzzpjebj3wahhrwhrs7y474tmwedlvsy2srjecdlo5t.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_13 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (16, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_15, (1, ), (1, )) assert_size_stride(primals_16, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_17, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int64) # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int64) # Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.float32) buf11 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.int64) # Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 8, 8), (1024, 64, 8, 1)) buf13 = buf12; del buf12 # reuse buf30 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf13, primals_9, buf30, 4096, grid=grid(4096), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.max_unpool2d] buf14 = torch.ops.aten.max_unpool2d.default(buf13, buf11, [16, 16]) del buf13 buf15 = buf14 del buf14 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 32, 16, 16), (8192, 256, 16, 1)) buf17 = buf16; del buf16 # reuse buf29 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv_transpose2d, x_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf17, primals_11, buf29, 32768, grid=grid(32768), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_unpool2d] buf18 = torch.ops.aten.max_unpool2d.default(buf17, buf7, [32, 32]) del buf17 buf19 = buf18 del buf18 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf21 = buf20; del buf20 # reuse buf28 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf21, primals_13, buf28, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.max_unpool2d] buf22 = torch.ops.aten.max_unpool2d.default(buf21, buf3, [64, 64]) del buf21 buf23 = buf22 del buf22 # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf25, primals_15, 16384, grid=grid(16384), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution] triton_poi_fused_convolution_10.run(buf27, primals_17, 16384, grid=grid(16384), stream=stream0) del primals_17 return (buf27, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf15, buf19, buf23, buf25, buf28, buf29, buf30, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CNNAutoencoder(nn.Module): def __init__(self, depth_0=1, depth_1=64, depth_2=32, depth_3=16, lastdepth=1): super(CNNAutoencoder, self).__init__() self.depth_0 = depth_0 self.depth_1 = depth_1 self.depth_2 = depth_2 self.depth_3 = depth_3 self.enc1 = nn.Conv2d(self.depth_0, self.depth_1, kernel_size=3, stride=1, padding=1) self.enc2 = nn.Conv2d(self.depth_1, self.depth_2, kernel_size=3, stride=1, padding=1) self.enc3 = nn.Conv2d(self.depth_2, self.depth_3, kernel_size=3, stride=1, padding=1) self.ltnt = nn.Conv2d(self.depth_3, self.depth_3, kernel_size=3, stride=1, padding=1) self.dec3 = nn.ConvTranspose2d(self.depth_3, self.depth_2, kernel_size=1, stride=1) self.dec2 = nn.ConvTranspose2d(self.depth_2, self.depth_1, kernel_size=1, stride=1) self.dec1 = nn.ConvTranspose2d(self.depth_1, self.depth_0, kernel_size=1, stride=1) self.out = nn.Conv2d(self.depth_0, 1, 1) self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=False) self.unpool = nn.MaxUnpool2d(2, 2) def forward(self, x): x = F.relu(self.enc1(x)) x, indx1 = self.pool(x) x = F.relu(self.enc2(x)) x, indx2 = self.pool(x) x = F.relu(self.enc3(x)) x, indx3 = self.pool(x) x = F.relu(self.ltnt(x)) x = self.unpool(x, indx3, output_size=indx2.size()) x = F.relu(self.dec3(x)) x = self.unpool(x, indx2, output_size=indx1.size()) x = F.relu(self.dec2(x)) x = self.unpool(x, indx1) x = F.relu(self.dec1(x)) x = self.out(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x4 = xindex x2 = xindex // 32 % 32 tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2 * x2 tmp22 = tmp21 + tmp18 tmp23 = 2 * x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 64, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + x4, tmp6, None) tl.store(out_ptr1 + x4, tmp27, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x4 = xindex x2 = xindex // 16 % 16 tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2 * x2 tmp22 = tmp21 + tmp18 tmp23 = 2 * x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 32, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + x4, tmp6, None) tl.store(out_ptr1 + x4, tmp27, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x4 = xindex x2 = xindex // 8 % 8 tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tmp17 = tl.full([1], 2, tl.int32) tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17) tmp19 = tmp18 * tmp17 tmp20 = tmp16 - tmp19 tmp21 = 2 * x2 tmp22 = tmp21 + tmp18 tmp23 = 2 * x0 tmp24 = tmp23 + tmp20 tmp25 = tl.full([1], 16, tl.int64) tmp26 = tmp22 * tmp25 tmp27 = tmp26 + tmp24 tl.store(out_ptr0 + x4, tmp6, None) tl.store(out_ptr1 + x4, tmp27, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, None) @triton.jit def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (16, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_15, (1,), (1,)) assert_size_stride(primals_16, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_17, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf3 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int64) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf1, buf2, buf3, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int64) triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6, buf7, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 16, 16), (4096, 256, 16, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(16384)](buf9, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch. float32) buf11 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.int64 ) triton_poi_fused_max_pool2d_with_indices_5[grid(4096)](buf9, buf10, buf11, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 8, 8), (1024, 64, 8, 1)) buf13 = buf12 del buf12 buf30 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(4096)]( buf13, primals_9, buf30, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf14 = torch.ops.aten.max_unpool2d.default(buf13, buf11, [16, 16]) del buf13 buf15 = buf14 del buf14 buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 32, 16, 16), (8192, 256, 16, 1)) buf17 = buf16 del buf16 buf29 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(32768)]( buf17, primals_11, buf29, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf18 = torch.ops.aten.max_unpool2d.default(buf17, buf7, [32, 32]) del buf17 buf19 = buf18 del buf18 buf20 = extern_kernels.convolution(buf19, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf21 = buf20 del buf20 buf28 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(262144)]( buf21, primals_13, buf28, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf22 = torch.ops.aten.max_unpool2d.default(buf21, buf3, [64, 64]) del buf21 buf23 = buf22 del buf22 buf24 = extern_kernels.convolution(buf23, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_9[grid(16384)](buf25, primals_15, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf27 = buf26 del buf26 triton_poi_fused_convolution_10[grid(16384)](buf27, primals_17, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 return (buf27, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf15, buf19, buf23, buf25, buf28, buf29, buf30) class CNNAutoencoderNew(nn.Module): def __init__(self, depth_0=1, depth_1=64, depth_2=32, depth_3=16, lastdepth=1): super(CNNAutoencoderNew, self).