entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
FakeRKHSConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/yw/cywcz4pxnzyvlsoydzxcj5pzlu3i5g7qgj7guhgyvlrzkngzehmv.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sb/csbfa4itjbflkqsfneo2c6mi3vnrum7dc2e7l2pstoa2kdz6gtd3.py # Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward] # Source node to ATen node mapping: # add => add # conv2d_2 => convolution_2 # x => add_2, mul_1, mul_2, sub # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_2, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %unsqueeze_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_7), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_10), kwargs = {}) triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tmp6 * tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + (x3), tmp19, xmask) tl.store(out_ptr1 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [h_res], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward] triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1.run(buf2, buf3, primals_5, primals_6, primals_7, primals_8, primals_9, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_5 del primals_6 del primals_9 return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7, primals_8, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np import torch.nn as nn class MaybeBatchNorm2d(nn.Module): def __init__(self, n_ftr, affine, use_bn): super(MaybeBatchNorm2d, self).__init__() self.bn = nn.BatchNorm2d(n_ftr, affine=affine) self.use_bn = use_bn def forward(self, x): if self.use_bn: x = self.bn(x) return x class FakeRKHSConvNet(nn.Module): def __init__(self, n_input, n_output, use_bn=False): super(FakeRKHSConvNet, self).__init__() self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn_out = MaybeBatchNorm2d(n_output, True, True) self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride= 1, padding=0, bias=True) if n_output >= n_input: eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool) for i in range(n_input): eye_mask[i, i, 0, 0] = 1 self.shortcut.weight.data.uniform_(-0.01, 0.01) self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0) def init_weights(self, init_scale=1.0): nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5)) self.conv1.weight.data.mul_(init_scale) nn.init.constant_(self.conv2.weight, 0.0) def forward(self, x): h_res = self.conv2(self.relu1(self.bn1(self.conv1(x)))) h = self.bn_out(h_res + self.shortcut(x)) return h def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_input': 4, 'n_output': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1( in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tmp6 * tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + x3, tmp19, xmask) tl.store(out_ptr1 + x3, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](buf1, 256, XBLOCK=128, num_warps =4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1[ grid(256)](buf2, buf3, primals_5, primals_6, primals_7, primals_8, primals_9, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del buf3 del primals_5 del primals_6 del primals_9 return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7, primals_8, buf1, buf5) class MaybeBatchNorm2d(nn.Module): def __init__(self, n_ftr, affine, use_bn): super(MaybeBatchNorm2d, self).__init__() self.bn = nn.BatchNorm2d(n_ftr, affine=affine) self.use_bn = use_bn def forward(self, x): if self.use_bn: x = self.bn(x) return x class FakeRKHSConvNetNew(nn.Module): def __init__(self, n_input, n_output, use_bn=False): super(FakeRKHSConvNetNew, self).__init__() self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn_out = MaybeBatchNorm2d(n_output, True, True) self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride= 1, padding=0, bias=True) if n_output >= n_input: eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool) for i in range(n_input): eye_mask[i, i, 0, 0] = 1 self.shortcut.weight.data.uniform_(-0.01, 0.01) self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0) def init_weights(self, init_scale=1.0): nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5)) self.conv1.weight.data.mul_(init_scale) nn.init.constant_(self.conv2.weight, 0.0) def forward(self, input_0): primals_1 = self.conv1.weight primals_5 = self.bn1.bn.weight primals_6 = self.bn1.bn.bias primals_3 = self.conv2.weight primals_7 = self.bn_out.bn.weight primals_8 = self.bn_out.bn.bias primals_4 = self.shortcut.weight primals_9 = self.shortcut.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Luab/pytorch-lightning-bolts
FakeRKHSConvNet
false
11,713
[ "Apache-2.0" ]
0
b8ac85154465956b06fd1005b21b071af5493f11
https://github.com/Luab/pytorch-lightning-bolts/tree/b8ac85154465956b06fd1005b21b071af5493f11
SchedulerTestNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ej/cejq4hvgtngsrt5ywcfdheadnaab2ydhtz352v7vusjumjik42f2.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4b/c4bm44vlkroihtm4ebt4iyykoeyhr2cwl6horqusip6sdixccmyf.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F class SchedulerTestNet(torch.nn.Module): """ adapted from: https://github.com/pytorch/pytorch/blob/master/test/test_optim.py """ def __init__(self): super(SchedulerTestNet, self).__init__() self.conv1 = torch.nn.Conv2d(1, 1, 1) self.conv2 = torch.nn.Conv2d(1, 1, 1) def forward(self, x): return self.conv2(F.relu(self.conv1(x))) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (1, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(16384)](buf3, primals_5, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class SchedulerTestNetNew(torch.nn.Module): """ adapted from: https://github.com/pytorch/pytorch/blob/master/test/test_optim.py """ def __init__(self): super(SchedulerTestNetNew, self).__init__() self.conv1 = torch.nn.Conv2d(1, 1, 1) self.conv2 = torch.nn.Conv2d(1, 1, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Luab/pytorch-lightning-bolts
SchedulerTestNet
false
11,714
[ "Apache-2.0" ]
0
b8ac85154465956b06fd1005b21b071af5493f11
https://github.com/Luab/pytorch-lightning-bolts/tree/b8ac85154465956b06fd1005b21b071af5493f11
Project3D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/32/c32ppse2vdmak5is2nuwq2vbmvddtxyrdxkeqrxyec7bhptha7aa.py # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.clone] # Source node to ATen node mapping: # cam_points => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 48 x1 = (xindex // 48) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/p3/cp33b3l57w5jlxxjkbyxuiiw6erdw3sxbh2kc6ydjd74u3ubmxdx.py # Topologically Sorted Source Nodes: [sub, pix_coords_3], Original ATen: [aten.sub, aten.mul] # Source node to ATen node mapping: # pix_coords_3 => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute_16, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 2), kwargs = {}) triton_poi_fused_mul_sub_1 = async_compile.triton('triton_poi_fused_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex % 32 x4 = xindex tmp7 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (16 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (x3 + (48*x2)), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tmp1 == tmp1 tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tmp4 == tmp4 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = tmp7 / tmp10 tmp12 = 0.3333333333333333 tmp13 = tmp11 * tmp12 tmp14 = tl.where(tmp6, tmp13, tmp11) tmp16 = tmp15 / tmp10 tmp17 = tl.where(tmp5, tmp13, tmp16) tmp18 = tl.where(tmp5, tmp14, tmp17) tmp19 = tmp18 * tmp12 tmp20 = tl.where(tmp3, tmp19, tmp18) tmp21 = tmp0 == tmp4 tmp23 = tmp22 / tmp10 tmp24 = tl.where(tmp21, tmp13, tmp23) tmp25 = tl.where(tmp21, tmp14, tmp24) tmp26 = tl.where(tmp2, tmp19, tmp25) tmp27 = tl.where(tmp2, tmp20, tmp26) tmp28 = 0.5 tmp29 = tmp27 - tmp28 tmp30 = 2.0 tmp31 = tmp29 * tmp30 tl.store(out_ptr0 + (x4), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 3, 4, 4), (48, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf1, 192, grid=grid(192), stream=stream0) del buf0 buf2 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (12, 4, 4), (16, 4, 1), 0), out=buf2) del arg2_1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [sub, pix_coords_3], Original ATen: [aten.sub, aten.mul] triton_poi_fused_mul_sub_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0) del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Project3D(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-07): super(Project3D, self).__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, points, K, T): P = torch.matmul(K, T)[:, :3, :] cam_points = torch.matmul(P, points) pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze( 1) + self.eps) pix_coords = pix_coords.view(self.batch_size, 2, self.height, self. width) pix_coords = pix_coords.permute(0, 2, 3, 1) pix_coords[..., 0] /= self.width - 1 pix_coords[..., 1] /= self.height - 1 pix_coords = (pix_coords - 0.5) * 2 return pix_coords def get_inputs(): return [torch.rand([4, 3, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'batch_size': 4, 'height': 4, 'width': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 48 x1 = xindex // 48 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_mul_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex % 32 x4 = xindex tmp7 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (x3 + 48 * x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tmp1 == tmp1 tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tmp4 == tmp4 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = tmp7 / tmp10 tmp12 = 0.3333333333333333 tmp13 = tmp11 * tmp12 tmp14 = tl.where(tmp6, tmp13, tmp11) tmp16 = tmp15 / tmp10 tmp17 = tl.where(tmp5, tmp13, tmp16) tmp18 = tl.where(tmp5, tmp14, tmp17) tmp19 = tmp18 * tmp12 tmp20 = tl.where(tmp3, tmp19, tmp18) tmp21 = tmp0 == tmp4 tmp23 = tmp22 / tmp10 tmp24 = tl.where(tmp21, tmp13, tmp23) tmp25 = tl.where(tmp21, tmp14, tmp24) tmp26 = tl.where(tmp2, tmp19, tmp25) tmp27 = tl.where(tmp2, tmp20, tmp26) tmp28 = 0.5 tmp29 = tmp27 - tmp28 tmp30 = 2.0 tmp31 = tmp29 * tmp30 tl.store(out_ptr0 + x4, tmp31, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 3, 4, 4), (48, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(192)](buf0, buf1, 192, XBLOCK=256, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (12, 4, 4), (16, 4, 1), 0), out=buf2 ) del arg2_1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 4, 1, 16), torch.float32) triton_poi_fused_mul_sub_1[grid(128)](buf2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf2 return buf3, class Project3DNew(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-07): super(Project3DNew, self).__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, input_0, input_1, input_2): arg2_1 = input_0 arg0_1 = input_1 arg1_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Morbotu/drone-PWS
Project3D
false
11,715
[ "MIT" ]
0
face9cbf30a55783592cce8af59c1c70da982b6a
https://github.com/Morbotu/drone-PWS/tree/face9cbf30a55783592cce8af59c1c70da982b6a
BboxHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/tn/ctncuf7vgmv2algyzlhp7ada7ijky7jntejykq6f6paqfcnifxfc.py # Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # out_1 => clone # view => view # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 4]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x0 = xindex % 12 tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x4), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (12, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 12, 64, 64), (49152, 1, 768, 12)) buf2 = reinterpret_tensor(buf1, (4, 64, 64, 12), (49152, 768, 12, 1), 0); del buf1 # reuse buf3 = reinterpret_tensor(buf2, (4, 12288, 4), (49152, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf3, primals_2, 196608, grid=grid(196608), stream=stream0) del primals_2 return (buf3, primals_1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.cuda class BboxHead(nn.Module): """ BboxHead RetinaFace head for bounding box branch. Args: inchannels (`int`): number of input channels. num_anchors (`int`): number of anchors. """ def __init__(self, inchannels: 'int'=512, num_anchors: 'int'=3): super().__init__() self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=( 1, 1), stride=1, padding=0) def forward(self, x: 'torch.FloatTensor'): out = self.conv1x1(x) out = out.permute(0, 2, 3, 1).contiguous() return out.view(out.shape[0], -1, 4) def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.cuda assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x0 = xindex % 12 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x4, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (12, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512 ), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 12, 64, 64), (49152, 1, 768, 12)) buf2 = reinterpret_tensor(buf1, (4, 64, 64, 12), (49152, 768, 12, 1), 0 ) del buf1 buf3 = reinterpret_tensor(buf2, (4, 12288, 4), (49152, 4, 1), 0) del buf2 triton_poi_fused_clone_view_1[grid(196608)](buf3, primals_2, 196608, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 return buf3, primals_1, buf0 class BboxHeadNew(nn.Module): """ BboxHead RetinaFace head for bounding box branch. Args: inchannels (`int`): number of input channels. num_anchors (`int`): number of anchors. """ def __init__(self, inchannels: 'int'=512, num_anchors: 'int'=3): super().__init__() self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=( 1, 1), stride=1, padding=0) def forward(self, input_0): primals_1 = self.conv1x1.weight primals_2 = self.conv1x1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
LoveEachDay/towhee
BboxHead
false
11,716
[ "Apache-2.0" ]
0
513c9c2626676cadaaf0a16ac3c828d96bec91a1
https://github.com/LoveEachDay/towhee/tree/513c9c2626676cadaaf0a16ac3c828d96bec91a1
LandmarkHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sm/csmh6j2eewkdoozuncolx7k4amr2atfs4j3yxilmlmtxn6bpynuf.py # Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # out_1 => clone # view => view # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 10]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 491520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x4), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (30, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (30, ), (1, )) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 30, 64, 64), (122880, 1, 1920, 30)) buf2 = reinterpret_tensor(buf1, (4, 64, 64, 30), (122880, 1920, 30, 1), 0); del buf1 # reuse buf3 = reinterpret_tensor(buf2, (4, 12288, 10), (122880, 10, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out_1, view], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf3, primals_2, 491520, grid=grid(491520), stream=stream0) del primals_2 return (buf3, primals_1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((30, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.cuda class LandmarkHead(nn.Module): """ LandmarkHead RetinaFace head for landmark branch. inchannels (`int`): number of input channels. num_anchors (`int`): number of anchors. """ def __init__(self, inchannels: 'int'=512, num_anchors: 'int'=3): super().__init__() self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size= (1, 1), stride=1, padding=0) def forward(self, x: 'torch.FloatTensor'): out = self.conv1x1(x) out = out.permute(0, 2, 3, 1).contiguous() return out.view(out.shape[0], -1, 10) def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.cuda assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x4, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (30, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (30,), (1,)) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512 ), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 30, 64, 64), (122880, 1, 1920, 30)) buf2 = reinterpret_tensor(buf1, (4, 64, 64, 30), (122880, 1920, 30, 1), 0) del buf1 buf3 = reinterpret_tensor(buf2, (4, 12288, 10), (122880, 10, 1), 0) del buf2 triton_poi_fused_clone_view_1[grid(491520)](buf3, primals_2, 491520, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 return buf3, primals_1, buf0 class LandmarkHeadNew(nn.Module): """ LandmarkHead RetinaFace head for landmark branch. inchannels (`int`): number of input channels. num_anchors (`int`): number of anchors. """ def __init__(self, inchannels: 'int'=512, num_anchors: 'int'=3): super().__init__() self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size= (1, 1), stride=1, padding=0) def forward(self, input_0): primals_1 = self.conv1x1.weight primals_2 = self.conv1x1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
LoveEachDay/towhee
LandmarkHead
false
11,717
[ "Apache-2.0" ]
0
513c9c2626676cadaaf0a16ac3c828d96bec91a1
https://github.com/LoveEachDay/towhee/tree/513c9c2626676cadaaf0a16ac3c828d96bec91a1
AmdimNCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/lo/clogbilbksb5pe5z7x7zzgxgebeyhflxrjymvbwjeoos6el7ofav.py # Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg] # Source node to ATen node mapping: # add => add # all_logsumexp => log # exp => exp # exp_1 => exp_1 # max_1 => max_1 # mean_1 => mean_1 # mul_1 => mul_1 # mul_3 => mul_3 # mul_6 => mul_6 # nce_scores => sub_5 # nce_scores_1 => neg # neg_sumexp => sum_2 # pos_scores => sum_1 # pos_shiftexp => sub_4 # raw_scores_2 => div # sub_2 => sub_2 # sub_3 => sub_3 # tanh => tanh # x_clip => mul_2 # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0.25), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view_1, 1, True), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %mul_2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %exp), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0 = async_compile.triton('triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tmp8 = libdevice.tanh(tmp7) tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp2 * tmp10 tmp12 = tmp0 * tmp9 tmp13 = tmp11 - tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 * tmp4 tmp18 = tmp17 * tmp6 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp19 * tmp9 tmp21 = tmp15 * tmp20 tmp22 = tmp14 * tmp9 tmp23 = tmp21 - tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp26 = tmp1 - tmp25 tmp28 = tmp27 * tmp4 tmp29 = tmp28 * tmp6 tmp30 = libdevice.tanh(tmp29) tmp31 = tmp30 * tmp9 tmp32 = tmp26 * tmp31 tmp33 = tmp25 * tmp9 tmp34 = tmp32 - tmp33 tmp35 = triton_helpers.maximum(tmp24, tmp34) tmp37 = tmp1 - tmp36 tmp39 = tmp38 * tmp4 tmp40 = tmp39 * tmp6 tmp41 = libdevice.tanh(tmp40) tmp42 = tmp41 * tmp9 tmp43 = tmp37 * tmp42 tmp44 = tmp36 * tmp9 tmp45 = tmp43 - tmp44 tmp46 = triton_helpers.maximum(tmp35, tmp45) tmp47 = tmp13 - tmp46 tmp48 = tl_math.exp(tmp47) tmp49 = tmp2 * tmp48 tmp50 = tmp23 - tmp46 tmp51 = tl_math.exp(tmp50) tmp52 = tmp15 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tmp34 - tmp46 tmp55 = tl_math.exp(tmp54) tmp56 = tmp26 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tmp45 - tmp46 tmp59 = tl_math.exp(tmp58) tmp60 = tmp37 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tmp0 * tmp10 tmp63 = tmp14 * tmp20 tmp64 = tmp62 + tmp63 tmp65 = tmp25 * tmp31 tmp66 = tmp64 + tmp65 tmp67 = tmp36 * tmp42 tmp68 = tmp66 + tmp67 tmp69 = tmp68 - tmp46 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 + tmp61 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp76 / tmp9 tmp78 = -tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp78, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/i7/ci7wfxaextt4cz2wvuqp24v6te3ikcbwiocamjs25ysoohh6nywz.py # Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul] # Source node to ATen node mapping: # lgt_reg => mul # mean => mean # pow_1 => pow_1 # raw_scores_2 => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.05), kwargs = {}) triton_per_fused_div_mean_mul_pow_1 = async_compile.triton('triton_per_fused_div_mean_mul_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_mul_pow_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = 16.0 tmp8 = tmp6 / tmp7 tmp9 = 0.05 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(arg0_1, arg1_1, out=buf0) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((), (), torch.float32) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0.run(buf6, arg2_1, buf0, 1, 4, grid=grid(1), stream=stream0) del arg2_1 buf5 = empty_strided_cuda((), (), torch.float32) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul] triton_per_fused_div_mean_mul_pow_1.run(buf7, buf0, 1, 16, grid=grid(1), stream=stream0) del buf0 return (buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def tanh_clip(x, clip_val=10.0): """ soft clip values to the range [-clip_val, +clip_val] """ if clip_val is not None: x_clip = clip_val * torch.tanh(1.0 / clip_val * x) else: x_clip = x return x_clip class AmdimNCELoss(nn.Module): """ Compute the NCE scores for predicting r_src->r_trg. """ def __init__(self, tclip): super().__init__() self.tclip = tclip def forward(self, anchor_representations, positive_representations, mask_mat): """ Args: anchor_representations: (batch_size, emb_dim) positive_representations: (emb_dim, n_batch * w* h) (ie: nb_feat_vectors x embedding_dim) mask_mat: (n_batch_gpu, n_batch) Output: raw_scores: (n_batch_gpu, n_locs) nce_scores: (n_batch_gpu, n_locs) lgt_reg : scalar """ r_src = anchor_representations r_trg = positive_representations batch_size, emb_dim = r_src.size() nb_feat_vectors = r_trg.size(1) // batch_size mask_pos = mask_mat.unsqueeze(dim=2).expand(-1, -1, nb_feat_vectors ).float() mask_neg = 1.0 - mask_pos raw_scores = torch.mm(r_src, r_trg).float() raw_scores = raw_scores.reshape(batch_size, batch_size, nb_feat_vectors ) raw_scores = raw_scores / emb_dim ** 0.5 lgt_reg = 0.05 * (raw_scores ** 2.0).mean() raw_scores = tanh_clip(raw_scores, clip_val=self.tclip) """ pos_scores includes scores for all the positive samples neg_scores includes scores for all the negative samples, with scores for positive samples set to the min score (-self.tclip here) """ pos_scores = (mask_pos * raw_scores).sum(dim=1) neg_scores = mask_neg * raw_scores - self.tclip * mask_pos neg_scores = neg_scores.reshape(batch_size, -1) mask_neg = mask_neg.reshape(batch_size, -1) neg_maxes = torch.max(neg_scores, dim=1, keepdim=True)[0] neg_sumexp = (mask_neg * torch.exp(neg_scores - neg_maxes)).sum(dim =1, keepdim=True) all_logsumexp = torch.log(torch.exp(pos_scores - neg_maxes) + neg_sumexp) pos_shiftexp = pos_scores - neg_maxes nce_scores = pos_shiftexp - all_logsumexp nce_scores = -nce_scores.mean() return nce_scores, lgt_reg def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'tclip': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tmp8 = libdevice.tanh(tmp7) tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp2 * tmp10 tmp12 = tmp0 * tmp9 tmp13 = tmp11 - tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 * tmp4 tmp18 = tmp17 * tmp6 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp19 * tmp9 tmp21 = tmp15 * tmp20 tmp22 = tmp14 * tmp9 tmp23 = tmp21 - tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp26 = tmp1 - tmp25 tmp28 = tmp27 * tmp4 tmp29 = tmp28 * tmp6 tmp30 = libdevice.tanh(tmp29) tmp31 = tmp30 * tmp9 tmp32 = tmp26 * tmp31 tmp33 = tmp25 * tmp9 tmp34 = tmp32 - tmp33 tmp35 = triton_helpers.maximum(tmp24, tmp34) tmp37 = tmp1 - tmp36 tmp39 = tmp38 * tmp4 tmp40 = tmp39 * tmp6 tmp41 = libdevice.tanh(tmp40) tmp42 = tmp41 * tmp9 tmp43 = tmp37 * tmp42 tmp44 = tmp36 * tmp9 tmp45 = tmp43 - tmp44 tmp46 = triton_helpers.maximum(tmp35, tmp45) tmp47 = tmp13 - tmp46 tmp48 = tl_math.exp(tmp47) tmp49 = tmp2 * tmp48 tmp50 = tmp23 - tmp46 tmp51 = tl_math.exp(tmp50) tmp52 = tmp15 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tmp34 - tmp46 tmp55 = tl_math.exp(tmp54) tmp56 = tmp26 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tmp45 - tmp46 tmp59 = tl_math.exp(tmp58) tmp60 = tmp37 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tmp0 * tmp10 tmp63 = tmp14 * tmp20 tmp64 = tmp62 + tmp63 tmp65 = tmp25 * tmp31 tmp66 = tmp64 + tmp65 tmp67 = tmp36 * tmp42 tmp68 = tmp66 + tmp67 tmp69 = tmp68 - tmp46 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 + tmp61 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp76 / tmp9 tmp78 = -tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp78, None) @triton.jit def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = 16.0 tmp8 = tmp6 / tmp7 tmp9 = 0.05 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, arg1_1, out=buf0) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((), (), torch.float32) buf6 = buf4 del buf4 get_raw_stream(0) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0[grid (1)](buf6, arg2_1, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg2_1 buf5 = empty_strided_cuda((), (), torch.float32) buf7 = buf5 del buf5 triton_per_fused_div_mean_mul_pow_1[grid(1)](buf7, buf0, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf6, buf7 def tanh_clip(x, clip_val=10.0): """ soft clip values to the range [-clip_val, +clip_val] """ if clip_val is not None: x_clip = clip_val * torch.tanh(1.0 / clip_val * x) else: x_clip = x return x_clip class AmdimNCELossNew(nn.Module): """ Compute the NCE scores for predicting r_src->r_trg. """ def __init__(self, tclip): super().__init__() self.tclip = tclip def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
Luab/pytorch-lightning-bolts
AmdimNCELoss
false
11,718
[ "Apache-2.0" ]
0
b8ac85154465956b06fd1005b21b071af5493f11
https://github.com/Luab/pytorch-lightning-bolts/tree/b8ac85154465956b06fd1005b21b071af5493f11
Conv3x3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class Conv3x3New(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3New, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Morbotu/drone-PWS
Conv3x3
false
11,719
[ "MIT" ]
0
face9cbf30a55783592cce8af59c1c70da982b6a
https://github.com/Morbotu/drone-PWS/tree/face9cbf30a55783592cce8af59c1c70da982b6a
ConvBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7r/c7rmcz7d66c7acqsst3ljub72usieb7gow6csu7nmp55tklmjx2e.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_1 = async_compile.triton('triton_poi_fused_convolution_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class ConvBlock(nn.Module): """Layer to perform a convolution followed by ELU """ def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, x): out = self.conv(x) out = self.nonlin(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_elu_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0, buf2 class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class ConvBlockNew(nn.Module): """Layer to perform a convolution followed by ELU """ def __init__(self, in_channels, out_channels): super(ConvBlockNew, self).__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, input_0): primals_2 = self.conv.conv.weight primals_3 = self.conv.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Morbotu/drone-PWS
ConvBlock
false
11,720
[ "MIT" ]
0
face9cbf30a55783592cce8af59c1c70da982b6a
https://github.com/Morbotu/drone-PWS/tree/face9cbf30a55783592cce8af59c1c70da982b6a
Scaled_Dot_Product_Attention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [attention_1, context], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Scaled_Dot_Product_Attention(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): """ Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 """ attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 del buf2 return buf3, class Scaled_Dot_Product_AttentionNew(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_AttentionNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Moon-xm/Chinese-Text-Classification-Pytorch
Scaled_Dot_Product_Attention
false
11,721
[ "MIT" ]
0
19fe64006418bf4296f884e4d1f038c17b34d3de
https://github.com/Moon-xm/Chinese-Text-Classification-Pytorch/tree/19fe64006418bf4296f884e4d1f038c17b34d3de
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/oe/coeqskvavjig2xfptqbr47z2ukzhyagx4dxozc4kzjwb2ykujlu4.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt, mul, where # Graph fragment: # %add_tensor_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_3), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_3, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_3, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_3, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/uo/cuorclbf4h3pyyjppsftkziufkt34vxjph7yux3ly7ujjfqkt7ad.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_1, mul_1, where_1 # Graph fragment: # %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_5), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_2, 0.2), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor_2, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mf/cmfwsgrlk36ejtu74rx7ipaja6rfirwmwjgqhdqter22spc6ajam.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_5 => gt_2, mul_2, where_2 # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.2), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor_1, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rh/crhvyy3w3uejbzndu7qftnyc25sndrfzlmb3i2bzpyadobz7z7bm.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (1024, 4), (4, 1)) assert_size_stride(primals_3, (1024, ), (1, )) assert_size_stride(primals_4, (512, 1024), (1024, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (256, 512), (512, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (1, 256), (256, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1024), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool) buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 4096, grid=grid(4096), stream=stream0) del buf0 del primals_3 # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.leaky_relu, aten.native_dropout] buf3 = torch.ops.aten.native_dropout.default(buf2, 0.3, True) del buf2 buf4 = buf3[0] buf5 = buf3[1] del buf3 buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf6) buf7 = empty_strided_cuda((4, 512), (512, 1), torch.bool) buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf6, primals_5, buf7, buf8, 2048, grid=grid(2048), stream=stream0) del buf6 del primals_5 # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.leaky_relu, aten.native_dropout] buf9 = torch.ops.aten.native_dropout.default(buf8, 0.3, True) del buf8 buf10 = buf9[0] buf11 = buf9[1] del buf9 buf12 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (512, 256), (1, 512), 0), out=buf12) buf13 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf12, primals_7, buf13, buf14, 1024, grid=grid(1024), stream=stream0) del buf12 del primals_7 # Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.leaky_relu, aten.native_dropout] buf15 = torch.ops.aten.native_dropout.default(buf14, 0.3, True) del buf14 buf16 = buf15[0] buf17 = buf15[1] del buf15 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (256, 1), (1, 256), 0), out=buf18) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf19, primals_9, 4, grid=grid(4), stream=stream0) del primals_9 return (buf19, primals_1, buf1, buf4, buf5, buf7, buf10, buf11, buf13, buf16, buf17, buf19, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from torch.nn import functional as F class Discriminator(nn.Module): def __init__(self, img_shape, hidden_dim=1024): super().__init__() in_dim = int(np.prod(img_shape)) self.fc1 = nn.Linear(in_dim, hidden_dim) self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features // 2) self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features // 2) self.fc4 = nn.Linear(self.fc3.out_features, 1) def forward(self, img): x = img.view(img.size(0), -1) x = F.leaky_relu(self.fc1(x), 0.2) x = F.dropout(x, 0.3) x = F.leaky_relu(self.fc2(x), 0.2) x = F.dropout(x, 0.3) x = F.leaky_relu(self.fc3(x), 0.2) x = F.dropout(x, 0.3) return torch.sigmoid(self.fc4(x)) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'img_shape': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (1024, 4), (4, 1)) assert_size_stride(primals_3, (1024,), (1,)) assert_size_stride(primals_4, (512, 1024), (1024, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (256, 512), (512, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (1, 256), (256, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1024 ), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool) buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(4096)](buf0, primals_3, buf1, buf2, 4096, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_3 buf3 = torch.ops.aten.native_dropout.default(buf2, 0.3, True) del buf2 buf4 = buf3[0] buf5 = buf3[1] del buf3 buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf6) buf7 = empty_strided_cuda((4, 512), (512, 1), torch.bool) buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(2048)](buf6, primals_5, buf7, buf8, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_5 buf9 = torch.ops.aten.native_dropout.default(buf8, 0.3, True) del buf8 buf10 = buf9[0] buf11 = buf9[1] del buf9 buf12 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (512, 256), (1, 512), 0), out=buf12) buf13 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(1024)](buf12, primals_7, buf13, buf14, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del primals_7 buf15 = torch.ops.aten.native_dropout.default(buf14, 0.3, True) del buf14 buf16 = buf15[0] buf17 = buf15[1] del buf15 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (256, 1), (1, 256), 0), out=buf18) buf19 = buf18 del buf18 triton_poi_fused_sigmoid_3[grid(4)](buf19, primals_9, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_9 return (buf19, primals_1, buf1, buf4, buf5, buf7, buf10, buf11, buf13, buf16, buf17, buf19, primals_8, primals_6, primals_4) class DiscriminatorNew(nn.Module): def __init__(self, img_shape, hidden_dim=1024): super().__init__() in_dim = int(np.prod(img_shape)) self.fc1 = nn.Linear(in_dim, hidden_dim) self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features // 2) self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features // 2) self.fc4 = nn.Linear(self.fc3.out_features, 1) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Luab/pytorch-lightning-bolts
Discriminator
false
11,722
[ "Apache-2.0" ]
0
b8ac85154465956b06fd1005b21b071af5493f11
https://github.com/Luab/pytorch-lightning-bolts/tree/b8ac85154465956b06fd1005b21b071af5493f11
DenseBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/pz/cpzxz6lkuih5yejx2jgx2k2tt7datj3a4ghmi4d5empkhgoz5dif.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 5) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u6/cu6p4t7q5wtwgs5cpdhj7mpibqv5emb5qdj4v6x2yo45mtrk3dke.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %mul], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (5*((-4) + x1)) + (20*x2)), tmp6 & xmask, other=0.0) tmp10 = libdevice.tanh(tmp9) tmp11 = tl.load(in_ptr2 + (x0 + (5*((-4) + x1)) + (20*x2)), tmp6 & xmask, other=0.0) tmp12 = tl.sigmoid(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 5), (20, 5, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 80, grid=grid(80), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 5), (20, 5, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 80, grid=grid(80), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_3, buf1, buf3, buf4, 128, grid=grid(128), stream=stream0) return (buf4, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn from torch.nn import functional as F class CausalConv1d(nn.Module): """A 1D causal convolution layer. Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions per step, and T is the number of steps. Output: (B, D_out, T), where B is the minibatch size, D_out is the number of dimensions in the output, and T is the number of steps. Arguments: in_channels (int): number of input channels out_channels (int): number of output channels """ def __init__(self, in_channels, out_channels, dilation=1): super(CausalConv1d, self).__init__() self.padding = dilation self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding= self.padding, dilation=dilation) def forward(self, minibatch): return self.causal_conv(minibatch)[:, :, :-self.padding] class DenseBlock(nn.Module): """Two parallel 1D causal convolution layers w/tanh and sigmoid activations Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions of the input, and T is the number of steps. Output: (B, D_in+F, T), where where `B` is the minibatch size, `D_in` is the number of dimensions of the input, `F` is the number of filters, and `T` is the length of the input sequence. Arguments: in_channels (int): number of input channels filters (int): number of filters per channel """ def __init__(self, in_channels, filters, dilation=1): super(DenseBlock, self).__init__() self.causal_conv1 = CausalConv1d(in_channels, filters, dilation= dilation) self.causal_conv2 = CausalConv1d(in_channels, filters, dilation= dilation) def forward(self, minibatch): tanh = F.tanh(self.causal_conv1(minibatch)) sig = F.sigmoid(self.causal_conv2(minibatch)) out = torch.cat([minibatch, tanh * sig], dim=1) return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'filters': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 5 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 5 * (-4 + x1) + 20 * x2), tmp6 & xmask, other=0.0) tmp10 = libdevice.tanh(tmp9) tmp11 = tl.load(in_ptr2 + (x0 + 5 * (-4 + x1) + 20 * x2), tmp6 & xmask, other=0.0) tmp12 = tl.sigmoid(tmp11) tmp13 = tmp10 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 5), (20, 5, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(80)](buf1, primals_2, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 5), (20, 5, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(80)](buf3, primals_5, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) triton_poi_fused_cat_1[grid(128)](primals_3, buf1, buf3, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) return buf4, primals_1, primals_3, primals_4, buf1, buf3 class CausalConv1d(nn.Module): """A 1D causal convolution layer. Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions per step, and T is the number of steps. Output: (B, D_out, T), where B is the minibatch size, D_out is the number of dimensions in the output, and T is the number of steps. Arguments: in_channels (int): number of input channels out_channels (int): number of output channels """ def __init__(self, in_channels, out_channels, dilation=1): super(CausalConv1d, self).__init__() self.padding = dilation self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding= self.padding, dilation=dilation) def forward(self, minibatch): return self.causal_conv(minibatch)[:, :, :-self.padding] class DenseBlockNew(nn.Module): """Two parallel 1D causal convolution layers w/tanh and sigmoid activations Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions of the input, and T is the number of steps. Output: (B, D_in+F, T), where where `B` is the minibatch size, `D_in` is the number of dimensions of the input, `F` is the number of filters, and `T` is the length of the input sequence. Arguments: in_channels (int): number of input channels filters (int): number of filters per channel """ def __init__(self, in_channels, filters, dilation=1): super(DenseBlockNew, self).__init__() self.causal_conv1 = CausalConv1d(in_channels, filters, dilation= dilation) self.causal_conv2 = CausalConv1d(in_channels, filters, dilation= dilation) def forward(self, input_0): primals_1 = self.causal_conv1.causal_conv.weight primals_2 = self.causal_conv1.causal_conv.bias primals_4 = self.causal_conv2.causal_conv.weight primals_5 = self.causal_conv2.causal_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
NagisaZj/ProMP
DenseBlock
false
11,723
[ "MIT" ]
0
539739ae2b7d5fdcad00855da695f643b23df4b3
https://github.com/NagisaZj/ProMP/tree/539739ae2b7d5fdcad00855da695f643b23df4b3
SSIM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/kc/ckc5ftdtcxbcmqsxx57xrul2upk2ygczpppolriskw2ya5alzvp2.py # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] # Source node to ATen node mapping: # mul => mul # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) triton_poi_fused_mul_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_mul_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lo/clow3kzmb7jev264jm5hdsre6kicqfeascpf6ijglocrlea2sell.py # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] # Source node to ATen node mapping: # SSIM_d => mul_6 # SSIM_n => mul_5 # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # avg_pool2d_2 => avg_pool2d_2 # avg_pool2d_3 => avg_pool2d_3 # avg_pool2d_4 => avg_pool2d_4 # clamp => clamp_max, clamp_min # mu_x => avg_pool2d # mu_y => avg_pool2d_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # pow_6 => pow_6 # sigma_x => sub_8 # sigma_xy => sub_10 # sigma_y => sub_9 # sub_3 => sub_11 # truediv => div # truediv_1 => div_1 # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %avg_pool2d : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_1, [3, 3], [1, 1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 2), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %avg_pool2d_1 : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_3, [3, 3], [1, 1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %avg_pool2d_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 0.0001), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) # %avg_pool2d_4 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%mul, [3, 3], [1, 1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_4, %mul_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0.0009), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_1), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_5, %pow_6), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0.0001), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_1, 2), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [3, 3], [1, 1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_2, %pow_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_3, 2), kwargs = {}) # %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_3, [3, 3], [1, 1]), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_3, %pow_4), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_8, %sub_9), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, 0.0009), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %add_5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_5, %mul_6), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_11, 2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1 = async_compile.triton('triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 27, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (6*x1) + (36*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (6*x1) + (36*x2)), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + (6*x1) + (36*x2)), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + (6*x1) + (36*x2)), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + (6*x1) + (36*x2)), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + (6*x1) + (36*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + (6*x1) + (36*x2)), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + (6*x1) + (36*x2)), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + (6*x1) + (36*x2)), xmask) tmp19 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp22 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp24 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp28 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp30 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp34 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp55 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp58 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp60 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp62 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp64 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp66 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp70 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + (x3), tmp118, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0.run(arg0_1, arg1_1, buf2, 576, grid=grid(576), stream=stream0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0; del buf0 # reuse buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1.run(buf7, buf2, arg0_1, arg1_1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del buf2 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SSIM(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIM, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, x, y): x = self.refl(x) y = self.refl(y) mu_x = self.mu_x_pool(x) mu_y = self.mu_y_pool(y) sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2 sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2 sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2) return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 6 * x1 + 36 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 6 * x1 + 36 * x2), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + 6 * x1 + 36 * x2), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + 6 * x1 + 36 * x2), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + 6 * x1 + 36 * x2), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + 6 * x1 + 36 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + 6 * x1 + 36 * x2), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + 6 * x1 + 36 * x2), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + 6 * x1 + 36 * x2), xmask) tmp19 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp22 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp24 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp26 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp28 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp30 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp32 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp34 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp55 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp58 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp60 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp62 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp64 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp66 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp68 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp70 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + x3, tmp118, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0[grid(576)](arg0_1, arg1_1, buf2, 576, XBLOCK=256, num_warps=4, num_stages=1) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0 del buf0 buf7 = buf6 del buf6 triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1[ grid(256)](buf7, buf2, arg0_1, arg1_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del buf2 return buf7, class SSIMNew(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIMNew, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Morbotu/drone-PWS
SSIM
false
11,724
[ "MIT" ]
0
face9cbf30a55783592cce8af59c1c70da982b6a
https://github.com/Morbotu/drone-PWS/tree/face9cbf30a55783592cce8af59c1c70da982b6a