__init__() self.depth_0 = depth_0 self.depth_1 = depth_1 self.depth_2 = depth_2 self.depth_3 = depth_3 self.enc1 = nn.Conv2d(self.depth_0, self.depth_1, kernel_size=3, stride=1, padding=1) self.enc2 = nn.Conv2d(self.depth_1, self.depth_2, kernel_size=3, stride=1, padding=1) self.enc3 = nn.Conv2d(self.depth_2, self.depth_3, kernel_size=3, stride=1, padding=1) self.ltnt = nn.Conv2d(self.depth_3, self.depth_3, kernel_size=3, stride=1, padding=1) self.dec3 = nn.ConvTranspose2d(self.depth_3, self.depth_2, kernel_size=1, stride=1) self.dec2 = nn.ConvTranspose2d(self.depth_2, self.depth_1, kernel_size=1, stride=1) self.dec1 = nn.ConvTranspose2d(self.depth_1, self.depth_0, kernel_size=1, stride=1) self.out = nn.Conv2d(self.depth_0, 1, 1) self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=False) self.unpool = nn.MaxUnpool2d(2, 2) def forward(self, input_0): primals_1 = self.enc1.weight primals_2 = self.enc1.bias primals_4 = self.enc2.weight primals_5 = self.enc2.bias primals_6 = self.enc3.weight primals_7 = self.enc3.bias primals_8 = self.ltnt.weight primals_9 = self.ltnt.bias primals_10 = self.dec3.weight primals_11 = self.dec3.bias primals_12 = self.dec2.weight primals_13 = self.dec2.bias primals_14 = self.dec1.weight primals_15 = self.dec1.bias primals_16 = self.out.weight primals_17 = self.out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
mariajmolina/ML-for-S2S
CNNAutoencoder
false
10,582
[ "MIT" ]
0
3de32e72042ba7e8b37a433579fa9c5630246d8c
https://github.com/mariajmolina/ML-for-S2S/tree/3de32e72042ba7e8b37a433579fa9c5630246d8c
BCEFocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/2m/c2mmericxaxwtxgxrr44achuz5yvftacn27cumu4ceg6upqj2jho.py # Topologically Sorted Source Nodes: [pt, sub, pow_1, mul, mul_1, log, mul_2, pow_2, mul_3, sub_1, mul_4, sub_2, log_1, mul_5, loss, loss_1], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.mul, aten.log, aten.sub, aten.mean] # Source node to ATen node mapping: # log => log # log_1 => log_1 # loss => sub_3 # loss_1 => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # pow_1 => pow_1 # pow_2 => pow_2 # pt => sigmoid # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -0.25), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg1_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.75), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_2,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %log_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_5), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp7 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp5 = -0.25 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp9 = tl_math.log(tmp1) tmp10 = tmp8 * tmp9 tmp11 = tmp1 * tmp1 tmp12 = 0.75 tmp13 = tmp11 * tmp12 tmp14 = tmp2 - tmp7 tmp15 = tmp13 * tmp14 tmp16 = tl_math.log(tmp3) tmp17 = tmp15 * tmp16 tmp18 = tmp10 - tmp17 tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 256.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pt, sub, pow_1, mul, mul_1, log, mul_2, pow_2, mul_3, sub_1, mul_4, sub_2, log_1, mul_5, loss, loss_1], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.mul, aten.log, aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class BCEFocalLoss(torch.nn.Module): """ 二分类的Focalloss alpha 固定 """ def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'): super().__init__() self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, _input, target): pt = torch.sigmoid(_input) alpha = self.alpha loss = -alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - ( 1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt) if self.reduction == 'elementwise_mean': loss = torch.mean(loss) elif self.reduction == 'sum': loss = torch.sum(loss) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp7 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp5 = -0.25 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp9 = tl_math.log(tmp1) tmp10 = tmp8 * tmp9 tmp11 = tmp1 * tmp1 tmp12 = 0.75 tmp13 = tmp11 * tmp12 tmp14 = tmp2 - tmp7 tmp15 = tmp13 * tmp14 tmp16 = tl_math.log(tmp3) tmp17 = tmp15 * tmp16 tmp18 = tmp10 - tmp17 tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 256.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log_mean_mul_pow_rsub_sigmoid_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BCEFocalLossNew(torch.nn.Module): """ 二分类的Focalloss alpha 固定 """ def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'): super().__init__() self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
ilcessadecalcular/segmentation
BCEFocalLoss
false
10,583
[ "MIT" ]
0
24ba499a399efdba212ec5e2235b72ed8270cc24
https://github.com/ilcessadecalcular/segmentation/tree/24ba499a399efdba212ec5e2235b72ed8270cc24
Embeddings
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/5w/c5w6xllvuj7vn4lzwrr2h6fyq5x6zwpn4avrhdaumvroxlqdnt4b.py # Topologically Sorted Source Nodes: [embeddings], Original ATen: [aten.add] # Source node to ATen node mapping: # embeddings => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute, %primals_4), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(4, 4, 4), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [embeddings], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf0, primals_2, primals_4, buf1, 16, grid=grid(16), stream=stream0) del buf0 del primals_2 del primals_4 return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch._utils class Embeddings(nn.Module): def __init__(self, input_dim, embed_dim, cube_size, patch_size, dropout): super().__init__() self.n_patches = int(cube_size[0] * cube_size[1] * cube_size[2] / ( patch_size * patch_size * patch_size)) self.patch_size = patch_size self.embed_dim = embed_dim self.patch_embeddings = nn.Conv3d(in_channels=input_dim, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size) self.position_embeddings = nn.Parameter(torch.zeros(1, self. n_patches, embed_dim)) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.patch_embeddings(x) x = x.flatten(2) x = x.transpose(-1, -2) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'embed_dim': 4, 'cube_size': [4, 4, 4], 'patch_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(4, 4, 4), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(16)](buf0, primals_2, primals_4, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del primals_2 del primals_4 return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class EmbeddingsNew(nn.Module): def __init__(self, input_dim, embed_dim, cube_size, patch_size, dropout): super().__init__() self.n_patches = int(cube_size[0] * cube_size[1] * cube_size[2] / ( patch_size * patch_size * patch_size)) self.patch_size = patch_size self.embed_dim = embed_dim self.patch_embeddings = nn.Conv3d(in_channels=input_dim, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size) self.position_embeddings = nn.Parameter(torch.zeros(1, self. n_patches, embed_dim)) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_4 = self.position_embeddings primals_1 = self.patch_embeddings.weight primals_2 = self.patch_embeddings.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
ilcessadecalcular/segmentation
Embeddings
false
10,584
[ "MIT" ]
0
24ba499a399efdba212ec5e2235b72ed8270cc24
https://github.com/ilcessadecalcular/segmentation/tree/24ba499a399efdba212ec5e2235b72ed8270cc24
DotRNNSelector