Multi_Head_Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/63/c632haj5kpxavadodhj6onygcpgyicvrpu3jgqpex5yfir4eqadj.py # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_2 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 - tmp2 tmp4 = tmp3 * tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 / tmp5 tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/k5/ck53elncbm3vwfxe2lt4hmcpcvp7vtz7z2ugbynghzxqddqdcts7.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_2 => add # out_3 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qe/cqef3vgmhggbtz7jq6be3w32wnn4avgslntd7wr75eixfvjpdtjd.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_2 => add # out_3 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_10), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_11), kwargs = {}) triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = (xindex // 4) x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x5), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_1.run(buf6, primals_1, buf7, buf8, 16, grid=grid(16), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_2.run(buf6, primals_1, buf7, buf8, primals_10, primals_11, buf9, 64, grid=grid(64), stream=stream0) del buf7 del buf8 del primals_11 return (buf9, primals_1, primals_10, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), buf6, primals_8, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Scaled_Dot_Product_Attention(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): """ Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 """ attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_Attention(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_Attention, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): batch_size = x.size(0) Q = self.fc_Q(x) K = self.fc_K(x) V = self.fc_V(x) Q = Q.view(batch_size * self.num_head, -1, self.dim_head) K = K.view(batch_size * self.num_head, -1, self.dim_head) V = V.view(batch_size * self.num_head, -1, self.dim_head) scale = K.size(-1) ** -0.5 context = self.attention(Q, K, V, scale) context = context.view(batch_size, -1, self.dim_head * self.num_head) out = self.fc(context) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'dim_model': 4, 'num_head': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 - tmp2 tmp4 = tmp3 * tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 / tmp5 tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex // 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x5, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor( primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor( primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), out=buf3) buf4 = buf3 del buf3 get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(16)](buf6, primals_1, buf7, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(64)](buf6, primals_1, buf7, buf8, primals_10, primals_11, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf7 del buf8 del primals_11 return buf9, primals_1, primals_10, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), buf6, primals_8, reinterpret_tensor(buf2, (16, 1, 1 ), (1, 1, 1), 0), reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0 ), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0) class Scaled_Dot_Product_Attention(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): """ Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 """ attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_AttentionNew(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_AttentionNew, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, input_0): primals_1 = self.fc_Q.weight primals_3 = self.fc_Q.bias primals_2 = self.fc_K.weight primals_5 = self.fc_K.bias primals_4 = self.fc_V.weight primals_7 = self.fc_V.bias primals_6 = self.fc.weight primals_9 = self.fc.bias primals_10 = self.layer_norm.weight primals_11 = self.layer_norm.bias primals_8 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Moon-xm/Chinese-Text-Classification-Pytorch
Multi_Head_Attention
false
11,725
[ "MIT" ]
0
19fe64006418bf4296f884e4d1f038c17b34d3de
https://github.com/Moon-xm/Chinese-Text-Classification-Pytorch/tree/19fe64006418bf4296f884e4d1f038c17b34d3de
HuberLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/h3/ch3qidii4qfm5ghapin7tnms27ccjbq3fj2gekdrfdy7mbjfc6tb.py # Topologically Sorted Source Nodes: [truediv, truediv_1, loss, mul, mul_1], Original ATen: [aten.div, aten.smooth_l1_loss, aten.mul] # Source node to ATen node mapping: # loss => abs_1, div_2, lt, mean, mul, pow_1, sub, sub_1, where # mul => mul_1 # mul_1 => mul_2 # truediv => div # truediv_1 => div_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div_2, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1), kwargs = {}) triton_per_fused_div_mul_smooth_l1_loss_0 = async_compile.triton('triton_per_fused_div_mul_smooth_l1_loss_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_smooth_l1_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = tmp6 < tmp1 tmp8 = tmp6 * tmp6 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = tmp10 * tmp1 tmp12 = tmp6 - tmp9 tmp13 = tl.where(tmp7, tmp11, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = tmp18 * tmp1 tmp20 = tmp19 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [truediv, truediv_1, loss, mul, mul_1], Original ATen: [aten.div, aten.smooth_l1_loss, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_div_mul_smooth_l1_loss_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn class HuberLoss(nn.Module): def __init__(self, delta=1): super().__init__() self.huber_loss_delta1 = nn.SmoothL1Loss() self.delta = delta def forward(self, x, x_hat): loss = self.huber_loss_delta1(x / self.delta, x_hat / self.delta) return loss * self.delta * self.delta def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = tmp6 < tmp1 tmp8 = tmp6 * tmp6 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = tmp10 * tmp1 tmp12 = tmp6 - tmp9 tmp13 = tl.where(tmp7, tmp11, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tmp19 = tmp18 * tmp1 tmp20 = tmp19 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_smooth_l1_loss_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class HuberLossNew(nn.Module): def __init__(self, delta=1): super().__init__() self.huber_loss_delta1 = nn.SmoothL1Loss() self.delta = delta def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NagisaZj/ProMP
HuberLoss
false
11,726
[ "MIT" ]
0
539739ae2b7d5fdcad00855da695f643b23df4b3
https://github.com/NagisaZj/ProMP/tree/539739ae2b7d5fdcad00855da695f643b23df4b3
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/j2/cj2qhnxmzdsgco22jtn4xpfh2ve5irgwuq3b2hzyjdh3jjjjqxpb.py # Topologically Sorted Source Nodes: [mean, std, sub, add, output, output_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # output => div # output_1 => add_1 # std => sqrt, var # sub => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_2), kwargs = {}) triton_poi_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_std_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-06 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 + tmp28 tl.store(out_ptr0 + (x2), tmp29, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, std, sub, add, output, output_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_std_sub_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn class LayerNorm(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) output = (x - mean) / (std + self.eps) if self.scale: output = output * self.scale_param if self.center: output = output + self.center_param return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_std_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-06 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 + tmp28 tl.store(out_ptr0 + x2, tmp29, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_std_sub_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class LayerNormNew(nn.Module): """ Simple 1D LayerNorm. """ def __init__(self, features, center=True, scale=False, eps=1e-06): super().__init__() self.center = center self.scale = scale self.eps = eps if self.scale: self.scale_param = nn.Parameter(torch.ones(features)) else: self.scale_param = None if self.center: self.center_param = nn.Parameter(torch.zeros(features)) else: self.center_param = None def forward(self, input_0): primals_2 = self.center_param primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
NagisaZj/ProMP
LayerNorm
false
11,727
[ "MIT" ]
0
539739ae2b7d5fdcad00855da695f643b23df4b3
https://github.com/NagisaZj/ProMP/tree/539739ae2b7d5fdcad00855da695f643b23df4b3
CausalConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/pz/cpzxz6lkuih5yejx2jgx2k2tt7datj3a4ghmi4d5empkhgoz5dif.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 5) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 5), (20, 5, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 80, grid=grid(80), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 4), (20, 5, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn class CausalConv1d(nn.Module): """A 1D causal convolution layer. Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions per step, and T is the number of steps. Output: (B, D_out, T), where B is the minibatch size, D_out is the number of dimensions in the output, and T is the number of steps. Arguments: in_channels (int): number of input channels out_channels (int): number of output channels """ def __init__(self, in_channels, out_channels, dilation=1): super(CausalConv1d, self).__init__() self.padding = dilation self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding= self.padding, dilation=dilation) def forward(self, minibatch): return self.causal_conv(minibatch)[:, :, :-self.padding] def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 5 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 5), (20, 5, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(80)](buf1, primals_2, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 4), (20, 5, 1), 0 ), primals_1, primals_3 class CausalConv1dNew(nn.Module): """A 1D causal convolution layer. Input: (B, D_in, T), where B is the minibatch size, D_in is the number of dimensions per step, and T is the number of steps. Output: (B, D_out, T), where B is the minibatch size, D_out is the number of dimensions in the output, and T is the number of steps. Arguments: in_channels (int): number of input channels out_channels (int): number of output channels """ def __init__(self, in_channels, out_channels, dilation=1): super(CausalConv1dNew, self).__init__() self.padding = dilation self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding= self.padding, dilation=dilation) def forward(self, input_0): primals_1 = self.causal_conv.weight primals_2 = self.causal_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
NagisaZj/ProMP
CausalConv1d
false
11,728
[ "MIT" ]
0
539739ae2b7d5fdcad00855da695f643b23df4b3
https://github.com/NagisaZj/ProMP/tree/539739ae2b7d5fdcad00855da695f643b23df4b3
Stoplinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/pr/cprthrqz6iotcmrjfcrj7taqntzxisdcjtr54gsuz2ck2kf6kbsr.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 64, grid=grid(64), stream=stream0) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), (1, 0), 0), primals_4, alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict import torch.nn as nn class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class Stoplinear(nn.Module): """ Adding hidden layer to stopplinear to improve it """ def __init__(self, input_size, p=0.1): super(Stoplinear, self).__init__() self.input_size = input_size self.hidden_size = input_size // 3 self.layers = nn.Sequential(OrderedDict([('fc1', Linear(self. input_size, self.hidden_size, w_init='sigmoid')), ('activation', nn.ReLU()), ('dropout', nn.Dropout(p)), ('fc2', Linear(self. hidden_size, 1, w_init='sigmoid'))])) def forward(self, input_): out = self.layers(input_) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from collections import OrderedDict import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, primals_2, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), ( 1, 0), 0), primals_4, alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), primals_4, buf4 class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class StoplinearNew(nn.Module): """ Adding hidden layer to stopplinear to improve it """ def __init__(self, input_size, p=0.1): super(StoplinearNew, self).__init__() self.input_size = input_size self.hidden_size = input_size // 3 self.layers = nn.Sequential(OrderedDict([('fc1', Linear(self. input_size, self.hidden_size, w_init='sigmoid')), ('activation', nn.ReLU()), ('dropout', nn.Dropout(p)), ('fc2', Linear(self. hidden_size, 1, w_init='sigmoid'))])) def forward(self, input_0): primals_1 = self.layers.fc1.linear_layer.weight primals_2 = self.layers.fc1.linear_layer.bias primals_4 = self.layers.fc2.linear_layer.weight primals_5 = self.layers.fc2.linear_layer.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Munna-Manoj/Team7_TTS
Stoplinear
false
11,729
[ "MIT" ]
0
5e2d473a2afe429023876bcc51c2ac966a4938b8
https://github.com/Munna-Manoj/Team7_TTS/tree/5e2d473a2afe429023876bcc51c2ac966a4938b8
FFN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/37/c37iajzamvg4r3s5ikb4y6kka2x3towdlz4bqoh3dx4uywvya2mb.py # Topologically Sorted Source Nodes: [x_1, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # relu => relu # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/tr/ctrdeeo45yfmpbksxog7is2d6fd26mv2poki6u26emzhamo2zqxd.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_4 => add # x_5 => clone, var_mean # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%add,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_3 = async_compile.triton('triton_poi_fused_add_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp4 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp8 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/px/cpxbmtafvoqnd5j3oyskd4thxpat5nbj25jgagf6an6xgvaf47sv.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_4 => add # x_5 => add_1, add_2, clone, mul, mul_1, rsqrt, sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%add,), kwargs = {memory_format: torch.contiguous_format}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (y3), ymask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + (4*y3)), tmp13, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (4, 16, 1), (16, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 4), (64, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_1, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_3.run(buf4, primals_1, buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(buf4, primals_1, buf5, buf6, primals_6, primals_7, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf5 del buf6 del primals_7 return (buf7, primals_1, primals_2, primals_4, primals_6, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16, 1), (16, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch as t class Conv(nn.Module): """ Convolution Module """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, w_init='linear'): """ :param in_channels: dimension of input :param out_channels: dimension of output :param kernel_size: size of kernel :param stride: size of stride :param padding: size of padding :param dilation: dilation rate :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Conv, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) nn.init.xavier_uniform_(self.conv.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): x = self.conv(x) return x class FFN(nn.Module): """ Positionwise Feed-Forward Network """ def __init__(self, num_hidden): """ :param num_hidden: dimension of hidden """ super(FFN, self).__init__() self.w_1 = Conv(num_hidden, num_hidden * 4, kernel_size=1, w_init= 'relu') self.w_2 = Conv(num_hidden * 4, num_hidden, kernel_size=1) self.dropout = nn.Dropout(p=0.1) self.layer_norm = nn.LayerNorm(num_hidden) def forward(self, input_): x = input_.transpose(1, 2) x = self.w_2(t.relu(self.w_1(x))) x = x.transpose(1, 2) x = x + input_ x = self.layer_norm(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + y3, ymask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + 4 * y3), tmp13, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (4, 16, 1), (16, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 4), (64, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(16)](buf4, primals_1, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_4[grid(16, 4)](buf4, primals_1, buf5, buf6, primals_6, primals_7, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf5 del buf6 del primals_7 return buf7, primals_1, primals_2, primals_4, primals_6, buf2, buf4 class Conv(nn.Module): """ Convolution Module """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, w_init='linear'): """ :param in_channels: dimension of input :param out_channels: dimension of output :param kernel_size: size of kernel :param stride: size of stride :param padding: size of padding :param dilation: dilation rate :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Conv, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) nn.init.xavier_uniform_(self.conv.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): x = self.conv(x) return x class FFNNew(nn.Module): """ Positionwise Feed-Forward Network """ def __init__(self, num_hidden): """ :param num_hidden: dimension of hidden """ super(FFNNew, self).__init__() self.w_1 = Conv(num_hidden, num_hidden * 4, kernel_size=1, w_init= 'relu') self.w_2 = Conv(num_hidden * 4, num_hidden, kernel_size=1) self.dropout = nn.Dropout(p=0.1) self.layer_norm = nn.LayerNorm(num_hidden) def forward(self, input_0): primals_2 = self.w_1.conv.weight primals_3 = self.w_1.conv.bias primals_4 = self.w_2.conv.weight primals_5 = self.w_2.conv.bias primals_6 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Munna-Manoj/Team7_TTS
FFN
false
11,730
[ "MIT" ]
0
5e2d473a2afe429023876bcc51c2ac966a4938b8
https://github.com/Munna-Manoj/Team7_TTS/tree/5e2d473a2afe429023876bcc51c2ac966a4938b8
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/63/c632haj5kpxavadodhj6onygcpgyicvrpu3jgqpex5yfir4eqadj.py # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_2 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 - tmp2 tmp4 = tmp3 * tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 / tmp5 tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/k5/ck53elncbm3vwfxe2lt4hmcpcvp7vtz7z2ugbynghzxqddqdcts7.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_2 => add # out_3 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qe/cqef3vgmhggbtz7jq6be3w32wnn4avgslntd7wr75eixfvjpdtjd.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_2 => add # out_3 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_10), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_11), kwargs = {}) triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = (xindex // 4) x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x5), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2p/c2pm7fcuiiuh5hyqbubeggibubfi466wlrv2fl7wi6jyflo44gfc.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_5 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/5i/c5ipggcwfmiy6xwyorkqi45ymmmjaizazawvwrlqypsmysj65d6x.py # Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.add] # Source node to ATen node mapping: # out_8 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_15, %add_2), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/p4/cp46n25cqjor44iv7w4w5d63qmmsxnkrtdqpd7lbcbaozxlm5as4.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out_9 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ox/coxmjqobcehchw67m6p2zasqd2aeil3dt274wt7sztmjarah6swf.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # out_9 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_16), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_17), kwargs = {}) triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_1.run(buf6, primals_1, buf7, buf8, 16, grid=grid(16), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_2.run(buf6, primals_1, buf7, buf8, primals_10, primals_11, buf9, 64, grid=grid(64), stream=stream0) del primals_11 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf11, primals_13, buf17, 64, grid=grid(64), stream=stream0) del primals_13 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf13, primals_15, buf9, 64, grid=grid(64), stream=stream0) del primals_15 buf14 = buf8; del buf8 # reuse buf15 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(buf13, buf14, buf15, primals_16, primals_17, buf16, 64, grid=grid(64), stream=stream0) del buf14 del buf15 del primals_17 return (buf16, primals_1, primals_10, primals_16, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(buf11, (16, 4), (4, 1), 0), buf13, primals_14, buf17, primals_12, primals_8, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Scaled_Dot_Product_Attention(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): """ Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 """ attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_Attention(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_Attention, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): batch_size = x.size(0) Q = self.fc_Q(x) K = self.fc_K(x) V = self.fc_V(x) Q = Q.view(batch_size * self.num_head, -1, self.dim_head) K = K.view(batch_size * self.num_head, -1, self.dim_head) V = V.view(batch_size * self.num_head, -1, self.dim_head) scale = K.size(-1) ** -0.5 context = self.attention(Q, K, V, scale) context = context.view(batch_size, -1, self.dim_head * self.num_head) out = self.fc(context) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out class Position_wise_Feed_Forward(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_Forward, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out class Encoder(nn.Module): def __init__(self, dim_model, num_head, hidden, dropout): super(Encoder, self).__init__() self.attention = Multi_Head_Attention(dim_model, num_head, dropout) self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout) def forward(self, x): out = self.attention(x) out = self.feed_forward(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'dim_model': 4, 'num_head': 4, 'hidden': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 - tmp2 tmp4 = tmp3 * tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 / tmp5 tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex // 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x5, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor( primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor( primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_1, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0), out=buf3) buf4 = buf3 del buf3 get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (16, 1, 1), (1, 1, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(16)](buf6, primals_1, buf7, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(64)](buf6, primals_1, buf7, buf8, primals_10, primals_11, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(64)](buf11, primals_13, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_13 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0) del buf12 triton_poi_fused_add_4[grid(64)](buf13, primals_15, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_15 buf14 = buf8 del buf8 buf15 = buf7 del buf7 triton_poi_fused_native_layer_norm_5[grid(16)](buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(64)](buf13, buf14, buf15, primals_16, primals_17, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf14 del buf15 del primals_17 return buf16, primals_1, primals_10, primals_16, buf4, reinterpret_tensor( buf5, (4, 4), (4, 1), 0), buf6, reinterpret_tensor(buf9, (16, 4), ( 4, 1), 0), reinterpret_tensor(buf11, (16, 4), (4, 1), 0 ), buf13, primals_14, buf17, primals_12, primals_8, reinterpret_tensor( buf2, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf0, (16, 1, 1 ), (1, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 1), (1, 1, 1), 0) class Scaled_Dot_Product_Attention(nn.Module): """Scaled Dot-Product Attention """ def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): """ Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 """ attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_Attention(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_Attention, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): batch_size = x.size(0) Q = self.fc_Q(x) K = self.fc_K(x) V = self.fc_V(x) Q = Q.view(batch_size * self.num_head, -1, self.dim_head) K = K.view(batch_size * self.num_head, -1, self.dim_head) V = V.view(batch_size * self.num_head, -1, self.dim_head) scale = K.size(-1) ** -0.5 context = self.attention(Q, K, V, scale) context = context.view(batch_size, -1, self.dim_head * self.num_head) out = self.fc(context) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out class Position_wise_Feed_Forward(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_Forward, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out class EncoderNew(nn.Module): def __init__(self, dim_model, num_head, hidden, dropout): super(EncoderNew, self).__init__() self.attention = Multi_Head_Attention(dim_model, num_head, dropout) self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout) def forward(self, input_0): primals_1 = self.attention.fc_Q.weight primals_3 = self.attention.fc_Q.bias primals_2 = self.attention.fc_K.weight primals_5 = self.attention.fc_K.bias primals_4 = self.attention.fc_V.weight primals_7 = self.attention.fc_V.bias primals_6 = self.attention.fc.weight primals_9 = self.attention.fc.bias primals_10 = self.attention.layer_norm.weight primals_11 = self.attention.layer_norm.bias primals_8 = self.feed_forward.fc1.weight primals_13 = self.feed_forward.fc1.bias primals_12 = self.feed_forward.fc2.weight primals_15 = self.feed_forward.fc2.bias primals_16 = self.feed_forward.layer_norm.weight primals_17 = self.feed_forward.layer_norm.bias primals_14 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
Moon-xm/Chinese-Text-Classification-Pytorch
Encoder
false
11,731
[ "MIT" ]
0
19fe64006418bf4296f884e4d1f038c17b34d3de
https://github.com/Moon-xm/Chinese-Text-Classification-Pytorch/tree/19fe64006418bf4296f884e4d1f038c17b34d3de
Position_wise_Feed_Forward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ji/cji7mw45fbdoanjc5e6qu3e2bf5d6jnnjabskl6onjlk7uv7oqud.py # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_4 => add # out_5 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xy/cxyvzp6lij7d3yqq2ut3vi6guk7xnzb7qwqb66dthlly44r65vfk.py # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # out_4 => add # out_5 => add_1, add_2, mul, mul_1, rsqrt, sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_1.run(buf2, primals_3, buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_2.run(buf2, primals_3, buf3, buf4, primals_6, primals_7, buf5, 256, grid=grid(256), stream=stream0) del buf3 del buf4 del primals_7 return (buf5, primals_3, primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Position_wise_Feed_Forward(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_Forward, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) out = self.dropout(out) out = out + x out = self.layer_norm(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_model': 4, 'hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(64)](buf2, primals_3, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(256)](buf2, primals_3, buf3, buf4, primals_6, primals_7, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del buf4 del primals_7 return buf5, primals_3, primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf6 class Position_wise_Feed_ForwardNew(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_ForwardNew, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Moon-xm/Chinese-Text-Classification-Pytorch
Position_wise_Feed_Forward
false
11,732
[ "MIT" ]
0
19fe64006418bf4296f884e4d1f038c17b34d3de
https://github.com/Moon-xm/Chinese-Text-Classification-Pytorch/tree/19fe64006418bf4296f884e4d1f038c17b34d3de
MultiheadAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [result], Original ATen: [aten.bmm] extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return (buf3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch as t class MultiheadAttention(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttention, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=0.1) def forward(self, key, value, query, mask=None, query_mask=None): attn = t.bmm(query, key.transpose(1, 2)) attn = attn / math.sqrt(self.num_hidden_k) if mask is not None: attn = attn.masked_fill(mask, -2 ** 32 + 1) attn = t.softmax(attn, dim=-1) else: attn = t.softmax(attn, dim=-1) if query_mask is not None: attn = attn * query_mask result = t.bmm(attn, value) return result, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'num_hidden_k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return buf3, buf2 class MultiheadAttentionNew(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttentionNew, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=0.1) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
Munna-Manoj/Team7_TTS
MultiheadAttention
false
11,733
[ "MIT" ]
0
5e2d473a2afe429023876bcc51c2ac966a4938b8
https://github.com/Munna-Manoj/Team7_TTS/tree/5e2d473a2afe429023876bcc51c2ac966a4938b8
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hx/chxqssslfjy3nakpoakgjbi4drv34uniaclaqtbdes42vf4arfbw.py # Topologically Sorted Source Nodes: [product, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, coefficient, batch_loss, product_1, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, coefficient_1, batch_loss_1, product_2, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, coefficient_2, batch_loss_2, product_3, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, coefficient_3, batch_loss_3, batch_loss_4, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_10 => add_12 # add_11 => add_13 # add_12 => add_14 # add_2 => add_2 # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # add_7 => add_8 # add_8 => add_9 # add_9 => add_10 # batch_loss => add_3 # batch_loss_1 => add_7 # batch_loss_2 => add_11 # batch_loss_3 => add_15 # batch_loss_4 => div_4 # coefficient => div # coefficient_1 => div_1 # coefficient_2 => div_2 # coefficient_3 => div_3 # intersection => sum_1 # intersection_1 => sum_4 # intersection_2 => sum_7 # intersection_3 => sum_10 # mul_1 => mul_1 # mul_3 => mul_3 # mul_5 => mul_5 # mul_7 => mul_7 # product => mul # product_1 => mul_2 # product_2 => mul_4 # product_3 => mul_6 # sub => sub # sum_11 => sum_11 # sum_12 => sum_12 # sum_2 => sum_2 # sum_3 => sum_3 # sum_5 => sum_5 # sum_6 => sum_6 # sum_8 => sum_8 # sum_9 => sum_9 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select_3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_2,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_3,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_6), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, %add_6), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %div_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %select_5), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_7, 2), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_4,), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_5,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_8, %sum_9), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, 1), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_8, %add_10), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %div_2), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_6, %select_7), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_10, 2), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 1), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_6,), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_7,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_11, %sum_12), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, 1), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_12, %add_14), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %div_3), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_15, 4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_4), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp12 = tl.load(in_ptr0 + (64 + r0), None) tmp13 = tl.load(in_ptr1 + (64 + r0), None) tmp24 = tl.load(in_ptr0 + (128 + r0), None) tmp25 = tl.load(in_ptr1 + (128 + r0), None) tmp36 = tl.load(in_ptr0 + (192 + r0), None) tmp37 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp26 = tmp24 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp38 = tmp36 * tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp44 = tl.sum(tmp42, 1)[:, None] tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = 2.0 tmp49 = tmp5 * tmp48 tmp50 = 1.0 tmp51 = tmp49 + tmp50 tmp52 = tmp8 + tmp11 tmp53 = tmp52 + tmp50 tmp54 = tmp51 / tmp53 tmp55 = 0.0 tmp56 = tmp54 + tmp55 tmp57 = tmp17 * tmp48 tmp58 = tmp57 + tmp50 tmp59 = tmp20 + tmp23 tmp60 = tmp59 + tmp50 tmp61 = tmp58 / tmp60 tmp62 = tmp56 + tmp61 tmp63 = tmp29 * tmp48 tmp64 = tmp63 + tmp50 tmp65 = tmp32 + tmp35 tmp66 = tmp65 + tmp50 tmp67 = tmp64 / tmp66 tmp68 = tmp62 + tmp67 tmp69 = tmp41 * tmp48 tmp70 = tmp69 + tmp50 tmp71 = tmp44 + tmp47 tmp72 = tmp71 + tmp50 tmp73 = tmp70 / tmp72 tmp74 = tmp68 + tmp73 tmp75 = 0.25 tmp76 = tmp74 * tmp75 tmp77 = tmp50 - tmp76 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp77, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf12 = buf0; del buf0 # reuse buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [product, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, coefficient, batch_loss, product_1, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, coefficient_1, batch_loss_1, product_2, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, coefficient_2, batch_loss_2, product_3, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, coefficient_3, batch_loss_3, batch_loss_4, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf13, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): """Sørensen–Dice coefficient loss to calculate the mean loss over a batch of data.This loss mainly calculates the similarity between two samples. To know more about this loss check this link: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): """Simple constructor for the class.""" super(DiceLoss, self).__init__() def forward(self, predicted, target): """ Method for calculation of loss from sample. Parameters: predicted(torch.Tensor): Predicted output of the network. Shape - (Batch Size,Channel,Height,Width) target(torch.Tensor): Actual required output for the network Shape - (Batch Size,Channel,Height,Width) Returns: The mean dice Loss over the batch size. """ batch = predicted.size()[0] batch_loss = 0 for index in range(batch): coefficient = self._dice_coefficient(predicted[index], target[ index]) batch_loss += coefficient batch_loss = batch_loss / batch return 1 - batch_loss def _dice_coefficient(self, predicted, target): """Calculates the Sørensen–Dice Coefficient for a single sample. Parameters: predicted(torch.Tensor): Predicted single output of the network. Shape - (Channel,Height,Width) target(torch.Tensor): Actual required single output for the network Shape - (Channel,Height,Width) Returns: coefficient(torch.Tensor): Dice coefficient for the input sample. 1 represents high similarity and 0 represents low similarity. """ smooth = 1 product = torch.mul(predicted, target) intersection = product.sum() coefficient = (2 * intersection + smooth) / (predicted.sum() + target.sum() + smooth) return coefficient def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp12 = tl.load(in_ptr0 + (64 + r0), None) tmp13 = tl.load(in_ptr1 + (64 + r0), None) tmp24 = tl.load(in_ptr0 + (128 + r0), None) tmp25 = tl.load(in_ptr1 + (128 + r0), None) tmp36 = tl.load(in_ptr0 + (192 + r0), None) tmp37 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp26 = tmp24 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp38 = tmp36 * tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp44 = tl.sum(tmp42, 1)[:, None] tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = 2.0 tmp49 = tmp5 * tmp48 tmp50 = 1.0 tmp51 = tmp49 + tmp50 tmp52 = tmp8 + tmp11 tmp53 = tmp52 + tmp50 tmp54 = tmp51 / tmp53 tmp55 = 0.0 tmp56 = tmp54 + tmp55 tmp57 = tmp17 * tmp48 tmp58 = tmp57 + tmp50 tmp59 = tmp20 + tmp23 tmp60 = tmp59 + tmp50 tmp61 = tmp58 / tmp60 tmp62 = tmp56 + tmp61 tmp63 = tmp29 * tmp48 tmp64 = tmp63 + tmp50 tmp65 = tmp32 + tmp35 tmp66 = tmp65 + tmp50 tmp67 = tmp64 / tmp66 tmp68 = tmp62 + tmp67 tmp69 = tmp41 * tmp48 tmp70 = tmp69 + tmp50 tmp71 = tmp44 + tmp47 tmp72 = tmp71 + tmp50 tmp73 = tmp70 / tmp72 tmp74 = tmp68 + tmp73 tmp75 = 0.25 tmp76 = tmp74 * tmp75 tmp77 = tmp50 - tmp76 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp77, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf12 = buf0 del buf0 buf13 = buf12 del buf12 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf13, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf13, class DiceLossNew(nn.Module): """Sørensen–Dice coefficient loss to calculate the mean loss over a batch of data.This loss mainly calculates the similarity between two samples. To know more about this loss check this link: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): """Simple constructor for the class.""" super(DiceLossNew, self).__init__() def _dice_coefficient(self, predicted, target): """Calculates the Sørensen–Dice Coefficient for a single sample. Parameters: predicted(torch.Tensor): Predicted single output of the network. Shape - (Channel,Height,Width) target(torch.Tensor): Actual required single output for the network Shape - (Channel,Height,Width) Returns: coefficient(torch.Tensor): Dice coefficient for the input sample. 1 represents high similarity and 0 represents low similarity. """ smooth = 1 product = torch.mul(predicted, target) intersection = product.sum() coefficient = (2 * intersection + smooth) / (predicted.sum() + target.sum() + smooth) return coefficient def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NajusAnaxi/UNet-based-for-Brain-Tumor-Segmentation
DiceLoss
false
11,734
[ "MIT" ]
0
24ca4432873f145ad33810f40c851ac10bf030fa
https://github.com/NajusAnaxi/UNet-based-for-Brain-Tumor-Segmentation/tree/24ca4432873f145ad33810f40c851ac10bf030fa
BCEDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/qg/cqgruwq7hcawuuvrunirvgwvwwr7rfwjjzzm7xj5trpvzol42ylj.py # Topologically Sorted Source Nodes: [binary_cross_entropy], Original ATen: [aten.binary_cross_entropy] # Source node to ATen node mapping: # binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul, mul_1, neg, sub, sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %maximum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) triton_per_fused_binary_cross_entropy_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = -tmp3 tmp5 = libdevice.log1p(tmp4) tmp6 = -100.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp2 * tmp7 tmp9 = tl_math.log(tmp3) tmp10 = triton_helpers.maximum(tmp9, tmp6) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ln/clntl2hql2cgrmqfbu4rklgkakwrcoehwedcnzouxkf42pfepmzu.py # Topologically Sorted Source Nodes: [binary_cross_entropy, product, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, coefficient, batch_loss, product_1, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, coefficient_1, batch_loss_1, product_2, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, coefficient_2, batch_loss_2, product_3, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, coefficient_3, batch_loss_3, batch_loss_4, sub, add_13], Original ATen: [aten.binary_cross_entropy, aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_10 => add_12 # add_11 => add_13 # add_12 => add_14 # add_13 => add_16 # add_2 => add_2 # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # add_7 => add_8 # add_8 => add_9 # add_9 => add_10 # batch_loss => add_3 # batch_loss_1 => add_7 # batch_loss_2 => add_11 # batch_loss_3 => add_15 # batch_loss_4 => div_4 # binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul, mul_1, neg, sub, sub_1 # coefficient => div # coefficient_1 => div_1 # coefficient_2 => div_2 # coefficient_3 => div_3 # intersection => sum_1 # intersection_1 => sum_4 # intersection_2 => sum_7 # intersection_3 => sum_10 # mul_1 => mul_3 # mul_3 => mul_5 # mul_5 => mul_7 # mul_7 => mul_9 # product => mul_2 # product_1 => mul_4 # product_2 => mul_6 # product_3 => mul_8 # sub => sub_2 # sum_11 => sum_11 # sum_12 => sum_12 # sum_2 => sum_2 # sum_3 => sum_3 # sum_5 => sum_5 # sum_6 => sum_6 # sum_8 => sum_8 # sum_9 => sum_9 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %maximum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select_3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_2,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_3,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_6), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, %add_6), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %div_1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %select_5), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_7, 2), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 1), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_4,), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_5,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_8, %sum_9), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, 1), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_8, %add_10), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %div_2), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_6, %select_7), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_8,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_10, 2), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, 1), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_6,), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%select_7,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_11, %sum_12), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, 1), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_12, %add_14), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %div_3), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_15, 4), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_4), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %sub_2), kwargs = {}) triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp12 = tl.load(in_ptr0 + (64 + r0), None) tmp13 = tl.load(in_ptr1 + (64 + r0), None) tmp24 = tl.load(in_ptr0 + (128 + r0), None) tmp25 = tl.load(in_ptr1 + (128 + r0), None) tmp36 = tl.load(in_ptr0 + (192 + r0), None) tmp37 = tl.load(in_ptr1 + (192 + r0), None) tmp75 = tl.load(in_out_ptr1 + (0)) tmp76 = tl.broadcast_to(tmp75, [XBLOCK, 1]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp26 = tmp24 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp38 = tmp36 * tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp44 = tl.sum(tmp42, 1)[:, None] tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = 2.0 tmp49 = tmp5 * tmp48 tmp50 = 1.0 tmp51 = tmp49 + tmp50 tmp52 = tmp8 + tmp11 tmp53 = tmp52 + tmp50 tmp54 = tmp51 / tmp53 tmp55 = 0.0 tmp56 = tmp54 + tmp55 tmp57 = tmp17 * tmp48 tmp58 = tmp57 + tmp50 tmp59 = tmp20 + tmp23 tmp60 = tmp59 + tmp50 tmp61 = tmp58 / tmp60 tmp62 = tmp56 + tmp61 tmp63 = tmp29 * tmp48 tmp64 = tmp63 + tmp50 tmp65 = tmp32 + tmp35 tmp66 = tmp65 + tmp50 tmp67 = tmp64 / tmp66 tmp68 = tmp62 + tmp67 tmp69 = tmp41 * tmp48 tmp70 = tmp69 + tmp50 tmp71 = tmp44 + tmp47 tmp72 = tmp71 + tmp50 tmp73 = tmp70 / tmp72 tmp74 = tmp68 + tmp73 tmp77 = 256.0 tmp78 = tmp76 / tmp77 tmp79 = 0.25 tmp80 = tmp74 * tmp79 tmp81 = tmp50 - tmp80 tmp82 = tmp78 + tmp81 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp82, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [binary_cross_entropy], Original ATen: [aten.binary_cross_entropy] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) buf14 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [binary_cross_entropy, product, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, coefficient, batch_loss, product_1, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, coefficient_1, batch_loss_1, product_2, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, coefficient_2, batch_loss_2, product_3, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, coefficient_3, batch_loss_3, batch_loss_4, sub, add_13], Original ATen: [aten.binary_cross_entropy, aten.mul, aten.sum, aten.add, aten.div, aten.rsub] triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1.run(buf14, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DiceLoss(nn.Module): """Sørensen–Dice coefficient loss to calculate the mean loss over a batch of data.This loss mainly calculates the similarity between two samples. To know more about this loss check this link: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): """Simple constructor for the class.""" super(DiceLoss, self).__init__() def forward(self, predicted, target): """ Method for calculation of loss from sample. Parameters: predicted(torch.Tensor): Predicted output of the network. Shape - (Batch Size,Channel,Height,Width) target(torch.Tensor): Actual required output for the network Shape - (Batch Size,Channel,Height,Width) Returns: The mean dice Loss over the batch size. """ batch = predicted.size()[0] batch_loss = 0 for index in range(batch): coefficient = self._dice_coefficient(predicted[index], target[ index]) batch_loss += coefficient batch_loss = batch_loss / batch return 1 - batch_loss def _dice_coefficient(self, predicted, target): """Calculates the Sørensen–Dice Coefficient for a single sample. Parameters: predicted(torch.Tensor): Predicted single output of the network. Shape - (Channel,Height,Width) target(torch.Tensor): Actual required single output for the network Shape - (Channel,Height,Width) Returns: coefficient(torch.Tensor): Dice coefficient for the input sample. 1 represents high similarity and 0 represents low similarity. """ smooth = 1 product = torch.mul(predicted, target) intersection = product.sum() coefficient = (2 * intersection + smooth) / (predicted.sum() + target.sum() + smooth) return coefficient class BCEDiceLoss(nn.Module): """ Combination of Binary Cross Entropy Loss and Soft Dice Loss. This combined loss is used to train the network so that both benefits of the loss are leveraged. """ def __init__(self, device): """Simple constructor for the class.""" super(BCEDiceLoss, self).__init__() self.dice_loss = DiceLoss() def forward(self, predicted, target): """ Method for calculation of combined loss from sample.""" return F.binary_cross_entropy(predicted, target) + self.dice_loss( predicted, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = -tmp3 tmp5 = libdevice.log1p(tmp4) tmp6 = -100.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp2 * tmp7 tmp9 = tl_math.log(tmp3) tmp10 = triton_helpers.maximum(tmp9, tmp6) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) @triton.jit def triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp12 = tl.load(in_ptr0 + (64 + r0), None) tmp13 = tl.load(in_ptr1 + (64 + r0), None) tmp24 = tl.load(in_ptr0 + (128 + r0), None) tmp25 = tl.load(in_ptr1 + (128 + r0), None) tmp36 = tl.load(in_ptr0 + (192 + r0), None) tmp37 = tl.load(in_ptr1 + (192 + r0), None) tmp75 = tl.load(in_out_ptr1 + 0) tmp76 = tl.broadcast_to(tmp75, [XBLOCK, 1]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp26 = tmp24 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp38 = tmp36 * tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp44 = tl.sum(tmp42, 1)[:, None] tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = 2.0 tmp49 = tmp5 * tmp48 tmp50 = 1.0 tmp51 = tmp49 + tmp50 tmp52 = tmp8 + tmp11 tmp53 = tmp52 + tmp50 tmp54 = tmp51 / tmp53 tmp55 = 0.0 tmp56 = tmp54 + tmp55 tmp57 = tmp17 * tmp48 tmp58 = tmp57 + tmp50 tmp59 = tmp20 + tmp23 tmp60 = tmp59 + tmp50 tmp61 = tmp58 / tmp60 tmp62 = tmp56 + tmp61 tmp63 = tmp29 * tmp48 tmp64 = tmp63 + tmp50 tmp65 = tmp32 + tmp35 tmp66 = tmp65 + tmp50 tmp67 = tmp64 / tmp66 tmp68 = tmp62 + tmp67 tmp69 = tmp41 * tmp48 tmp70 = tmp69 + tmp50 tmp71 = tmp44 + tmp47 tmp72 = tmp71 + tmp50 tmp73 = tmp70 / tmp72 tmp74 = tmp68 + tmp73 tmp77 = 256.0 tmp78 = tmp76 / tmp77 tmp79 = 0.25 tmp80 = tmp74 * tmp79 tmp81 = tmp50 - tmp80 tmp82 = tmp78 + tmp81 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp82, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_binary_cross_entropy_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) buf14 = buf0 del buf0 triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_1[grid(1)]( buf14, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf14, class DiceLoss(nn.Module): """Sørensen–Dice coefficient loss to calculate the mean loss over a batch of data.This loss mainly calculates the similarity between two samples. To know more about this loss check this link: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): """Simple constructor for the class.""" super(DiceLoss, self).__init__() def forward(self, predicted, target): """ Method for calculation of loss from sample. Parameters: predicted(torch.Tensor): Predicted output of the network. Shape - (Batch Size,Channel,Height,Width) target(torch.Tensor): Actual required output for the network Shape - (Batch Size,Channel,Height,Width) Returns: The mean dice Loss over the batch size. """ batch = predicted.size()[0] batch_loss = 0 for index in range(batch): coefficient = self._dice_coefficient(predicted[index], target[ index]) batch_loss += coefficient batch_loss = batch_loss / batch return 1 - batch_loss def _dice_coefficient(self, predicted, target): """Calculates the Sørensen–Dice Coefficient for a single sample. Parameters: predicted(torch.Tensor): Predicted single output of the network. Shape - (Channel,Height,Width) target(torch.Tensor): Actual required single output for the network Shape - (Channel,Height,Width) Returns: coefficient(torch.Tensor): Dice coefficient for the input sample. 1 represents high similarity and 0 represents low similarity. """ smooth = 1 product = torch.mul(predicted, target) intersection = product.sum() coefficient = (2 * intersection + smooth) / (predicted.sum() + target.sum() + smooth) return coefficient class BCEDiceLossNew(nn.Module): """ Combination of Binary Cross Entropy Loss and Soft Dice Loss. This combined loss is used to train the network so that both benefits of the loss are leveraged. """ def __init__(self, device): """Simple constructor for the class.""" super(BCEDiceLossNew, self).__init__() self.dice_loss = DiceLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NajusAnaxi/UNet-based-for-Brain-Tumor-Segmentation