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/w7/cw7vs66kv6n6qd3sz6bqmbh334sninlwepmd5dp5tz2dc6pkvtsh.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/if/cifspokppsbnxoamjhgrt6bed2y2m3hucem5u4wnfilqkxalhuzx.py # Topologically Sorted Source Nodes: [role_latent_reshaped], Original ATen: [aten.repeat] # Source node to ATen node mapping: # role_latent_reshaped => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_1, [4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 32, grid=grid(32), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [role_latent_reshaped], Original ATen: [aten.repeat] triton_poi_fused_repeat_1.run(primals_6, buf3, 64, grid=grid(64), stream=stream0) del primals_6 buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [role_latent_reshaped, bmm], Original ATen: [aten.repeat, aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0), out=buf4) del buf2 return (reinterpret_tensor(buf4, (4, 4), (4, 1), 0), primals_3, buf1, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch as th from torch.distributions import Categorical import torch.nn as nn import torch.nn.functional as F class DotRNNSelector(nn.Module): def __init__(self, input_shape, args): super(DotRNNSelector, self).__init__() self.args = args self.epsilon_start = self.args.epsilon_start self.epsilon_finish = self.args.role_epsilon_finish self.epsilon_anneal_time = self.args.epsilon_anneal_time self.epsilon_anneal_time_exp = self.args.epsilon_anneal_time_exp self.delta = (self.epsilon_start - self.epsilon_finish ) / self.epsilon_anneal_time self.role_action_spaces_update_start = (self.args. role_action_spaces_update_start) self.epsilon_start_t = 0 self.epsilon_reset = True self.fc1 = nn.Linear(args.rnn_hidden_dim, 2 * args.rnn_hidden_dim) self.fc2 = nn.Linear(2 * args.rnn_hidden_dim, args.action_latent_dim) self.epsilon = 0.05 def forward(self, inputs, role_latent): x = self.fc2(F.relu(self.fc1(inputs))) x = x.unsqueeze(-1) role_latent_reshaped = role_latent.unsqueeze(0).repeat(x.shape[0], 1, 1 ) role_q = th.bmm(role_latent_reshaped, x).squeeze() return role_q def select_role(self, role_qs, test_mode=False, t_env=None): self.epsilon = self.epsilon_schedule(t_env) if test_mode: self.epsilon = 0.0 masked_q_values = role_qs.detach().clone() random_numbers = th.rand_like(role_qs[:, 0]) pick_random = (random_numbers < self.epsilon).long() random_roles = Categorical(th.ones(role_qs.shape).float()).sample( ).long() picked_roles = pick_random * random_roles + (1 - pick_random ) * masked_q_values.max(dim=1)[1] return picked_roles def epsilon_schedule(self, t_env): if t_env is None: return 0.05 if t_env > self.role_action_spaces_update_start and self.epsilon_reset: self.epsilon_reset = False self.epsilon_start_t = t_env self.epsilon_anneal_time = self.epsilon_anneal_time_exp self.delta = (self.epsilon_start - self.epsilon_finish ) / self.epsilon_anneal_time if t_env - self.epsilon_start_t > self.epsilon_anneal_time: epsilon = self.epsilon_finish else: epsilon = self.epsilon_start - (t_env - self.epsilon_start_t ) * self.delta return epsilon def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_shape': 4, 'args': _mock_config(epsilon_start=4, role_epsilon_finish=4, epsilon_anneal_time=4, epsilon_anneal_time_exp=4, role_action_spaces_update_start=4, rnn_hidden_dim=4, action_latent_dim=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch as th from torch.distributions import Categorical import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(32)](buf1, primals_2, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_repeat_1[grid(64)](primals_6, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0), out=buf4) del buf2 return reinterpret_tensor(buf4, (4, 4), (4, 1), 0 ), primals_3, buf1, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0 ), primals_4 class DotRNNSelectorNew(nn.Module): def __init__(self, input_shape, args): super(DotRNNSelectorNew, self).__init__() self.args = args self.epsilon_start = self.args.epsilon_start self.epsilon_finish = self.args.role_epsilon_finish self.epsilon_anneal_time = self.args.epsilon_anneal_time self.epsilon_anneal_time_exp = self.args.epsilon_anneal_time_exp self.delta = (self.epsilon_start - self.epsilon_finish ) / self.epsilon_anneal_time self.role_action_spaces_update_start = (self.args. role_action_spaces_update_start) self.epsilon_start_t = 0 self.epsilon_reset = True self.fc1 = nn.Linear(args.rnn_hidden_dim, 2 * args.rnn_hidden_dim) self.fc2 = nn.Linear(2 * args.rnn_hidden_dim, args.action_latent_dim) self.epsilon = 0.05 def select_role(self, role_qs, test_mode=False, t_env=None): self.epsilon = self.epsilon_schedule(t_env) if test_mode: self.epsilon = 0.0 masked_q_values = role_qs.detach().clone() random_numbers = th.rand_like(role_qs[:, 0]) pick_random = (random_numbers < self.epsilon).long() random_roles = Categorical(th.ones(role_qs.shape).float()).sample( ).long() picked_roles = pick_random * random_roles + (1 - pick_random ) * masked_q_values.max(dim=1)[1] return picked_roles def epsilon_schedule(self, t_env): if t_env is None: return 0.05 if t_env > self.role_action_spaces_update_start and self.epsilon_reset: self.epsilon_reset = False self.epsilon_start_t = t_env self.epsilon_anneal_time = self.epsilon_anneal_time_exp self.delta = (self.epsilon_start - self.epsilon_finish ) / self.epsilon_anneal_time if t_env - self.epsilon_start_t > self.epsilon_anneal_time: epsilon = self.epsilon_finish else: epsilon = self.epsilon_start - (t_env - self.epsilon_start_t ) * self.delta return epsilon def forward(self, input_0, input_1): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
NagisaZj/RODE
DotRNNSelector
false
10,585
[ "Apache-2.0" ]
0
f7f6831fee58a7910e1d7c3a8ae19cef82ab8d03
https://github.com/NagisaZj/RODE/tree/f7f6831fee58a7910e1d7c3a8ae19cef82ab8d03
MeanPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/27/c2756icidjudaxmpsh36ivcfkl6rhdm5jig5tqksj7oj2mzvteah.py # Topologically Sorted Source Nodes: [entity_states, sum_1], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # entity_states => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = (xindex // 16) x3 = (xindex // 64) x5 = xindex % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x4)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x4)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x4)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x6), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/pt/cpt72ffbbpdwl7vayxxwlty7szkcpc6kgz6kcvijm543s4mcblrc.py # Topologically Sorted Source Nodes: [entity_states, sum_1, mean_pooled], Original ATen: [aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # entity_states => mul # mean_pooled => div # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %unsqueeze_2), kwargs = {}) triton_poi_fused_div_mul_sum_1 = async_compile.triton('triton_poi_fused_div_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 16 x5 = (xindex // 64) x6 = xindex tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (16*x5)), xmask, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x6), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [entity_states, sum_1], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [entity_states, sum_1, mean_pooled], Original ATen: [aten.mul, aten.sum, aten.div] triton_poi_fused_div_mul_sum_1.run(buf0, arg2_1, buf1, 1024, grid=grid(1024), stream=stream0) del arg2_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MeanPooling(nn.Module): def __init__(self): super(MeanPooling, self).__init__() def forward(self, doc_state, entity_mapping, entity_lens): entity_states = entity_mapping.unsqueeze(3) * doc_state.unsqueeze(1) mean_pooled = torch.sum(entity_states, dim=2) / entity_lens.unsqueeze(2 ) return mean_pooled def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex // 16 x3 = xindex // 64 x5 = xindex % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x4), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x4), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (16 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x4), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (32 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x4), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (48 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x6, tmp14, xmask) @triton.jit def triton_poi_fused_div_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 16 x5 = xindex // 64 x6 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 16 * x5), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + x6, tmp2, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_div_mul_sum_1[grid(1024)](buf0, arg2_1, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg2_1 del buf0 return buf1, class MeanPoolingNew(nn.Module): def __init__(self): super(MeanPoolingNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