BCEDiceLoss
false
11,735
[ "MIT" ]
0
24ca4432873f145ad33810f40c851ac10bf030fa
https://github.com/NajusAnaxi/UNet-based-for-Brain-Tumor-Segmentation/tree/24ca4432873f145ad33810f40c851ac10bf030fa
GraphConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3l/c3lo77c7wjxasxrhtr6wesb72ods2d2rxnxhbfieun7j2wukm3wn.py # Topologically Sorted Source Nodes: [cat_feats], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_feats => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %bmm], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xk/cxkfjvxcrwrocrik25vel4gb2spp4jrbijo33ra4mgkw3hn2qgah.py # Topologically Sorted Source Nodes: [add, out_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add # out_1 => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_feats], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, buf1, 128, grid=grid(128), stream=stream0) del primals_1 buf2 = reinterpret_tensor(buf0, (1, 16, 4), (64, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 8), (0, 8, 1), 0), reinterpret_tensor(primals_3, (1, 8, 4), (32, 4, 1), 0), out=buf2) del primals_3 buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, out_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_1.run(buf3, primals_4, buf4, 64, grid=grid(64), stream=stream0) del primals_4 return (buf3, buf4, reinterpret_tensor(buf1, (1, 8, 16), (128, 1, 8), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class MeanAggregator(nn.Module): def forward(self, features, A): x = torch.bmm(A, features) return x class GraphConv(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) self.bias = nn.Parameter(torch.FloatTensor(out_dim)) init.xavier_uniform_(self.weight) init.constant_(self.bias, 0) self.aggregator = MeanAggregator() def forward(self, features, A): _b, _n, d = features.shape assert d == self.in_dim agg_feats = self.aggregator(features, A) cat_feats = torch.cat([features, agg_feats], dim=2) out = torch.einsum('bnd,df->bnf', cat_feats, self.weight) out = F.relu(out + self.bias) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf2 = reinterpret_tensor(buf0, (1, 16, 4), (64, 4, 1), 0) del buf0 extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 8), (0, 8, 1), 0), reinterpret_tensor(primals_3, (1, 8, 4), (32, 4, 1), 0), out=buf2) del primals_3 buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(64)](buf3, primals_4, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return buf3, buf4, reinterpret_tensor(buf1, (1, 8, 16), (128, 1, 8), 0) class MeanAggregator(nn.Module): def forward(self, features, A): x = torch.bmm(A, features) return x class GraphConvNew(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) self.bias = nn.Parameter(torch.FloatTensor(out_dim)) init.xavier_uniform_(self.weight) init.constant_(self.bias, 0) self.aggregator = MeanAggregator() def forward(self, input_0, input_1): primals_3 = self.weight primals_4 = self.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
NceBoy/mmocr
GraphConv
false
11,736
[ "Apache-2.0" ]
0
3fb7a18d7eb44799e75c1991e5da2044b458d411
https://github.com/NceBoy/mmocr/tree/3fb7a18d7eb44799e75c1991e5da2044b458d411
Vol
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ir/cirg4bcg3frttgz2ajdmna53ffd3mxwsyqcu4a2hmazqnfctl6yz.py # Topologically Sorted Source Nodes: [waveform, clamp], Original ATen: [aten.mul, aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # waveform => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, -1), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_clamp_mul_0 = async_compile.triton('triton_poi_fused_clamp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [waveform, clamp], Original ATen: [aten.mul, aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torchaudio.functional as F class Vol(torch.nn.Module): """Add a volume to an waveform. Args: gain (float): Interpreted according to the given gain_type: If ``gain_type`` = ``amplitude``, ``gain`` is a positive amplitude ratio. If ``gain_type`` = ``power``, ``gain`` is a power (voltage squared). If ``gain_type`` = ``db``, ``gain`` is in decibels. gain_type (str, optional): Type of gain. One of: ``amplitude``, ``power``, ``db`` (Default: ``amplitude``) """ def __init__(self, gain: 'float', gain_type: 'str'='amplitude'): super(Vol, self).__init__() self.gain = gain self.gain_type = gain_type if gain_type in ['amplitude', 'power'] and gain < 0: raise ValueError( 'If gain_type = amplitude or power, gain must be positive.') def forward(self, waveform: 'Tensor') ->Tensor: """ Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Tensor of audio of dimension (..., time). """ if self.gain_type == 'amplitude': waveform = waveform * self.gain if self.gain_type == 'db': waveform = F.gain(waveform, self.gain) if self.gain_type == 'power': waveform = F.gain(waveform, 10 * math.log10(self.gain)) return torch.clamp(waveform, -1, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'gain': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class VolNew(torch.nn.Module): """Add a volume to an waveform. Args: gain (float): Interpreted according to the given gain_type: If ``gain_type`` = ``amplitude``, ``gain`` is a positive amplitude ratio. If ``gain_type`` = ``power``, ``gain`` is a power (voltage squared). If ``gain_type`` = ``db``, ``gain`` is in decibels. gain_type (str, optional): Type of gain. One of: ``amplitude``, ``power``, ``db`` (Default: ``amplitude``) """ def __init__(self, gain: 'float', gain_type: 'str'='amplitude'): super(VolNew, self).__init__() self.gain = gain self.gain_type = gain_type if gain_type in ['amplitude', 'power'] and gain < 0: raise ValueError( 'If gain_type = amplitude or power, gain must be positive.') def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
Vol
false
11,737
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
ComputeDeltas
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3z/c3z4rloeazemuhaq7ipjfwja43ifotludzhcut5kgdpcacwp2gd6.py # Topologically Sorted Source Nodes: [specgram_1], Original ATen: [aten.replication_pad1d] # Source node to ATen node mapping: # specgram_1 => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view, [None, None, %clamp_max]), kwargs = {}) triton_poi_fused_replication_pad1d_0 = async_compile.triton('triton_poi_fused_replication_pad1d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad1d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_replication_pad1d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((4*x1) + ((3) * ((3) <= (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0))))) + (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) * ((((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ns/cnsqxcdmqckv2b4hbcx2tgslbei3i2eta37z6mobhzwxtt56do2q.py # Topologically Sorted Source Nodes: [arange, kernel], Original ATen: [aten.arange, aten.repeat] # Source node to ATen node mapping: # arange => add, convert_element_type, iota_1, mul # kernel => repeat # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (5,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_1, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, -2), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%convert_element_type, [64, 1, 1]), kwargs = {}) triton_poi_fused_arange_repeat_1 = async_compile.triton('triton_poi_fused_arange_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_repeat_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x2 = xindex tmp0 = (-2) + x0 tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x2), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/uf/cufga45clom6jo2goqfcib5mmmgnorouf2red3cnzudxrrqlz3ky.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.div] # Source node to ATen node mapping: # output => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution, 10.0), kwargs = {}) triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 64, 8), (512, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [specgram_1], Original ATen: [aten.replication_pad1d] stream0 = get_raw_stream(0) triton_poi_fused_replication_pad1d_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((64, 1, 5), (5, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [arange, kernel], Original ATen: [aten.arange, aten.repeat] triton_poi_fused_arange_repeat_1.run(buf1, 320, grid=grid(320), stream=stream0) # Topologically Sorted Source Nodes: [specgram_1, arange, kernel, conv1d], Original ATen: [aten.replication_pad1d, aten.arange, aten.repeat, aten.convolution] buf2 = extern_kernels.convolution(buf0, buf1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=64, bias=None) assert_size_stride(buf2, (1, 64, 4), (256, 4, 1)) del buf0 del buf1 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.div] triton_poi_fused_div_2.run(buf3, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torchaudio.functional as F class ComputeDeltas(torch.nn.Module): """Compute delta coefficients of a tensor, usually a spectrogram. See `torchaudio.functional.compute_deltas` for more details. Args: win_length (int): The window length used for computing delta. (Default: ``5``) mode (str): Mode parameter passed to padding. (Default: ``'replicate'``) """ __constants__ = ['win_length'] def __init__(self, win_length: 'int'=5, mode: 'str'='replicate') ->None: super(ComputeDeltas, self).__init__() self.win_length = win_length self.mode = mode def forward(self, specgram: 'Tensor') ->Tensor: """ Args: specgram (Tensor): Tensor of audio of dimension (..., freq, time). Returns: Tensor: Tensor of deltas of dimension (..., freq, time). """ return F.compute_deltas(specgram, win_length=self.win_length, mode= self.mode) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_replication_pad1d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 * x1 + (3 * (3 <= 0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0)) + (0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0)) * (0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0) < 3))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_arange_repeat_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x2 = xindex tmp0 = -2 + x0 tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + x2, tmp1, xmask) @triton.jit def triton_poi_fused_div_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 64, 8), (512, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_replication_pad1d_0[grid(512)](arg0_1, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((64, 1, 5), (5, 5, 1), torch.float32) triton_poi_fused_arange_repeat_1[grid(320)](buf1, 320, XBLOCK=256, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(buf0, buf1, stride=(1,), padding= (0,), dilation=(1,), transposed=False, output_padding=(0,), groups=64, bias=None) assert_size_stride(buf2, (1, 64, 4), (256, 4, 1)) del buf0 del buf1 buf3 = buf2 del buf2 triton_poi_fused_div_2[grid(256)](buf3, 256, XBLOCK=256, num_warps= 4, num_stages=1) return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), class ComputeDeltasNew(torch.nn.Module): """Compute delta coefficients of a tensor, usually a spectrogram. See `torchaudio.functional.compute_deltas` for more details. Args: win_length (int): The window length used for computing delta. (Default: ``5``) mode (str): Mode parameter passed to padding. (Default: ``'replicate'``) """ __constants__ = ['win_length'] def __init__(self, win_length: 'int'=5, mode: 'str'='replicate') ->None: super(ComputeDeltasNew, self).__init__() self.win_length = win_length self.mode = mode def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
ComputeDeltas
false
11,738
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
MuLawEncoding
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ih/cihesf5flkgw6m2noztxtqkwdbszsmb3kimxv7plifxg6l7vpley.py # Topologically Sorted Source Nodes: [sign, mu, abs_1, mul, log1p, mul_1, log1p_1, x_mu, add, truediv_1, mul_2, add_1, x_mu_1], Original ATen: [aten.sign, aten.lift_fresh, aten.abs, aten.mul, aten.log1p, aten.div, aten.add, aten._to_copy] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # add_1 => add_1 # log1p => log1p # log1p_1 => full_default_1 # mu => full_default # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sign => sign # truediv_1 => div_1 # x_mu => div # x_mu_1 => convert_element_type # Graph fragment: # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {}) # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 255.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %abs_1), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %log1p), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 5.545177459716797), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %full_default_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %full_default), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0.5), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0 = async_compile.triton('triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = tl_math.abs(tmp0) tmp9 = 255.0 tmp10 = tmp9 * tmp8 tmp11 = libdevice.log1p(tmp10) tmp12 = tmp7 * tmp11 tmp13 = 0.18033687961558437 tmp14 = tmp12 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tmp18 * tmp9 tmp20 = tmp19 + tmp17 tmp21 = tmp20.to(tl.int64) tl.store(out_ptr0 + (x0), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [sign, mu, abs_1, mul, log1p, mul_1, log1p_1, x_mu, add, truediv_1, mul_2, add_1, x_mu_1], Original ATen: [aten.sign, aten.lift_fresh, aten.abs, aten.mul, aten.log1p, aten.div, aten.add, aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torchaudio.functional as F class MuLawEncoding(torch.nn.Module): """Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1 Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: 'int'=256) ->None: super(MuLawEncoding, self).__init__() self.quantization_channels = quantization_channels def forward(self, x: 'Tensor') ->Tensor: """ Args: x (Tensor): A signal to be encoded. Returns: x_mu (Tensor): An encoded signal. """ return F.mu_law_encoding(x, self.quantization_channels) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = tl_math.abs(tmp0) tmp9 = 255.0 tmp10 = tmp9 * tmp8 tmp11 = libdevice.log1p(tmp10) tmp12 = tmp7 * tmp11 tmp13 = 0.18033687961558437 tmp14 = tmp12 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tmp18 * tmp9 tmp20 = tmp19 + tmp17 tmp21 = tmp20.to(tl.int64) tl.store(out_ptr0 + x0, tmp21, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_abs_add_div_lift_fresh_log1p_mul_sign_0[grid (256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MuLawEncodingNew(torch.nn.Module): """Encode signal based on mu-law companding. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This algorithm assumes the signal has been scaled to between -1 and 1 and returns a signal encoded with values from 0 to quantization_channels - 1 Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: 'int'=256) ->None: super(MuLawEncodingNew, self).__init__() self.quantization_channels = quantization_channels def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
MuLawEncoding
false
11,739
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/2e/c2emmwy2qeskigqzoyiit4vspahm6u2spwmxv54zptdbgkhmgtep.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1752192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 13689) % 32 x0 = xindex % 13689 x4 = (xindex // 13689) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (13696*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2y/c2y2dkadgmukgwcf5dwt4sesd6rb3rfkoay4tx27ttcc3flhq2d2.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 58 x1 = (xindex // 58) % 58 x2 = (xindex // 3364) x3 = xindex % 3364 tmp0 = tl.load(in_ptr0 + ((2*x0) + (234*x1) + (13696*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (234*x1) + (13696*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (117 + (2*x0) + (234*x1) + (13696*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (118 + (2*x0) + (234*x1) + (13696*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + (3392*x2)), tmp6, xmask) tl.store(out_ptr1 + (x3 + (3456*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qx/cqxrpwg6ego7vahuc3k6gos6hkxnagmvy6fysiqbnegwxveyv5qn.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 401408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3136) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dk/cdk3q2hvkrlgsorvnsdsx6odm7lerew3dj2daj4mkghhhpczogup.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [3, 3], [3, 3], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + ((3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (56 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (57 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (58 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (112 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (113 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (114 + (3*x0) + (168*x1) + (3136*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + (x3), tmp16, xmask) tl.store(out_ptr1 + (x3), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/nc/cnclcpq6pwdleiax4g2ub34gr5waa2jqtwfq5ygwyc6oqlye4qmj.py # Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu_2 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (32, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 121, 121), (14641, 14641, 121, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 41472), (41472, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (136, 64), (64, 1)) assert_size_stride(primals_9, (136, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 117, 117), (438048, 13689, 117, 1)) buf1 = empty_strided_cuda((4, 32, 117, 117), (438272, 13696, 117, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 1752192, grid=grid(1752192), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 32, 58, 58), (108544, 3392, 58, 1), torch.float32) buf3 = empty_strided_cuda((4, 32, 58, 58), (110592, 3456, 58, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 430592, grid=grid(430592), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 56, 56), (100352, 3136, 56, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 401408, grid=grid(401408), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 41472, grid=grid(41472), stream=stream0) buf8 = empty_strided_cuda((1, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (1, 41472), (41472, 1), 0), reinterpret_tensor(primals_6, (41472, 64), (1, 41472), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 64, grid=grid(64), stream=stream0) del primals_7 buf10 = empty_strided_cuda((1, 136), (136, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (64, 136), (1, 64), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf7, reinterpret_tensor(buf6, (1, 41472), (41472, 1), 0), buf9, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 121, 121), (14641, 14641, 121, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 41472), (41472, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((136, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((136, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 32, 3) self.pool2 = nn.MaxPool2d(3, 3) self.fc1 = nn.Linear(36 * 36 * 32, 64) self.drop1 = nn.Dropout(0.5) self.fc2 = nn.Linear(64, 136) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = x.view(-1, 36 * 36 * 32) x = self.drop1(F.relu(self.fc1(x))) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 1, 121, 121])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1752192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 13689 % 32 x0 = xindex % 13689 x4 = xindex // 13689 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 13696 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 58 x1 = xindex // 58 % 58 x2 = xindex // 3364 x3 = xindex % 3364 tmp0 = tl.load(in_ptr0 + (2 * x0 + 234 * x1 + 13696 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 234 * x1 + 13696 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (117 + 2 * x0 + 234 * x1 + 13696 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (118 + 2 * x0 + 234 * x1 + 13696 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + 3392 * x2), tmp6, xmask) tl.store(out_ptr1 + (x3 + 3456 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3136 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 41472 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (56 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (57 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (58 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (112 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (113 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (114 + 3 * x0 + 168 * x1 + 3136 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + x3, tmp16, xmask) tl.store(out_ptr1 + x3, tmp41, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (32, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 121, 121), (14641, 14641, 121, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 41472), (41472, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (136, 64), (64, 1)) assert_size_stride(primals_9, (136,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 117, 117), (438048, 13689, 117, 1)) buf1 = empty_strided_cuda((4, 32, 117, 117), (438272, 13696, 117, 1 ), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1752192)](buf0, primals_2, buf1, 1752192, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 32, 58, 58), (108544, 3392, 58, 1), torch.float32) buf3 = empty_strided_cuda((4, 32, 58, 58), (110592, 3456, 58, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(430592)](buf1, buf2, buf3, 430592, XBLOCK=1024, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 56, 56), (100352, 3136, 56, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(401408)](buf5, primals_5, 401408, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 18, 18), (10368, 324, 18, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(41472)](buf5, buf6, buf7, 41472, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((1, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (1, 41472), (41472, 1), 0), reinterpret_tensor(primals_6, (41472, 64), (1, 41472), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(64)](buf9, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf10 = empty_strided_cuda((1, 136), (136, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (64, 136), (1, 64), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf7, reinterpret_tensor(buf6, (1, 41472), (41472, 1), 0), buf9, primals_8, primals_6) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(1, 32, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(32, 32, 3) self.pool2 = nn.MaxPool2d(3, 3) self.fc1 = nn.Linear(36 * 36 * 32, 64) self.drop1 = nn.Dropout(0.5) self.fc2 = nn.Linear(64, 136) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
MonteYang/P1_Facial_Keypoints
Net
false
11,740
[ "MIT" ]
0
1e3e4c9c6b48ec241f6fc7e072b25c7211cebd18
https://github.com/MonteYang/P1_Facial_Keypoints/tree/1e3e4c9c6b48ec241f6fc7e072b25c7211cebd18
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/p7/cp7xzeyl6japtnkojqx5iupjksot3nuocbambsy2o3yflsevkl5j.py # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_2 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jq/cjqs74o7upz4nudmv2dbjbmggtmuj2mktvc7gygosrcj2d2xxghd.py # Topologically Sorted Source Nodes: [result_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # result_3 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %view_13], -1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x1 + (16*((-4) + x0))), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/t2/ct2fj4cxakdevxwd5upea4iyfznuislybj5p4wd6jgtx5ayzurnk.py # Topologically Sorted Source Nodes: [result_5, result_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # result_5 => add # result_6 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_15, %primals_2), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6g/c6gddvf7hivp3xdh4pyazhygzjkdnh5sxyn6itmcverzcfqnfwwt.py # Topologically Sorted Source Nodes: [result_5, result_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # result_5 => add # result_6 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_15, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 8), (8, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf2, buf3, 4, 16, grid=grid(4, 16), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf0, buf4, 4, 16, grid=grid(4, 16), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [result], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [result_3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(primals_2, buf9, buf10, 128, grid=grid(128), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [result_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (16, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_7 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [result_5, result_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(buf11, primals_2, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [result_5, result_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_2, buf12, buf13, primals_8, primals_9, buf14, 64, grid=grid(64), stream=stream0) del buf12 del buf13 del primals_9 return (buf14, buf7, primals_2, primals_8, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 8), (8, 1), 0), buf11, primals_6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch as t class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class MultiheadAttention(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttention, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=0.1) def forward(self, key, value, query, mask=None, query_mask=None): attn = t.bmm(query, key.transpose(1, 2)) attn = attn / math.sqrt(self.num_hidden_k) if mask is not None: attn = attn.masked_fill(mask, -2 ** 32 + 1) attn = t.softmax(attn, dim=-1) else: attn = t.softmax(attn, dim=-1) if query_mask is not None: attn = attn * query_mask result = t.bmm(attn, value) return result, attn class Attention(nn.Module): """ Attention Network """ def __init__(self, num_hidden, h=4): """ :param num_hidden: dimension of hidden :param h: num of heads """ super(Attention, self).__init__() self.num_hidden = num_hidden self.num_hidden_per_attn = num_hidden // h self.h = h self.key = Linear(num_hidden, num_hidden, bias=False) self.value = Linear(num_hidden, num_hidden, bias=False) self.query = Linear(num_hidden, num_hidden, bias=False) self.multihead = MultiheadAttention(self.num_hidden_per_attn) self.residual_dropout = nn.Dropout(p=0.1) self.final_linear = Linear(num_hidden * 2, num_hidden) self.layer_norm_1 = nn.LayerNorm(num_hidden) def forward(self, memory, decoder_input, mask=None, query_mask=None): batch_size = memory.size(0) seq_k = memory.size(1) seq_q = decoder_input.size(1) if query_mask is not None: query_mask = query_mask.unsqueeze(-1).repeat(1, 1, seq_k) query_mask = query_mask.repeat(self.h, 1, 1) if mask is not None: mask = mask.repeat(self.h, 1, 1) key = self.key(memory).view(batch_size, seq_k, self.h, self. num_hidden_per_attn) value = self.value(memory).view(batch_size, seq_k, self.h, self. num_hidden_per_attn) query = self.query(decoder_input).view(batch_size, seq_q, self.h, self.num_hidden_per_attn) key = key.permute(2, 0, 1, 3).contiguous().view(-1, seq_k, self. num_hidden_per_attn) value = value.permute(2, 0, 1, 3).contiguous().view(-1, seq_k, self .num_hidden_per_attn) query = query.permute(2, 0, 1, 3).contiguous().view(-1, seq_q, self .num_hidden_per_attn) result, attns = self.multihead(key, value, query, mask=mask, query_mask=query_mask) result = result.view(self.h, batch_size, seq_q, self. num_hidden_per_attn) result = result.permute(1, 2, 0, 3).contiguous().view(batch_size, seq_q, -1) result = t.cat([decoder_input, result], dim=-1) result = self.final_linear(result) result = result + decoder_input result = self.layer_norm_1(result) return result, attns def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch as t assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x1 + 16 * (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 8), (8, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4, 16)](buf2, buf3, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf2 triton_poi_fused_clone_0[grid(4, 16)](buf0, buf4, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(4, 16)](buf1, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](primals_2, buf9, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (16, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_7 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(16)](buf11, primals_2, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(64)](buf11, primals_2, buf12, buf13, primals_8, primals_9, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_9 return buf14, buf7, primals_2, primals_8, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 8), (8, 1), 0 ), buf11, primals_6, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 1), 0) class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class MultiheadAttention(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttention, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=0.1) def forward(self, key, value, query, mask=None, query_mask=None): attn = t.bmm(query, key.transpose(1, 2)) attn = attn / math.sqrt(self.num_hidden_k) if mask is not None: attn = attn.masked_fill(mask, -2 ** 32 + 1) attn = t.softmax(attn, dim=-1) else: attn = t.softmax(attn, dim=-1) if query_mask is not None: attn = attn * query_mask result = t.bmm(attn, value) return result, attn class AttentionNew(nn.Module): """ Attention Network """ def __init__(self, num_hidden, h=4): """ :param num_hidden: dimension of hidden :param h: num of heads """ super(AttentionNew, self).__init__() self.num_hidden = num_hidden self.num_hidden_per_attn = num_hidden // h self.h = h self.key = Linear(num_hidden, num_hidden, bias=False) self.value = Linear(num_hidden, num_hidden, bias=False) self.query = Linear(num_hidden, num_hidden, bias=False) self.multihead = MultiheadAttention(self.num_hidden_per_attn) self.residual_dropout = nn.Dropout(p=0.1) self.final_linear = Linear(num_hidden * 2, num_hidden) self.layer_norm_1 = nn.LayerNorm(num_hidden) def forward(self, input_0, input_1): primals_3 = self.key.linear_layer.weight primals_4 = self.value.linear_layer.weight primals_5 = self.query.linear_layer.weight primals_6 = self.final_linear.linear_layer.weight primals_7 = self.final_linear.linear_layer.bias primals_8 = self.layer_norm_1.weight primals_9 = self.layer_norm_1.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
Munna-Manoj/Team7_TTS
Attention
false
11,741
[ "MIT" ]
0
5e2d473a2afe429023876bcc51c2ac966a4938b8
https://github.com/Munna-Manoj/Team7_TTS/tree/5e2d473a2afe429023876bcc51c2ac966a4938b8
SlidingWindowCmn
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/h2/ch2fqgwzfeksat4s2tudqasuqm4b3z5klwvzprl244zbmwzttex5.py # Topologically Sorted Source Nodes: [cmn_specgram, cur_sum_1, truediv, sub, setitem, truediv_1, sub_1, setitem_1, truediv_2, sub_2, setitem_2, truediv_3, sub_3, setitem_3], Original ATen: [aten.zeros, aten.add, aten.div, aten.sub, aten.copy] # Source node to ATen node mapping: # cmn_specgram => full_default_1 # cur_sum_1 => sum_1 # setitem => copy # setitem_1 => copy_1 # setitem_2 => copy_2 # setitem_3 => copy_3 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # truediv => div # truediv_1 => div_1 # truediv_2 => div_2 # truediv_3 => div_3 # Graph fragment: # %full_default_1 : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([16, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %div), kwargs = {}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_1, %sub), kwargs = {}) # %select_scatter_default : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_1, %copy, 1, 0), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_4, %div_1), kwargs = {}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_6, %sub_1), kwargs = {}) # %select_scatter_default_1 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default, %copy_1, 1, 1), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_9, %div_2), kwargs = {}) # %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_11, %sub_2), kwargs = {}) # %select_scatter_default_2 : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %copy_2, 1, 2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_14, %div_3), kwargs = {}) # %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_16, %sub_3), kwargs = {}) # %select_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_2, %copy_3, 1, 3), kwargs = {}) triton_poi_fused_add_copy_div_sub_zeros_0 = async_compile.triton('triton_poi_fused_add_copy_div_sub_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_copy_div_sub_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_copy_div_sub_zeros_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp3 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tmp8 + tmp3 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp12 = tmp3 - tmp11 tmp13 = tl.full([1], 2, tl.int32) tmp14 = tmp0 == tmp13 tmp15 = tmp7 - tmp11 tmp16 = tl.full([1], 1, tl.int32) tmp17 = tmp0 == tmp16 tmp18 = tmp5 - tmp11 tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = tmp4 - tmp11 tmp22 = 0.0 tmp23 = tl.where(tmp20, tmp21, tmp22) tmp24 = tl.where(tmp17, tmp18, tmp23) tmp25 = tl.where(tmp14, tmp15, tmp24) tmp26 = tl.where(tmp2, tmp12, tmp25) tl.store(out_ptr0 + (x3), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cmn_specgram, cur_sum_1, truediv, sub, setitem, truediv_1, sub_1, setitem_1, truediv_2, sub_2, setitem_2, truediv_3, sub_3, setitem_3], Original ATen: [aten.zeros, aten.add, aten.div, aten.sub, aten.copy] stream0 = get_raw_stream(0) triton_poi_fused_add_copy_div_sub_zeros_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torchaudio.functional as F class SlidingWindowCmn(torch.nn.Module): """ Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) """ def __init__(self, cmn_window: 'int'=600, min_cmn_window: 'int'=100, center: 'bool'=False, norm_vars: 'bool'=False) ->None: super().__init__() self.cmn_window = cmn_window self.min_cmn_window = min_cmn_window self.center = center self.norm_vars = norm_vars def forward(self, waveform: 'Tensor') ->Tensor: """ Args: waveform (Tensor): Tensor of audio of dimension (..., time). Returns: Tensor: Tensor of audio of dimension (..., time). """ cmn_waveform = F.sliding_window_cmn(waveform, self.cmn_window, self .min_cmn_window, self.center, self.norm_vars) return cmn_waveform def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_copy_div_sub_zeros_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp3 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x1 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tmp8 + tmp3 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp12 = tmp3 - tmp11 tmp13 = tl.full([1], 2, tl.int32) tmp14 = tmp0 == tmp13 tmp15 = tmp7 - tmp11 tmp16 = tl.full([1], 1, tl.int32) tmp17 = tmp0 == tmp16 tmp18 = tmp5 - tmp11 tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = tmp4 - tmp11 tmp22 = 0.0 tmp23 = tl.where(tmp20, tmp21, tmp22) tmp24 = tl.where(tmp17, tmp18, tmp23) tmp25 = tl.where(tmp14, tmp15, tmp24) tmp26 = tl.where(tmp2, tmp12, tmp25) tl.store(out_ptr0 + x3, tmp26, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_copy_div_sub_zeros_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), class SlidingWindowCmnNew(torch.nn.Module): """ Apply sliding-window cepstral mean (and optionally variance) normalization per utterance. Args: cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600) min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100) center (bool, optional): If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false) norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false) """ def __init__(self, cmn_window: 'int'=600, min_cmn_window: 'int'=100, center: 'bool'=False, norm_vars: 'bool'=False) ->None: super().__init__() self.cmn_window = cmn_window self.min_cmn_window = min_cmn_window self.center = center self.norm_vars = norm_vars def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
SlidingWindowCmn
false
11,742
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
AmplitudeToDB
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ck/cckemfgwztf4v5dclkfu2iblvxz7oawl5rcbfdzs4e2llcohktt5.py # Topologically Sorted Source Nodes: [clamp, log10, x_db, x_db_1], Original ATen: [aten.clamp, aten.log10, aten.mul, aten.sub] # Source node to ATen node mapping: # clamp => clamp_min # log10 => log10 # x_db => mul # x_db_1 => sub # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 1e-10), kwargs = {}) # %log10 : [num_users=1] = call_function[target=torch.ops.aten.log10.default](args = (%clamp_min,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log10, 10.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.0), kwargs = {}) triton_poi_fused_clamp_log10_mul_sub_0 = async_compile.triton('triton_poi_fused_clamp_log10_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_log10_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_log10_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1e-10 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = libdevice.log10(tmp2) tmp4 = 10.0 tmp5 = tmp3 * tmp4 tmp6 = 0.0 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp, log10, x_db, x_db_1], Original ATen: [aten.clamp, aten.log10, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_clamp_log10_mul_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torchaudio.functional as F from typing import Optional class AmplitudeToDB(torch.nn.Module): """Turn a tensor from the power/amplitude scale to the decibel scale. This output depends on the maximum value in the input tensor, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: stype (str, optional): scale of input tensor ('power' or 'magnitude'). The power being the elementwise square of the magnitude. (Default: ``'power'``) top_db (float, optional): minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) """ __constants__ = ['multiplier', 'amin', 'ref_value', 'db_multiplier'] def __init__(self, stype: 'str'='power', top_db: 'Optional[float]'=None ) ->None: super(AmplitudeToDB, self).__init__() self.stype = stype if top_db is not None and top_db < 0: raise ValueError('top_db must be positive value') self.top_db = top_db self.multiplier = 10.0 if stype == 'power' else 20.0 self.amin = 1e-10 self.ref_value = 1.0 self.db_multiplier = math.log10(max(self.amin, self.ref_value)) def forward(self, x: 'Tensor') ->Tensor: """Numerically stable implementation from Librosa. https://librosa.github.io/librosa/_modules/librosa/core/spectrum.html Args: x (Tensor): Input tensor before being converted to decibel scale. Returns: Tensor: Output tensor in decibel scale. """ return F.amplitude_to_DB(x, self.multiplier, self.amin, self. db_multiplier, self.top_db) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_log10_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1e-10 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = libdevice.log10(tmp2) tmp4 = 10.0 tmp5 = tmp3 * tmp4 tmp6 = 0.0 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_log10_mul_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class AmplitudeToDBNew(torch.nn.Module): """Turn a tensor from the power/amplitude scale to the decibel scale. This output depends on the maximum value in the input tensor, and so may return different values for an audio clip split into snippets vs. a a full clip. Args: stype (str, optional): scale of input tensor ('power' or 'magnitude'). The power being the elementwise square of the magnitude. (Default: ``'power'``) top_db (float, optional): minimum negative cut-off in decibels. A reasonable number is 80. (Default: ``None``) """ __constants__ = ['multiplier', 'amin', 'ref_value', 'db_multiplier'] def __init__(self, stype: 'str'='power', top_db: 'Optional[float]'=None ) ->None: super(AmplitudeToDBNew, self).__init__() self.stype = stype if top_db is not None and top_db < 0: raise ValueError('top_db must be positive value') self.top_db = top_db self.multiplier = 10.0 if stype == 'power' else 20.0 self.amin = 1e-10 self.ref_value = 1.0 self.db_multiplier = math.log10(max(self.amin, self.ref_value)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
AmplitudeToDB
false
11,743
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/i2/ci2unyguiqkqbkmkuenp62eakmjtulk6jn2mbhuhsgwwutfsgvyz.py # Topologically Sorted Source Nodes: [mul, a, mul_1, b, c, add, add_1, d, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # a => sum_1 # add => add # add_1 => add_1 # b => sum_2 # c => sum_3 # d => div # mul => mul # mul_1 => mul_1 # sub => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = tmp8 + tmp11 tmp15 = 1e-06 tmp16 = tmp14 + tmp15 tmp17 = tmp13 / tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, a, mul_1, b, c, add, add_1, d, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): def __init__(self, eps=1e-06): super().__init__() assert isinstance(eps, float) self.eps = eps def forward(self, pred, target, mask=None): pred = pred.contiguous().view(pred.size()[0], -1) target = target.contiguous().view(target.size()[0], -1) if mask is not None: mask = mask.contiguous().view(mask.size()[0], -1) pred = pred * mask target = target * mask a = torch.sum(pred * target) b = torch.sum(pred) c = torch.sum(target) d = 2 * a / (b + c + self.eps) return 1 - d def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = tmp8 + tmp11 tmp15 = 1e-06 tmp16 = tmp14 + tmp15 tmp17 = tmp13 / tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): def __init__(self, eps=1e-06): super().__init__() assert isinstance(eps, float) self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NceBoy/mmocr
DiceLoss
false
11,744
[ "Apache-2.0" ]
0
3fb7a18d7eb44799e75c1991e5da2044b458d411
https://github.com/NceBoy/mmocr/tree/3fb7a18d7eb44799e75c1991e5da2044b458d411
MuLawDecoding
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/xs/cxspvk4ioiwtqm3hkzwl34vomr2i6gck6kjiao23ufljwmu7xw3g.py # Topologically Sorted Source Nodes: [mu, truediv, mul, x, sign, abs_1, log1p, mul_1, exp, sub_1, mul_2, x_1], Original ATen: [aten.lift_fresh, aten.div, aten.mul, aten.sub, aten.sign, aten.abs, aten.log1p, aten.exp] # Source node to ATen node mapping: # abs_1 => abs_1 # exp => exp # log1p => full_default_1 # mu => full_default # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sign => sign # sub_1 => sub_1 # truediv => div # x => sub # x_1 => div_1 # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 255.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %full_default), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 1.0), kwargs = {}) # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub,), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 5.545177459716797), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, %full_default_1), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%exp, 1.0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %sub_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, %full_default), kwargs = {}) triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0 = async_compile.triton('triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.00392156862745098 tmp2 = tmp0 * tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp7 < tmp6 tmp9 = tmp8.to(tl.int8) tmp10 = tmp6 < tmp7 tmp11 = tmp10.to(tl.int8) tmp12 = tmp9 - tmp11 tmp13 = tmp12.to(tmp6.dtype) tmp14 = tl_math.abs(tmp6) tmp15 = 5.545177459716797 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 - tmp5 tmp19 = tmp13 * tmp18 tmp20 = tmp19 * tmp1 tl.store(out_ptr0 + (x0), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, truediv, mul, x, sign, abs_1, log1p, mul_1, exp, sub_1, mul_2, x_1], Original ATen: [aten.lift_fresh, aten.div, aten.mul, aten.sub, aten.sign, aten.abs, aten.log1p, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torchaudio.functional as F class MuLawDecoding(torch.nn.Module): """Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: 'int'=256) ->None: super(MuLawDecoding, self).__init__() self.quantization_channels = quantization_channels def forward(self, x_mu: 'Tensor') ->Tensor: """ Args: x_mu (Tensor): A mu-law encoded signal which needs to be decoded. Returns: Tensor: The signal decoded. """ return F.mu_law_decoding(x_mu, self.quantization_channels) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.00392156862745098 tmp2 = tmp0 * tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp7 < tmp6 tmp9 = tmp8.to(tl.int8) tmp10 = tmp6 < tmp7 tmp11 = tmp10.to(tl.int8) tmp12 = tmp9 - tmp11 tmp13 = tmp12.to(tmp6.dtype) tmp14 = tl_math.abs(tmp6) tmp15 = 5.545177459716797 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 - tmp5 tmp19 = tmp13 * tmp18 tmp20 = tmp19 * tmp1 tl.store(out_ptr0 + x0, tmp20, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_div_exp_lift_fresh_log1p_mul_sign_sub_0[grid(256) ](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MuLawDecodingNew(torch.nn.Module): """Decode mu-law encoded signal. For more info see the `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_ This expects an input with values between 0 and quantization_channels - 1 and returns a signal scaled between -1 and 1. Args: quantization_channels (int, optional): Number of channels. (Default: ``256``) """ __constants__ = ['quantization_channels'] def __init__(self, quantization_channels: 'int'=256) ->None: super(MuLawDecodingNew, self).__init__() self.quantization_channels = quantization_channels def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Nayef211/audio