mottled233/DFGN-pytorch
MeanPooling
false
10,586
[ "MIT" ]
0
7d9f6a75404cfa429f1e2b57ec5055df382ed0a4
https://github.com/mottled233/DFGN-pytorch/tree/7d9f6a75404cfa429f1e2b57ec5055df382ed0a4
SeparableConv2d_same
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py # Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # padded_inputs => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [padded_inputs], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return (buf2, primals_2, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def fixed_padding(inputs, kernel_size, dilation): kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end)) return padded_inputs class SeparableConv2d_same(nn.Module): def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation= 1, bias=False): super(SeparableConv2d_same, self).__init__() self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation, groups=inplanes, bias=bias) self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = fixed_padding(x, self.conv1.kernel_size[0], dilation=self.conv1 .dilation[0]) x = self.conv1(x) x = self.pointwise(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inplanes': 4, 'planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return buf2, primals_2, primals_3, buf0, buf1 def fixed_padding(inputs, kernel_size, dilation): kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end)) return padded_inputs class SeparableConv2d_sameNew(nn.Module): def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation= 1, bias=False): super(SeparableConv2d_sameNew, self).__init__() self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation, groups=inplanes, bias=bias) self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.pointwise.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lutbook/pytorch-segmentation-pipeline
SeparableConv2d_same
false
10,587
[ "MIT" ]
0
eb29d1bf240c158c64d81177e9be93cd958c0026
https://github.com/lutbook/pytorch-segmentation-pipeline/tree/eb29d1bf240c158c64d81177e9be93cd958c0026
ActorCriticModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [action_probs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # action_probs => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [action_probs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # action_probs => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (4, 16), (16, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (16, 16), (16, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (1, 16), (16, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse buf13 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf13, 1024, grid=grid(1024), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse buf12 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [action_x], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf12, 1024, grid=grid(1024), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [action_probs], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [action_probs], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 16), (1, 16), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf7 # reuse buf11 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [value_x], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf8, primals_9, buf11, 1024, grid=grid(1024), stream=stream0) del primals_9 buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf8, (64, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf6, reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf6, reinterpret_tensor(buf8, (64, 16), (16, 1), 0), primals_10, buf11, primals_8, primals_6, buf12, primals_4, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ActorCriticModel(nn.Module): def __init__(self, n_state, n_actions): super(ActorCriticModel, self).__init__() self.fc1 = nn.Linear(n_state, 16) self.action1 = nn.Linear(16, 16) self.action2 = nn.Linear(16, n_actions) self.value1 = nn.Linear(16, 16) self.value2 = nn.Linear(16, 1) def forward(self, x): x = torch.Tensor(x) x = F.relu(self.fc1(x)) action_x = F.relu(self.action1(x)) action_probs = F.softmax(self.action2(action_x), dim=-1) value_x = F.relu(self.value1(x)) state_values = self.value2(value_x) return action_probs, state_values def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_state': 4, 'n_actions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (4, 16), (16, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (16, 16), (16, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (1, 16), (16, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf0 buf13 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1, primals_3, buf13, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf2 buf12 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3, primals_5, buf12, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 16), (1, 16), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf7 buf11 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf8, primals_9, buf11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf8, (64, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 1), (1, 16), 0 ), alpha=1, beta=1, out=buf10) del primals_11 return buf6, reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor( buf3, (64, 16), (16, 1), 0), buf6, reinterpret_tensor(buf8, (64, 16 ), (16, 1), 0 ), primals_10, buf11, primals_8, primals_6, buf12, primals_4, buf13 class ActorCriticModelNew(nn.Module): def __init__(self, n_state, n_actions): super(ActorCriticModelNew, self).__init__() self.fc1 = nn.Linear(n_state, 16) self.action1 = nn.Linear(16, 16) self.action2 = nn.Linear(16, n_actions) self.value1 = nn.Linear(16, 16) self.value2 = nn.Linear(16, 1) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.action1.weight primals_5 = self.action1.bias primals_6 = self.action2.weight primals_7 = self.action2.bias primals_8 = self.value1.weight primals_9 = self.value1.bias primals_10 = self.value2.weight primals_11 = self.value2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1]
nikolim/cablab
ActorCriticModel
false
10,588
[ "MIT" ]
0
1dcf0d7da01ed3988f84309acfb31cc9a9893de1
https://github.com/nikolim/cablab/tree/1dcf0d7da01ed3988f84309acfb31cc9a9893de1