MuLawDecoding
false
11,745
[ "BSD-2-Clause" ]
0
241ab1e8284e589262f510ee9411baf2bc374ded
https://github.com/Nayef211/audio/tree/241ab1e8284e589262f510ee9411baf2bc374ded
AvgPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/r5/cr54iojraym6n7yh7cyg2qkslrdceq5no4rvsdr7qdqm4e7valap.py # Topologically Sorted Source Nodes: [sum_1, kernel_out], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # kernel_out => mul # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.0625), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 0.0625 tmp6 = tmp4 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, kernel_out], Original ATen: [aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch as th class AvgPool2d(Module): """ This class is the beginning of an exact python port of the torch.nn.AvgPool2d module. Because PySyft cannot hook into layers which are implemented in C++, our special functionalities (such as encrypted computation) do not work with torch.nn.AvgPool2d and so we must have python ports available for all layer types which we seek to use. Note that this module has been tested to ensure that it outputs the exact output values that the main module outputs in the same order that the main module does. However, there is often some rounding error of unknown origin, usually less than 1e-6 in magnitude. This module has not yet been tested with GPUs but should work out of the box. """ def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): """For information on the constructor arguments, please see PyTorch's documentation in torch.nn.AvgPool2d""" super().__init__() if not (padding == 0 and ceil_mode is False and count_include_pad is True and divisor_override is None): raise NotImplementedError('Not supported settings') if stride is None: stride = kernel_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode self.count_include_pad = count_include_pad self.divisor_override = divisor_override self._one_over_kernel_size = 1 / (self.kernel_size * self.kernel_size) def forward(self, data): batch_size, out_channels, rows, cols = data.shape kernel_results = [] for i in range(0, rows - self.kernel_size + 1, self.stride): for j in range(0, cols - self.kernel_size + 1, self.stride): kernel_out = data[:, :, i:i + self.kernel_size, j:j + self. kernel_size].sum((2, 3)) * self._one_over_kernel_size kernel_results.append(kernel_out.unsqueeze(2)) pred = th.cat(kernel_results, axis=2).view(batch_size, out_channels, int(rows / self.stride), int(cols / self.stride)) return pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 0.0625 tmp6 = tmp4 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mul_sum_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), class AvgPool2dNew(Module): """ This class is the beginning of an exact python port of the torch.nn.AvgPool2d module. Because PySyft cannot hook into layers which are implemented in C++, our special functionalities (such as encrypted computation) do not work with torch.nn.AvgPool2d and so we must have python ports available for all layer types which we seek to use. Note that this module has been tested to ensure that it outputs the exact output values that the main module outputs in the same order that the main module does. However, there is often some rounding error of unknown origin, usually less than 1e-6 in magnitude. This module has not yet been tested with GPUs but should work out of the box. """ def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): """For information on the constructor arguments, please see PyTorch's documentation in torch.nn.AvgPool2d""" super().__init__() if not (padding == 0 and ceil_mode is False and count_include_pad is True and divisor_override is None): raise NotImplementedError('Not supported settings') if stride is None: stride = kernel_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode self.count_include_pad = count_include_pad self.divisor_override = divisor_override self._one_over_kernel_size = 1 / (self.kernel_size * self.kernel_size) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NiWaRe/PySyft
AvgPool2d
false
11,746
[ "Apache-2.0" ]
0
b5abe66ea949d60be14a08d2e4e32e9587c7bf5c
https://github.com/NiWaRe/PySyft/tree/b5abe66ea949d60be14a08d2e4e32e9587c7bf5c
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/t2/ct2qqxtte7wnwcfyzh6krwgnhvohss2pmkswvmj2qqpruzkpcbwk.py # Topologically Sorted Source Nodes: [dot_score, eq, dot_score_1, attn_score], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_score => amax, div_1, exp, sub, sum_1 # dot_score => div # dot_score_1 => full_default, where # eq => eq # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_10, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_div_eq_masked_fill_1 = async_compile.triton('triton_per_fused__softmax_div_eq_masked_fill_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_div_eq_masked_fill_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_div_eq_masked_fill_1(in_ptr0, in_ptr1, out_ptr0, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = -1000000000.0 tmp7 = tl.where(tmp2, tmp6, tmp5) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, float("-inf")) tmp11 = triton_helpers.max2(tmp10, 1)[:, None] tmp12 = tmp7 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp13 / tmp17 tl.store(out_ptr0 + (r1 + (16*x0)), tmp2, xmask) tl.store(out_ptr3 + (r1 + (16*x0)), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4, 16, 16), (1024, 256, 16, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 16, grid=grid(16, 16), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_score, eq, dot_score_1, attn_score], Original ATen: [aten.div, aten.eq, aten.masked_fill, aten._softmax] triton_per_fused__softmax_div_eq_masked_fill_1.run(primals_10, buf5, buf6, buf9, 256, 16, grid=grid(256), stream=stream0) del buf5 del primals_10 buf10 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [scaled_attention], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf10, 16, 16, grid=grid(16, 16), stream=stream0) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [scaled_attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf10, (16, 16, 1), (16, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf11, buf12, 64, 4, grid=grid(64, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (64, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_12 return (reinterpret_tensor(buf13, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), buf6, buf9, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf10, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 16, 16), (1024, 256, 16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, q, k, v, mask): batch_size = q.shape[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.reshape_for_multi_heads_attention(q) k = self.reshape_for_multi_heads_attention(k) v = self.reshape_for_multi_heads_attention(v) scaled_attention, _attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = scaled_attention.transpose(2, 1).contiguous().view( batch_size, -1, self.d_model) return self.wo(scaled_attention) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 16, 16])] def get_init_inputs(): return [[], {'d_model': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask) @triton.jit def triton_per_fused__softmax_div_eq_masked_fill_1(in_ptr0, in_ptr1, out_ptr0, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = -1000000000.0 tmp7 = tl.where(tmp2, tmp6, tmp5) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, float('-inf')) tmp11 = triton_helpers.max2(tmp10, 1)[:, None] tmp12 = tmp7 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tmp18 = tmp13 / tmp17 tl.store(out_ptr0 + (r1 + 16 * x0), tmp2, xmask) tl.store(out_ptr3 + (r1 + 16 * x0), tmp18, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4, 16, 16), (1024, 256, 16, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf3, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf4, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .bool) buf9 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_per_fused__softmax_div_eq_masked_fill_1[grid(256)](primals_10, buf5, buf6, buf9, 256, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf5 del primals_10 buf10 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf10, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf10, (16, 16, 1), (16, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(64, 4)](buf11, buf12, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf13 = reinterpret_tensor(buf11, (64, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_12 return reinterpret_tensor(buf13, (4, 16, 4), (64, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0 ), buf6, buf9, reinterpret_tensor(buf12, (64, 4), (4, 1), 0 ), primals_11, reinterpret_tensor(buf10, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0) def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttentionNew(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttentionNew, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, input_0, input_1, input_2, input_3): primals_2 = self.wq.weight primals_3 = self.wq.bias primals_4 = self.wk.weight primals_5 = self.wk.bias primals_7 = self.wv.weight primals_8 = self.wv.bias primals_11 = self.wo.weight primals_12 = self.wo.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 primals_10 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
NathanYanJing/TransformerReplication
MultiHeadAttention
false
11,748
[ "MIT" ]
0
b20f987dcc507724971f843c2d214c9c76bd8e34
https://github.com/NathanYanJing/TransformerReplication/tree/b20f987dcc507724971f843c2d214c9c76bd8e34
EncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bs/cbsluabtq7ll426nybkislhh3cajm6f7ggrxam362hohynwnvtk6.py # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] # Source node to ATen node mapping: # eq => eq # Graph fragment: # %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_8, 0), kwargs = {}) triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/36/c36zsmb2dr2xwh3h6rcgpb7jdbbcmy6kovknslvyz4kid7i57lf5.py # Topologically Sorted Source Nodes: [dot_score, dot_score_1, attn_score], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_score => amax, exp, sub, sum_1 # dot_score => div # dot_score_1 => full_default, where # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + (x2), tmp20, xmask) tl.store(out_ptr1 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/wk/cwkdg3dnhowxdap7def2juvpsbrycmveqwliujtpqakkhtthzuod.py # Topologically Sorted Source Nodes: [dot_score, dot_score_1, attn_score], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_score => amax, div_1, exp, sub # dot_score => div # dot_score_1 => full_default, where # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x4), xmask) tmp6 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # ffn_input => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/iz/cizh7p23zwsiqbrt6dvrlvjzpyujwvyyaolptfk5xtby6foymiaz.py # Topologically Sorted Source Nodes: [add, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # ffn_input => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/he/chevf4d6tadiz3y2a2abr2lj2bvo3wyfykoivwj2s4xedp3vdjuf.py # Topologically Sorted Source Nodes: [add_1], Original ATen: [aten.add] # Source node to ATen node mapping: # add_1 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_21), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hn/chnyp4bqchi6cc3qkpikodtjzt7sfs4gz3r2kunqaesb7ahrywso.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/al/cal3txxjlyumb2wxf6pzsp7g5yvv5ygiluv6ygjjzldvb2woph4t.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_17), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_18), kwargs = {}) triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] triton_poi_fused_eq_1.run(primals_8, buf6, 64, grid=grid(64), stream=stream0) del primals_8 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [dot_score, dot_score_1, attn_score], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [dot_score, dot_score_1, attn_score], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [scaled_attention], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [scaled_attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0) del primals_12 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf18, primals_14, buf24, 64, grid=grid(64), stream=stream0) del primals_14 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [add_1], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf20, buf16, primals_16, 64, grid=grid(64), stream=stream0) del primals_16 buf21 = buf15; del buf15 # reuse buf22 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf20, buf21, buf22, primals_17, primals_18, buf23, 64, grid=grid(64), stream=stream0) del buf21 del buf22 del primals_18 return (buf23, primals_1, primals_11, primals_17, buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(buf18, (16, 4), (4, 1), 0), buf20, primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, q, k, v, mask): batch_size = q.shape[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.reshape_for_multi_heads_attention(q) k = self.reshape_for_multi_heads_attention(k) v = self.reshape_for_multi_heads_attention(v) scaled_attention, _attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = scaled_attention.transpose(2, 1).contiguous().view( batch_size, -1, self.d_model) return self.wo(scaled_attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) def forward(self, x): return self.w_2(F.relu(self.w_1(x))) class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super(EncoderLayer, self).__init__() self.multi_head_attention = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionwiseFeedForward(d_model, d_ff) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) def forward(self, x, mask): attention_output = self.dropout1(self.multi_head_attention(x, x, x, mask)) ffn_input = self.layernorm1(x + attention_output) ffn_output = self.dropout2(self.feed_forward(ffn_input)) output = self.layernorm2(ffn_input + ffn_output) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'num_heads': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + x2, tmp20, xmask) tl.store(out_ptr1 + x2, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = xindex // 4 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_out_ptr0 + x4, xmask) tmp6 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + x4, tmp10, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_eq_1[grid(64)](primals_8, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_8 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6, buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf10, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_1, buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0) del buf17 buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf18, primals_14, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_14 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0) del buf19 triton_poi_fused_add_8[grid(64)](buf20, buf16, primals_16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_16 buf21 = buf15 del buf15 buf22 = buf14 del buf14 triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_10[grid(64)](buf20, buf21, buf22, primals_17, primals_18, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 del buf22 del primals_18 return (buf23, primals_1, primals_11, primals_17, buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor( buf18, (16, 4), (4, 1), 0), buf20, primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)) def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, q, k, v, mask): batch_size = q.shape[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.reshape_for_multi_heads_attention(q) k = self.reshape_for_multi_heads_attention(k) v = self.reshape_for_multi_heads_attention(v) scaled_attention, _attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = scaled_attention.transpose(2, 1).contiguous().view( batch_size, -1, self.d_model) return self.wo(scaled_attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) def forward(self, x): return self.w_2(F.relu(self.w_1(x))) class EncoderLayerNew(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super(EncoderLayerNew, self).__init__() self.multi_head_attention = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionwiseFeedForward(d_model, d_ff) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) def forward(self, input_0, input_1): primals_2 = self.multi_head_attention.wq.weight primals_3 = self.multi_head_attention.wq.bias primals_4 = self.multi_head_attention.wk.weight primals_5 = self.multi_head_attention.wk.bias primals_6 = self.multi_head_attention.wv.weight primals_7 = self.multi_head_attention.wv.bias primals_9 = self.multi_head_attention.wo.weight primals_10 = self.multi_head_attention.wo.bias primals_13 = self.feed_forward.w_1.weight primals_11 = self.feed_forward.w_1.bias primals_15 = self.feed_forward.w_2.weight primals_12 = self.feed_forward.w_2.bias primals_14 = self.layernorm1.weight primals_16 = self.layernorm1.bias primals_17 = self.layernorm2.weight primals_18 = self.layernorm2.bias primals_1 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return output[0]
NathanYanJing/TransformerReplication
EncoderLayer
false
11,749
[ "MIT" ]
0
b20f987dcc507724971f843c2d214c9c76bd8e34
https://github.com/NathanYanJing/TransformerReplication/tree/b20f987dcc507724971f843c2d214c9c76bd8e34
CustomGruCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3o/c3o3rsqvwtwazhhofhyvvpsx3gxpac2vdmskpikbppasjhmmc5gs.py # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # hy => add_3 # inputgate => sigmoid_1 # mul => mul # mul_1 => mul_1 # newgate => tanh # resetgate => sigmoid # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_7), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %view_11), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %mul), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_6, %tanh), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %mul_1), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sub_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sub_tanh_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), xmask) tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr6 + (x2), xmask) tmp17 = tl.load(in_ptr7 + (x2), xmask) tmp21 = tl.load(in_ptr8 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.sigmoid(tmp14) tmp18 = tmp7 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp22 = tmp21 - tmp20 tmp23 = tmp15 * tmp22 tmp24 = tmp20 + tmp23 tl.store(in_out_ptr0 + (x2), tmp7, xmask) tl.store(in_out_ptr1 + (x2), tmp15, xmask) tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [i_n], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_11 del primals_12 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_n], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_13 del primals_14 buf6 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf7 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0.run(buf6, buf7, primals_2, buf1, primals_5, primals_8, buf3, primals_10, buf4, buf5, primals_6, buf8, 256, grid=grid(256), stream=stream0) del buf1 del buf3 del primals_10 del primals_2 del primals_5 del primals_8 return (buf8, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, buf5, buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class CustomGruCell(nn.Module): """ A forward only GRU cell. Input should be: (sequence length x batch size x input_size). The output is the output of the final forward call. It's not clear if it would be possible to use the output from each cell in a Plan because of the assumptions of 2D tensors in backprop. """ def __init__(self, input_size, hidden_size, bias=True): super(CustomGruCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc_ir = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hr = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_iz = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hz = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_in = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hn = nn.Linear(hidden_size, hidden_size, bias=bias) self.init_parameters() def init_parameters(self): std = 1.0 / np.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, x, h): i_r = self.fc_ir(x) h_r = self.fc_hr(h) i_z = self.fc_iz(x) h_z = self.fc_hz(h) i_n = self.fc_in(x) h_n = self.fc_hn(h) resetgate = (i_r + h_r).sigmoid() inputgate = (i_z + h_z).sigmoid() newgate = (i_n + resetgate * h_n).tanh() hy = newgate + inputgate * (h - newgate) return hy def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, xmask) tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr6 + x2, xmask) tmp17 = tl.load(in_ptr7 + x2, xmask) tmp21 = tl.load(in_ptr8 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.sigmoid(tmp14) tmp18 = tmp7 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp22 = tmp21 - tmp20 tmp23 = tmp15 * tmp22 tmp24 = tmp20 + tmp23 tl.store(in_out_ptr0 + x2, tmp7, xmask) tl.store(in_out_ptr1 + x2, tmp15, xmask) tl.store(out_ptr0 + x2, tmp24, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_11 del primals_12 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_14, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_13 del primals_14 buf6 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf7 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0[grid(256)](buf6, buf7, primals_2, buf1, primals_5, primals_8, buf3, primals_10, buf4, buf5, primals_6, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf3 del primals_10 del primals_2 del primals_5 del primals_8 return buf8, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf4, buf5, buf6, buf7 class CustomGruCellNew(nn.Module): """ A forward only GRU cell. Input should be: (sequence length x batch size x input_size). The output is the output of the final forward call. It's not clear if it would be possible to use the output from each cell in a Plan because of the assumptions of 2D tensors in backprop. """ def __init__(self, input_size, hidden_size, bias=True): super(CustomGruCellNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc_ir = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hr = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_iz = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hz = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_in = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hn = nn.Linear(hidden_size, hidden_size, bias=bias) self.init_parameters() def init_parameters(self): std = 1.0 / np.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, input_0, input_1): primals_1 = self.fc_ir.weight primals_2 = self.fc_ir.bias primals_4 = self.fc_hr.weight primals_5 = self.fc_hr.bias primals_7 = self.fc_iz.weight primals_8 = self.fc_iz.bias primals_9 = self.fc_hz.weight primals_10 = self.fc_hz.bias primals_11 = self.fc_in.weight primals_12 = self.fc_in.bias primals_13 = self.fc_hn.weight primals_14 = self.fc_hn.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