GlobalAvgPool1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/an/canusqrnw4njor7uwvf6vo7b6joi5xh6pmd66qfugkeeoq5wo34u.py # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool1d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from abc import abstractmethod from torch.nn import functional class AvgPool(nn.Module): """AvgPool Module. """ def __init__(self): super().__init__() @abstractmethod def forward(self, input_tensor): pass class GlobalAvgPool1d(AvgPool): """GlobalAvgPool1d Module. """ def forward(self, input_tensor): return functional.avg_pool1d(input_tensor, input_tensor.size()[2:] ).view(input_tensor.size()[:2]) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from abc import abstractmethod assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4), (4, 1), 0), class AvgPool(nn.Module): """AvgPool Module. """ def __init__(self): super().__init__() @abstractmethod def forward(self, input_tensor): pass class GlobalAvgPool1dNew(AvgPool): """GlobalAvgPool1d Module. """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
lawwu/nni
GlobalAvgPool1d
false
10,589
[ "MIT" ]
0
b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
https://github.com/lawwu/nni/tree/b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
ResidualConvUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => relu_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/hc/chcx47xohlbah6m2k2mpiyct2oijgy7vuqj7z6iime4huasayvby.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %relu), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %relu), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, buf0, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 return (buf4, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_2[grid(256)](buf4, buf0, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf4, primals_2, primals_4, buf0, buf2 class ResidualConvUnitNew(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
maayan-myheritage/3d-photo-inpainting
ResidualConvUnit
false
10,590
[ "MIT" ]
0
6293eecfeb55ceba019655723f6efe31e8ecb177
https://github.com/maayan-myheritage/3d-photo-inpainting/tree/6293eecfeb55ceba019655723f6efe31e8ecb177
Temporal_Attention_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/7w/c7wt5u5twr6s7nrbqsqpt6hwraid2xk7na7ocslewqzsbyc2a7zt.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mv] # Source node to ATen node mapping: # matmul => mul, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %primals_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + ((4*(x0 % 4)) + (64*(x0 // 16)) + ((x0 // 4) % 4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (16 + (4*(x0 % 4)) + (64*(x0 // 16)) + ((x0 // 4) % 4)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (32 + (4*(x0 % 4)) + (64*(x0 // 16)) + ((x0 // 4) % 4)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (48 + (4*(x0 % 4)) + (64*(x0 // 16)) + ((x0 // 4) % 4)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x0), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dk/cdkjuj73xxsev7rga4f35b4r3cyhhsl2uu7ag2tx3ghp54wugj2g.py # Topologically Sorted Source Nodes: [rhs], Original ATen: [aten.mv] # Source node to ATen node mapping: # rhs => mul_1, sum_2 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %primals_4), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused_mv_1 = async_compile.triton('triton_poi_fused_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + ((16*(x0 // 4)) + (x0 % 4)), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x0), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/5w/c5wcdj6yyngiuwlpe7g3vnhklpxgky46qc2ahr5kapoogh67gtfu.py # Topologically Sorted Source Nodes: [E], Original ATen: [aten.clone] # Source node to ATen node mapping: # E => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/7x/c7x5yph2fq7wr6kxcivnhipxkozw22jeayfsc2vgb4ebrhs5ampn.py # Topologically Sorted Source Nodes: [E, E_normalized], Original ATen: [aten.clone, aten._softmax] # Source node to ATen node mapping: # E => clone_3 # E_normalized => amax, exp, sub # Graph fragment: # %clone_3 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_4,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_clone_3 = async_compile.triton('triton_poi_fused__softmax_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/42/c42wkxuhshqpqb2sl7lfkvxa4dtqaaa4arcb32gfregowyva5lrs.py # Topologically Sorted Source Nodes: [E_normalized], Original ATen: [aten._softmax] # Source node to ATen node mapping: # E_normalized => div, sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + ((4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mv] stream0 = get_raw_stream(0) triton_poi_fused_mv_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [lhs], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), primals_3, out=buf1) buf2 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [rhs], Original ATen: [aten.mv] triton_poi_fused_mv_1.run(primals_1, primals_4, buf2, 64, grid=grid(64), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [E], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, primals_6, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [E], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [E, E_normalized], Original ATen: [aten.clone, aten._softmax] triton_poi_fused__softmax_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [E_normalized], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf6 return (buf7, primals_1, primals_6, buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), buf7, primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 16), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Temporal_Attention_layer(nn.Module): def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Temporal_Attention_layer, self).__init__() self.U1 = nn.Parameter(torch.FloatTensor(num_of_vertices)) self.U2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_vertices)) self.U3 = nn.Parameter(torch.FloatTensor(in_channels)) self.be = nn.Parameter(torch.FloatTensor(1, num_of_timesteps, num_of_timesteps)) self.Ve = nn.Parameter(torch.FloatTensor(num_of_timesteps, num_of_timesteps)) def forward(self, x): """ Making a forward pass of the temporal attention layer. B is the batch size. N_nodes is the number of nodes in the graph. F_in is the dimension of input features. T_in is the length of input sequence in time. Arg types: * x (PyTorch Float Tensor)* - Node features for T time periods, with shape (B, N_nodes, F_in, T_in). Return types: * output (PyTorch Float Tensor)* - Temporal attention score matrices, with shape (B, T_in, T_in). """ _, _num_of_vertices, _num_of_features, _num_of_timesteps = x.shape lhs = torch.matmul(torch.matmul(x.permute(0, 3, 2, 1), self.U1), self.U2) rhs = torch.matmul(self.U3, x) product = torch.matmul(lhs, rhs) E = torch.matmul(self.Ve, torch.sigmoid(product + self.be)) E_normalized = F.softmax(E, dim=1) return E_normalized def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'DEVICE': 4, 'in_channels': 4, 'num_of_vertices': 4, 'num_of_timesteps': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4 * (x0 % 4) + 64 * (x0 // 16) + x0 // 4 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (16 + 4 * (x0 % 4) + 64 * (x0 // 16) + x0 // 4 % 4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (32 + 4 * (x0 % 4) + 64 * (x0 // 16) + x0 // 4 % 4), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (48 + 4 * (x0 % 4) + 64 * (x0 // 16) + x0 // 4 % 4), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x0, tmp18, xmask) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16 * (x0 // 4) + x0 % 4), xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + 16 * (x0 // 4) + x0 % 4), xmask) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + 16 * (x0 // 4) + x0 % 4), xmask) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + 16 * (x0 // 4) + x0 % 4), xmask) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x0, tmp18, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp3, xmask & ymask) @triton.jit def triton_poi_fused__softmax_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_mv_0[grid(64)](primals_1, primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), primals_3, out=buf1) buf2 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused_mv_1[grid(64)](primals_1, primals_4, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(16, 4)](buf3, primals_6, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused__softmax_clone_3[grid(64)](buf5, buf6, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 triton_poi_fused__softmax_4[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK= 4, YBLOCK=16, num_warps=1, num_stages=1) del buf6 return buf7, primals_1, primals_6, buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), buf7, primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 16), (1, 4), 0), reinterpret_tensor( primals_3, (4, 4), (1, 4), 0) class Temporal_Attention_layerNew(nn.Module): def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Temporal_Attention_layerNew, self).__init__() self.U1 = nn.Parameter(torch.FloatTensor(num_of_vertices)) self.U2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_vertices)) self.U3 = nn.Parameter(torch.FloatTensor(in_channels)) self.be = nn.Parameter(torch.FloatTensor(1, num_of_timesteps, num_of_timesteps)) self.Ve = nn.Parameter(torch.FloatTensor(num_of_timesteps, num_of_timesteps)) def forward(self, input_0): primals_2 = self.U1 primals_3 = self.U2 primals_4 = self.U3 primals_6 = self.be primals_5 = self.Ve primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
msalvato/pytorch_geometric_temporal
Temporal_Attention_layer
false
10,591
[ "MIT" ]
0
149bd46d3b2bddfc3570e31a91a3f53e8873d50e
https://github.com/msalvato/pytorch_geometric_temporal/tree/149bd46d3b2bddfc3570e31a91a3f53e8873d50e
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/wl/cwl3r3y2pgt376us4loda5kjeqzzwgynhcjamefpeshkd44ofpoz.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%view_5, 1.0), kwargs = {}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ym/cym2aoh2473azgl5qufcsfqa4qgp5bji7hptnotbmkegfc7h3xan.py # Topologically Sorted Source Nodes: [contiguous_2, view_5], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # contiguous_2 => clone # view_5 => view_20 # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %view_20 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [-1, 4]), kwargs = {}) triton_poi_fused_clone_view_3 = async_compile.triton('triton_poi_fused_clone_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0), out=buf8) buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2, view_5], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_3.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf9, reinterpret_tensor(primals_5, (4, 4), (4, 1), 0), out=buf10) return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), primals_1, buf7, reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf9, (4, 16), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np from torch import nn class MultiHeadAttention(nn.Module): def __init__(self, n_heads, input_dim, embed_dim, val_dim=None, key_dim =None): super(MultiHeadAttention, self).__init__() if val_dim is None: val_dim = embed_dim // n_heads if key_dim is None: key_dim = val_dim self.n_heads = n_heads self.input_dim = input_dim self.embed_dim = embed_dim self.val_dim = val_dim self.key_dim = key_dim self.norm_factor = 1 / math.sqrt(key_dim) self.W_query = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_key = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_val = nn.Parameter(torch.Tensor(n_heads, input_dim, val_dim)) self.W_out = nn.Parameter(torch.Tensor(n_heads, val_dim, embed_dim)) self.init_parameters() def init_parameters(self): for param in self.parameters(): stdv = 1.0 / math.sqrt(param.size(-1)) param.data.uniform_(-stdv, stdv) def forward(self, q, h=None, mask=None): """ :param q: queries (batch_size, n_query, input_dim) :param h: data (batch_size, graph_size, input_dim) :param mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1) Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency) :return: """ if h is None: h = q batch_size, graph_size, input_dim = h.size() n_query = q.size(1) assert q.size(0) == batch_size assert q.size(2) == input_dim assert input_dim == self.input_dim, 'Wrong embedding dimension of input' hflat = h.contiguous().view(-1, input_dim) qflat = q.contiguous().view(-1, input_dim) shp = self.n_heads, batch_size, graph_size, -1 shp_q = self.n_heads, batch_size, n_query, -1 Q = torch.matmul(qflat, self.W_query).view(shp_q) K = torch.matmul(hflat, self.W_key).view(shp) V = torch.matmul(hflat, self.W_val).view(shp) compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3)) if mask is not None: mask = mask.view(1, batch_size, n_query, graph_size).expand_as( compatibility) compatibility[mask] = -np.inf attn = torch.softmax(compatibility, dim=-1) if mask is not None: attnc = attn.clone() attnc[mask] = 0 attn = attnc heads = torch.matmul(attn, V) out = torch.mm(heads.permute(1, 2, 0, 3).contiguous().view(-1, self .n_heads * self.val_dim), self.W_out.view(-1, self.embed_dim) ).view(batch_size, n_query, self.embed_dim) return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_heads': 4, 'input_dim': 4, 'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_clone_view_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_0[grid(64)](buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf1 triton_poi_fused_0[grid(64)](buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0), out=buf8) buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_clone_view_3[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.mm(buf9, reinterpret_tensor(primals_5, (4, 4), (4, 1 ), 0), out=buf10) return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), primals_1, buf7, reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf9, (4, 16), (1, 4), 0), reinterpret_tensor( primals_5, (4, 4), (1, 4), 0) class MultiHeadAttentionNew(nn.Module): def __init__(self, n_heads, input_dim, embed_dim, val_dim=None, key_dim =None): super(MultiHeadAttentionNew, self).__init__() if val_dim is None: val_dim = embed_dim // n_heads if key_dim is None: key_dim = val_dim self.n_heads = n_heads self.input_dim = input_dim self.embed_dim = embed_dim self.val_dim = val_dim self.key_dim = key_dim self.norm_factor = 1 / math.sqrt(key_dim) self.W_query = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_key = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_val = nn.Parameter(torch.Tensor(n_heads, input_dim, val_dim)) self.W_out = nn.Parameter(torch.Tensor(n_heads, val_dim, embed_dim)) self.init_parameters() def init_parameters(self): for param in self.parameters(): stdv = 1.0 / math.sqrt(param.size(-1)) param.data.uniform_(-stdv, stdv) def forward(self, input_0): primals_2 = self.W_query primals_3 = self.W_key primals_4 = self.W_val primals_5 = self.W_out primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
neo-pan/attention-learn-to-route
MultiHeadAttention
false
10,592
[ "MIT" ]
0
bb094d6e96276719ab2e379f279c614df7d822f9
https://github.com/neo-pan/attention-learn-to-route/tree/bb094d6e96276719ab2e379f279c614df7d822f9
PositiveLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/z3/cz3vnukh6pe6vae6yku3d5i2zk5dmliz7g2djpbn4duarwog4vtd.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_2 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class PositiveLinear(nn.Linear): def forward(self, input): return F.linear(input, self.weight ** 2, self.bias) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del buf0 del primals_2 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class PositiveLinearNew(nn.Linear): def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
oguzserbetci/monotone-network
PositiveLinear
false
10,593
[ "MIT" ]
0
33a317a1dde1a3d3e74dcbe3eb12d1a81e745c95
https://github.com/oguzserbetci/monotone-network/tree/33a317a1dde1a3d3e74dcbe3eb12d1a81e745c95
Spatial_Attention_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/jb/cjbh6emqja7rl4lagss2czst5sqfxza2dkqgllp2soznirengezy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mv] # Source node to ATen node mapping: # matmul => mul, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %primals_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x0), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/dk/cdkjuj73xxsev7rga4f35b4r3cyhhsl2uu7ag2tx3ghp54wugj2g.py # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mv] # Source node to ATen node mapping: # matmul_2 => mul_1, sum_2 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %primals_4), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused_mv_1 = async_compile.triton('triton_poi_fused_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + ((16*(x0 // 4)) + (x0 % 4)), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + (16*(x0 // 4)) + (x0 % 4)), xmask) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x0), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/5w/c5wcdj6yyngiuwlpe7g3vnhklpxgky46qc2ahr5kapoogh67gtfu.py # Topologically Sorted Source Nodes: [S], Original ATen: [aten.clone] # Source node to ATen node mapping: # S => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/7x/c7x5yph2fq7wr6kxcivnhipxkozw22jeayfsc2vgb4ebrhs5ampn.py # Topologically Sorted Source Nodes: [S, S_normalized], Original ATen: [aten.clone, aten._softmax] # Source node to ATen node mapping: # S => clone_2 # S_normalized => amax, exp, sub # Graph fragment: # %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_4,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_clone_3 = async_compile.triton('triton_poi_fused__softmax_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/42/c42wkxuhshqpqb2sl7lfkvxa4dtqaaa4arcb32gfregowyva5lrs.py # Topologically Sorted Source Nodes: [S_normalized], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S_normalized => div, sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + ((4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mv] stream0 = get_raw_stream(0) triton_poi_fused_mv_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [lhs], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), primals_3, out=buf1) buf2 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mv] triton_poi_fused_mv_1.run(primals_2, primals_4, buf2, 64, grid=grid(64), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [S], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, primals_6, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [S], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [S, S_normalized], Original ATen: [aten.clone, aten._softmax] triton_poi_fused__softmax_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [S_normalized], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf6 return (buf7, primals_2, primals_6, buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), buf7, primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 16), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Spatial_Attention_layer(nn.Module): """ compute spatial attention scores """ def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Spatial_Attention_layer, self).__init__() self.W1 = nn.Parameter(torch.FloatTensor(num_of_timesteps)) self.W2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_timesteps) ) self.W3 = nn.Parameter(torch.FloatTensor(in_channels)) self.bs = nn.Parameter(torch.FloatTensor(1, num_of_vertices, num_of_vertices)) self.Vs = nn.Parameter(torch.FloatTensor(num_of_vertices, num_of_vertices)) def forward(self, x): """ Making a forward pass of the spatial attention layer. B is the batch size. N_nodes is the number of nodes in the graph. F_in is the dimension of input features. T_in is the length of input sequence in time. Arg types: * x (PyTorch Float Tensor)* - Node features for T time periods, with shape (B, N_nodes, F_in, T_in). Return types: * output (PyTorch Float Tensor)* - Spatial attention score matrices, with shape (B, N_nodes, N_nodes). """ lhs = torch.matmul(torch.matmul(x, self.W1), self.W2) rhs = torch.matmul(self.W3, x).transpose(-1, -2) product = torch.matmul(lhs, rhs) S = torch.matmul(self.Vs, torch.sigmoid(product + self.bs)) S_normalized = F.softmax(S, dim=1) return S_normalized def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'DEVICE': 4, 'in_channels': 4, 'num_of_vertices': 4, 'num_of_timesteps': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x0, tmp18, xmask) @triton.jit def triton_poi_fused_mv_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16 * (x0 // 4) + x0 % 4), xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (4 + 16 * (x0 // 4) + x0 % 4), xmask) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (8 + 16 * (x0 // 4) + x0 % 4), xmask) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (12 + 16 * (x0 // 4) + x0 % 4), xmask) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x0, tmp18, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp3, xmask & ymask) @triton.jit def triton_poi_fused__softmax_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_mv_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), primals_3, out=buf1) buf2 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused_mv_1[grid(64)](primals_2, primals_4, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(16, 4)](buf3, primals_6, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused__softmax_clone_3[grid(64)](buf5, buf6, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 triton_poi_fused__softmax_4[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK= 4, YBLOCK=16, num_warps=1, num_stages=1) del buf6 return buf7, primals_2, primals_6, buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), buf7, primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf0, (4, 16), (1, 4), 0), reinterpret_tensor( primals_3, (4, 4), (1, 4), 0) class Spatial_Attention_layerNew(nn.Module): """ compute spatial attention scores """ def __init__(self, DEVICE, in_channels, num_of_vertices, num_of_timesteps): super(Spatial_Attention_layerNew, self).__init__() self.W1 = nn.Parameter(torch.FloatTensor(num_of_timesteps)) self.W2 = nn.Parameter(torch.FloatTensor(in_channels, num_of_timesteps) ) self.W3 = nn.Parameter(torch.FloatTensor(in_channels)) self.bs = nn.Parameter(torch.FloatTensor(1, num_of_vertices, num_of_vertices)) self.Vs = nn.Parameter(torch.FloatTensor(num_of_vertices, num_of_vertices)) def forward(self, input_0): primals_1 = self.W1 primals_3 = self.W2 primals_4 = self.W3 primals_6 = self.bs primals_5 = self.Vs primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
msalvato/pytorch_geometric_temporal
Spatial_Attention_layer
false
10,594
[ "MIT" ]
0
149bd46d3b2bddfc3570e31a91a3f53e8873d50e
https://github.com/msalvato/pytorch_geometric_temporal/tree/149bd46d3b2bddfc3570e31a91a3f53e8873d50e
TorchAdd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/gx/cgxrigsvtx4nc75mpdz7qivonc3wkrexg4c7zrh6gk2vmbwc4atl.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %select_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TorchAdd(nn.Module): """TorchAdd Module. """ def forward(self, input_list): return input_list[0] + input_list[1] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class TorchAddNew(nn.Module): """TorchAdd Module. """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
lawwu/nni
TorchAdd
false
10,595
[ "MIT" ]
0
b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
https://github.com/lawwu/nni/tree/b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
GlobalMaxPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/54/c54fiiozms64dqfszq2hf52cdztx43kas6yivnlda7p3bxzbtzle.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] # Source node to ATen node mapping: # max_1 => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {}) triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] stream0 = get_raw_stream(0) triton_poi_fused_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GlobalMaxPooling(nn.Module): def __init__(self, dim=-1): super(self.__class__, self).__init__() self.dim = dim def forward(self, x): return x.max(dim=self.dim)[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class GlobalMaxPoolingNew(nn.Module): def __init__(self, dim=-1): super(self.__class__, self).__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
numb3r33/toxic_comments_classification
GlobalMaxPooling
false
10,596
[ "MIT" ]
0
c5de56751aee29b6dee6e330237a4fd0bcd7fd51
https://github.com/numb3r33/toxic_comments_classification/tree/c5de56751aee29b6dee6e330237a4fd0bcd7fd51
PartialConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/fj/cfjzvvqpec3bkltw3iqoicgjjjbjt5sjrhrkdgaltmhp7rqzs5eb.py # Topologically Sorted Source Nodes: [output, no_update_holes, mask_sum, sub, mul_1, truediv, output_pre, output_1, new_mask, new_mask_1], Original ATen: [aten.convolution, aten.eq, aten.masked_fill, aten.sub, aten.mul, aten.div, aten.add, aten.ones_like] # Source node to ATen node mapping: # mask_sum => full_default, where # mul_1 => mul_1 # new_mask => full_default_2 # new_mask_1 => where_2 # no_update_holes => eq # output => convolution # output_1 => full_default_1, where_1 # output_pre => add # sub => sub # truediv => div # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%convolution_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %convolution_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %expand), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 64), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %where), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %expand), kwargs = {}) # %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %add), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 1, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %full_default_2), kwargs = {}) triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1 = async_compile.triton('triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp4 tmp7 = 64.0 tmp8 = tmp6 * tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp2, tmp9, tmp0) tmp11 = tmp8 / tmp10 tmp12 = tmp11 + tmp4 tmp13 = tl.where(tmp2, tmp1, tmp12) tmp14 = tl.where(tmp2, tmp1, tmp9) tl.store(in_out_ptr0 + (x2), tmp13, xmask) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [output_mask], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del primals_2 del primals_5 buf3 = buf1; del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output, no_update_holes, mask_sum, sub, mul_1, truediv, output_pre, output_1, new_mask, new_mask_1], Original ATen: [aten.convolution, aten.eq, aten.masked_fill, aten.sub, aten.mul, aten.div, aten.add, aten.ones_like] triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1.run(buf3, buf2, primals_4, buf4, 16, grid=grid(16), stream=stream0) del primals_4 return (buf3, buf4, primals_3, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def weights_init(init_type='gaussian'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find('Linear') == 0 ) and hasattr(m, 'weight'): if init_type == 'gaussian': nn.init.normal_(m.weight, 0.0, 0.02) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight, gain=math.sqrt(2)) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, 'Unsupported initialization: {}'.format(init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0.0) return init_fun class PartialConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__() self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, False) self.input_conv.apply(weights_init('kaiming')) self.slide_winsize = in_channels * kernel_size * kernel_size torch.nn.init.constant_(self.mask_conv.weight, 1.0) for param in self.mask_conv.parameters(): param.requires_grad = False def forward(self, input, mask): output = self.input_conv(input * mask) if self.input_conv.bias is not None: output_bias = self.input_conv.bias.view(1, -1, 1, 1).expand_as( output) else: output_bias = torch.zeros_like(output) with torch.no_grad(): output_mask = self.mask_conv(mask) no_update_holes = output_mask == 0 mask_sum = output_mask.masked_fill_(no_update_holes, 1.0) output_pre = (output - output_bias ) * self.slide_winsize / mask_sum + output_bias output = output_pre.masked_fill_(no_update_holes, 0.0) new_mask = torch.ones_like(output) new_mask = new_mask.masked_fill_(no_update_holes, 0.0) return output, new_mask def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1( in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp4 tmp7 = 64.0 tmp8 = tmp6 * tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp2, tmp9, tmp0) tmp11 = tmp8 / tmp10 tmp12 = tmp11 + tmp4 tmp13 = tl.where(tmp2, tmp1, tmp12) tmp14 = tl.where(tmp2, tmp1, tmp9) tl.store(in_out_ptr0 + x2, tmp13, xmask) tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del primals_2 del primals_5 buf3 = buf1 del buf1 buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1[ grid(16)](buf3, buf2, primals_4, buf4, 16, XBLOCK=16, num_warps =1, num_stages=1) del primals_4 return buf3, buf4, primals_3, buf0, buf2 def weights_init(init_type='gaussian'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find('Linear') == 0 ) and hasattr(m, 'weight'): if init_type == 'gaussian': nn.init.normal_(m.weight, 0.0, 0.02) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight, gain=math.sqrt(2)) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, 'Unsupported initialization: {}'.format(init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0.0) return init_fun class PartialConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__() self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, False) self.input_conv.apply(weights_init('kaiming')) self.slide_winsize = in_channels * kernel_size * kernel_size torch.nn.init.constant_(self.mask_conv.weight, 1.0) for param in self.mask_conv.parameters(): param.requires_grad = False def forward(self, input_0, input_1): primals_1 = self.input_conv.weight primals_4 = self.input_conv.bias primals_2 = self.mask_conv.weight primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
maayan-myheritage/3d-photo-inpainting
PartialConv
false
10,597
[ "MIT" ]
0
6293eecfeb55ceba019655723f6efe31e8ecb177
https://github.com/maayan-myheritage/3d-photo-inpainting/tree/6293eecfeb55ceba019655723f6efe31e8ecb177