NiWaRe/PySyft
CustomGruCell
false
11,750
[ "Apache-2.0" ]
0
b5abe66ea949d60be14a08d2e4e32e9587c7bf5c
https://github.com/NiWaRe/PySyft/tree/b5abe66ea949d60be14a08d2e4e32e9587c7bf5c
ToLongTensor
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ml/cmltiy5hrv2wqhdqt3fezcfhgimkd7dolxjtsc7omtdmbpeu3exe.py # Topologically Sorted Source Nodes: [tensor], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # tensor => convert_element_type # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%arg0_1, torch.float32), kwargs = {}) triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from typing import List import torch.nn as nn class ToLongTensor(nn.Module): """Convert a list of integers to long tensor """ def __init__(self): super(ToLongTensor, self).__init__() def forward(self, tokens: 'List[List[int]]') ->Tensor: return torch.tensor(tokens) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ToLongTensorNew(nn.Module): """Convert a list of integers to long tensor """ def __init__(self): super(ToLongTensorNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NivekT/text
ToLongTensor
false
11,751
[ "BSD-3-Clause" ]
0
4908d3c88f92296a4c23be2f064ccde13cce50ce
https://github.com/NivekT/text/tree/4908d3c88f92296a4c23be2f064ccde13cce50ce
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ui/cuiys54fwy7kj6rakooxnw2cramyzvvoflalcmo3znlrghdpojz6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_per_fused_native_layer_norm_0 = async_compile.triton('triton_per_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 16 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp21 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp0 - tmp8 tmp20 = tmp19 * tmp18 tmp22 = tmp20 * tmp21 tmp24 = tmp22 + tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp18, None) tl.store(out_ptr1 + (r1 + (512*x0)), tmp24, None) tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/im/cim5mrhp6wzu2dkrcvxy2vwiwkvl6de23pqglj2abdrtawb4hqsp.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 4 x2 = (xindex // 256) % 8 x3 = (xindex // 2048) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x2) + (512*x1) + (2048*x3)), None) tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/yy/cyyouaje5kvrbmgico277wd746tpswjy2i3nwfm2zrdgykm2j4vi.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (2048*y1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/yt/cyt2bgw52ypg6tvmczv3ndhchpmt3eacmiaj2xlkz6pnnetllow4.py # Topologically Sorted Source Nodes: [weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # weights => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.125), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.125 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/w5/cw52qfwb6v5q2e4rl6q3sbwtpwo3fen4f3mq3dor5msb6pgcze3n.py # Topologically Sorted Source Nodes: [weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ni/cnibw47dn6izpjiuoiu6znvnxtrgtzgeoie4kgjqoccvqaq6ezix.py # Topologically Sorted Source Nodes: [attn_out_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn_out_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 8 x2 = (xindex // 512) % 4 x3 = (xindex // 2048) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x2) + (256*x1) + (2048*x3)), None) tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mf/cmfa55a7tdbwjs4fvivxlm6pyvn3mq2snhbeeux6gvhp6hnfad3u.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => add_2 # x_2 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [2]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_per_fused_add_native_layer_norm_6 = async_compile.triton('triton_per_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_native_layer_norm_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_native_layer_norm_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 16 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None) tmp1 = tl.load(in_ptr1 + (r1 + (512*x0)), None) tmp23 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr3 + (r1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp24 = tmp22 * tmp23 tmp26 = tmp24 + tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, None) tl.store(out_ptr1 + (r1 + (512*x0)), tmp26, None) tl.store(out_ptr0 + (x0), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qi/cqi5xykhs5mp7qcooftememxup556a6pwpodas7azca4huw4zp3d.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_4 => add_5, erf, mul_5, mul_6, mul_7 # Graph fragment: # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_19, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_6,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %add_5), kwargs = {}) triton_poi_fused_gelu_7 = async_compile.triton('triton_poi_fused_gelu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/eg/cegcjwxsyr5o4cbnmujlck5c4ehxtoaqta2rcoql5mirvasqmgki.py # Topologically Sorted Source Nodes: [x_1, x_8], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add_2 # x_8 => add_6 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_21), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x2), None) tmp3 = tl.load(in_out_ptr0 + (x2), None) tmp4 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 512), (2048, 512, 1)) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512, 512), (512, 1)) assert_size_stride(primals_6, (512, 512), (512, 1)) assert_size_stride(primals_7, (512, 512), (512, 1)) assert_size_stride(primals_8, (512, ), (1, )) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (256, 512), (512, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (512, 256), (256, 1)) assert_size_stride(primals_13, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 512), (2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_per_fused_native_layer_norm_0.run(buf3, primals_1, primals_2, primals_3, buf0, buf4, 16, 512, grid=grid(16), stream=stream0) del primals_2 del primals_3 buf5 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5) buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_5, (512, 512), (1, 512), 0), out=buf6) buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf7) buf8 = empty_strided_cuda((4, 8, 4, 64), (2048, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf5, buf8, 8192, grid=grid(8192), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 8, 64, 4), (2048, 256, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf6, buf9, 2048, 4, grid=grid(2048, 4), stream=stream0) buf10 = empty_strided_cuda((32, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (32, 4, 64), (256, 64, 1), 0), reinterpret_tensor(buf9, (32, 64, 4), (256, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf10, buf11, 512, grid=grid(512), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf11, buf12, 512, grid=grid(512), stream=stream0) del buf11 buf13 = reinterpret_tensor(buf6, (4, 8, 4, 64), (2048, 256, 64, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf7, buf13, 8192, grid=grid(8192), stream=stream0) buf14 = reinterpret_tensor(buf7, (32, 4, 64), (256, 64, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf12, (32, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf13, (32, 4, 64), (256, 64, 1), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 8, 64), (2048, 512, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_out_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf14, buf15, 8192, grid=grid(8192), stream=stream0) buf16 = reinterpret_tensor(buf14, (16, 512), (512, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [attn_out_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf15, (16, 512), (512, 1), 0), reinterpret_tensor(primals_7, (512, 512), (1, 512), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf20 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 1), 0); del buf18 # reuse buf21 = empty_strided_cuda((4, 4, 512), (2048, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.add, aten.native_layer_norm] triton_per_fused_add_native_layer_norm_6.run(buf20, primals_1, buf16, primals_8, primals_9, buf17, buf21, 16, 512, grid=grid(16), stream=stream0) del primals_9 buf22 = empty_strided_cuda((16, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf21, (16, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), alpha=1, beta=1, out=buf22) del primals_11 buf23 = empty_strided_cuda((4, 4, 256), (1024, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.gelu] triton_poi_fused_gelu_7.run(buf22, buf23, 4096, grid=grid(4096), stream=stream0) buf24 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf23, (16, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 512), (1, 256), 0), out=buf24) buf25 = reinterpret_tensor(buf24, (4, 4, 512), (2048, 512, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [x_1, x_8], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf25, primals_1, buf16, primals_13, 8192, grid=grid(8192), stream=stream0) del primals_13 return (buf25, primals_1, primals_8, buf0, buf3, reinterpret_tensor(buf4, (16, 512), (512, 1), 0), buf12, reinterpret_tensor(buf15, (16, 512), (512, 1), 0), buf16, buf17, buf20, reinterpret_tensor(buf21, (16, 512), (512, 1), 0), buf22, reinterpret_tensor(buf23, (16, 256), (256, 1), 0), primals_12, primals_10, primals_7, reinterpret_tensor(buf13, (32, 64, 4), (256, 1, 64), 0), reinterpret_tensor(buf8, (32, 64, 4), (256, 1, 64), 0), reinterpret_tensor(buf9, (32, 4, 64), (256, 1, 4), 0), primals_6, primals_5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 512), (2048, 512, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((512, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MultiHeadAttention(nn.Module): """Multi-Head Attention module.""" def __init__(self, n_head=8, d_model=512, d_k=64, d_v=64, dropout=0.1, qkv_bias=False, mask_value=0): super().__init__() self.mask_value = mask_value self.n_head = n_head self.d_k = d_k self.d_v = d_v self.scale = d_k ** -0.5 self.dim_k = n_head * d_k self.dim_v = n_head * d_v self.linear_q = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_k = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_v = nn.Linear(self.dim_v, self.dim_v, bias=qkv_bias) self.fc = nn.Linear(self.dim_v, d_model, bias=qkv_bias) self.attn_drop = nn.Dropout(dropout) self.proj_drop = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): batch_size, len_q, _ = q.size() _, len_k, _ = k.size() q = self.linear_q(q).view(batch_size, len_q, self.n_head, self.d_k) k = self.linear_k(k).view(batch_size, len_k, self.n_head, self.d_k) v = self.linear_v(v).view(batch_size, len_k, self.n_head, self.d_v) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 1, 3) logits = torch.matmul(q, k) * self.scale if mask is not None: if mask.dim() == 3: mask = mask.unsqueeze(1) elif mask.dim() == 2: mask = mask.unsqueeze(1).unsqueeze(1) logits = logits.masked_fill(mask == self.mask_value, float('-inf')) weights = logits.softmax(dim=-1) weights = self.attn_drop(weights) attn_out = torch.matmul(weights, v).transpose(1, 2) attn_out = attn_out.reshape(batch_size, len_q, self.dim_v) attn_out = self.fc(attn_out) attn_out = self.proj_drop(attn_out) return attn_out class PositionwiseFeedForward(nn.Module): """A two-feed-forward-layer module.""" def __init__(self, d_in, d_hid, dropout=0.1, act_layer=nn.GELU): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.act = act_layer() self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.w_1(x) x = self.act(x) x = self.dropout(x) x = self.w_2(x) x = self.dropout(x) return x class TransformerEncoderLayer(nn.Module): """""" def __init__(self, d_model=512, d_inner=256, n_head=8, d_k=64, d_v=64, dropout=0.1, qkv_bias=False, mask_value=0, act_layer=nn.GELU): super().__init__() self.norm1 = nn.LayerNorm(d_model) self.attn = MultiHeadAttention(n_head, d_model, d_k, d_v, qkv_bias= qkv_bias, dropout=dropout, mask_value=mask_value) self.norm2 = nn.LayerNorm(d_model) self.mlp = PositionwiseFeedForward(d_model, d_inner, dropout= dropout, act_layer=act_layer) def forward(self, x, mask=None): residual = x x = self.norm1(x) x = residual + self.attn(x, x, x, mask) residual = x x = self.norm2(x) x = residual + self.mlp(x) return x def get_inputs(): return [torch.rand([4, 4, 512])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp21 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 512, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 512.0 tmp15 = tmp13 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tmp19 = tmp0 - tmp8 tmp20 = tmp19 * tmp18 tmp22 = tmp20 * tmp21 tmp24 = tmp22 + tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp18, None) tl.store(out_ptr1 + (r1 + 512 * x0), tmp24, None) tl.store(out_ptr0 + x0, tmp8, None) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 4 x2 = xindex // 256 % 8 x3 = xindex // 2048 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2 + 512 * x1 + 2048 * x3), None) tl.store(out_ptr0 + x4, tmp0, None) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 2048 * y1), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.125 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 8 x2 = xindex // 512 % 4 x3 = xindex // 2048 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2 + 256 * x1 + 2048 * x3), None) tl.store(out_ptr0 + x4, tmp0, None) @triton.jit def triton_per_fused_add_native_layer_norm_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None) tmp1 = tl.load(in_ptr1 + (r1 + 512 * x0), None) tmp23 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr3 + r1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp24 = tmp22 * tmp23 tmp26 = tmp24 + tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, None) tl.store(out_ptr1 + (r1 + 512 * x0), tmp26, None) tl.store(out_ptr0 + x0, tmp10, None) @triton.jit def triton_poi_fused_gelu_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, None) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x2, None) tmp3 = tl.load(in_out_ptr0 + x2, None) tmp4 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 512), (2048, 512, 1)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (512, 512), (512, 1)) assert_size_stride(primals_5, (512, 512), (512, 1)) assert_size_stride(primals_6, (512, 512), (512, 1)) assert_size_stride(primals_7, (512, 512), (512, 1)) assert_size_stride(primals_8, (512,), (1,)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (256, 512), (512, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (512, 256), (256, 1)) assert_size_stride(primals_13, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 512), (2048, 512, 1), torch.float32) get_raw_stream(0) triton_per_fused_native_layer_norm_0[grid(16)](buf3, primals_1, primals_2, primals_3, buf0, buf4, 16, 512, num_warps=4, num_stages=1) del primals_2 del primals_3 buf5 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5) buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_5, (512, 512), (1, 512), 0), out=buf6) buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf7) buf8 = empty_strided_cuda((4, 8, 4, 64), (2048, 256, 64, 1), torch. float32) triton_poi_fused_clone_1[grid(8192)](buf5, buf8, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 8, 64, 4), (2048, 256, 4, 1), 0) del buf5 triton_poi_fused_clone_2[grid(2048, 4)](buf6, buf9, 2048, 4, XBLOCK =4, YBLOCK=256, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((32, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (32, 4, 64), (256, 64, 1), 0), reinterpret_tensor(buf9, (32, 64, 4), (256, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32 ) triton_poi_fused__softmax_3[grid(512)](buf10, buf11, 512, XBLOCK= 256, num_warps=4, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 8, 4, 4), (128, 16, 4, 1), 0) del buf10 triton_poi_fused__softmax_4[grid(512)](buf11, buf12, 512, XBLOCK= 128, num_warps=4, num_stages=1) del buf11 buf13 = reinterpret_tensor(buf6, (4, 8, 4, 64), (2048, 256, 64, 1), 0) del buf6 triton_poi_fused_clone_1[grid(8192)](buf7, buf13, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf14 = reinterpret_tensor(buf7, (32, 4, 64), (256, 64, 1), 0) del buf7 extern_kernels.bmm(reinterpret_tensor(buf12, (32, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf13, (32, 4, 64), (256, 64, 1), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 8, 64), (2048, 512, 64, 1), torch .float32) triton_poi_fused_clone_5[grid(8192)](buf14, buf15, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf16 = reinterpret_tensor(buf14, (16, 512), (512, 1), 0) del buf14 extern_kernels.mm(reinterpret_tensor(buf15, (16, 512), (512, 1), 0), reinterpret_tensor(primals_7, (512, 512), (1, 512), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf20 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 1), 0) del buf18 buf21 = empty_strided_cuda((4, 4, 512), (2048, 512, 1), torch.float32) triton_per_fused_add_native_layer_norm_6[grid(16)](buf20, primals_1, buf16, primals_8, primals_9, buf17, buf21, 16, 512, num_warps=4, num_stages=1) del primals_9 buf22 = empty_strided_cuda((16, 256), (256, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf21, (16, 512 ), (512, 1), 0), reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), alpha=1, beta=1, out=buf22) del primals_11 buf23 = empty_strided_cuda((4, 4, 256), (1024, 256, 1), torch.float32) triton_poi_fused_gelu_7[grid(4096)](buf22, buf23, 4096, XBLOCK=256, num_warps=4, num_stages=1) buf24 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf23, (16, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 512), (1, 256), 0), out=buf24) buf25 = reinterpret_tensor(buf24, (4, 4, 512), (2048, 512, 1), 0) del buf24 triton_poi_fused_add_8[grid(8192)](buf25, primals_1, buf16, primals_13, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 return buf25, primals_1, primals_8, buf0, buf3, reinterpret_tensor(buf4, (16, 512), (512, 1), 0), buf12, reinterpret_tensor(buf15, (16, 512), (512, 1), 0), buf16, buf17, buf20, reinterpret_tensor(buf21, (16, 512), (512, 1), 0), buf22, reinterpret_tensor(buf23, (16, 256), ( 256, 1), 0), primals_12, primals_10, primals_7, reinterpret_tensor( buf13, (32, 64, 4), (256, 1, 64), 0), reinterpret_tensor(buf8, (32, 64, 4), (256, 1, 64), 0), reinterpret_tensor(buf9, (32, 4, 64), ( 256, 1, 4), 0), primals_6, primals_5, primals_4 class MultiHeadAttention(nn.Module): """Multi-Head Attention module.""" def __init__(self, n_head=8, d_model=512, d_k=64, d_v=64, dropout=0.1, qkv_bias=False, mask_value=0): super().__init__() self.mask_value = mask_value self.n_head = n_head self.d_k = d_k self.d_v = d_v self.scale = d_k ** -0.5 self.dim_k = n_head * d_k self.dim_v = n_head * d_v self.linear_q = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_k = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) self.linear_v = nn.Linear(self.dim_v, self.dim_v, bias=qkv_bias) self.fc = nn.Linear(self.dim_v, d_model, bias=qkv_bias) self.attn_drop = nn.Dropout(dropout) self.proj_drop = nn.Dropout(dropout) def forward(self, q, k, v, mask=None): batch_size, len_q, _ = q.size() _, len_k, _ = k.size() q = self.linear_q(q).view(batch_size, len_q, self.n_head, self.d_k) k = self.linear_k(k).view(batch_size, len_k, self.n_head, self.d_k) v = self.linear_v(v).view(batch_size, len_k, self.n_head, self.d_v) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 3, 1) v = v.permute(0, 2, 1, 3) logits = torch.matmul(q, k) * self.scale if mask is not None: if mask.dim() == 3: mask = mask.unsqueeze(1) elif mask.dim() == 2: mask = mask.unsqueeze(1).unsqueeze(1) logits = logits.masked_fill(mask == self.mask_value, float('-inf')) weights = logits.softmax(dim=-1) weights = self.attn_drop(weights) attn_out = torch.matmul(weights, v).transpose(1, 2) attn_out = attn_out.reshape(batch_size, len_q, self.dim_v) attn_out = self.fc(attn_out) attn_out = self.proj_drop(attn_out) return attn_out class PositionwiseFeedForward(nn.Module): """A two-feed-forward-layer module.""" def __init__(self, d_in, d_hid, dropout=0.1, act_layer=nn.GELU): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.act = act_layer() self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.w_1(x) x = self.act(x) x = self.dropout(x) x = self.w_2(x) x = self.dropout(x) return x class TransformerEncoderLayerNew(nn.Module): """""" def __init__(self, d_model=512, d_inner=256, n_head=8, d_k=64, d_v=64, dropout=0.1, qkv_bias=False, mask_value=0, act_layer=nn.GELU): super().__init__() self.norm1 = nn.LayerNorm(d_model) self.attn = MultiHeadAttention(n_head, d_model, d_k, d_v, qkv_bias= qkv_bias, dropout=dropout, mask_value=mask_value) self.norm2 = nn.LayerNorm(d_model) self.mlp = PositionwiseFeedForward(d_model, d_inner, dropout= dropout, act_layer=act_layer) def forward(self, input_0): primals_2 = self.norm1.weight primals_3 = self.norm1.bias primals_4 = self.attn.linear_q.weight primals_5 = self.attn.linear_k.weight primals_6 = self.attn.linear_v.weight primals_7 = self.attn.fc.weight primals_8 = self.norm2.weight primals_9 = self.norm2.bias primals_10 = self.mlp.w_1.weight primals_11 = self.mlp.w_1.bias primals_12 = self.mlp.w_2.weight primals_13 = self.mlp.w_2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
NceBoy/mmocr
TransformerEncoderLayer
false
11,752
[ "Apache-2.0" ]
0
3fb7a18d7eb44799e75c1991e5da2044b458d411
https://github.com/NceBoy/mmocr/tree/3fb7a18d7eb44799e75c1991e5da2044b458d411
Normalize
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/df/cdfbat66p3gt7uoi4srefv7ztcc4t6f2xuhx7ctz3fd75354wdsr.py # Topologically Sorted Source Nodes: [mu, var, add, sigma, sub, mul, add_1, truediv, add_2], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # mu => mean # mul => mul # sigma => sqrt # sub => sub # truediv => div # var => var # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 1, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = 1e-06 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp28 + tmp26 tmp30 = tmp12 / tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + (x2), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mu, var, add, sigma, sub, mul, add_1, truediv, add_2], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0.run(buf1, primals_2, primals_1, primals_3, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Normalize(nn.Module): def __init__(self, features, epsilon=1e-06): super(Normalize, self).__init__() self.gain = nn.Parameter(torch.ones(features)) self.bias = nn.Parameter(torch.zeros(features)) self.epsilon = epsilon def forward(self, x, dim=-1): mu = x.mean(dim, keepdim=True) sigma = torch.sqrt(x.var(dim, keepdim=True) + self.epsilon) gain = self.gain bias = self.bias if dim != -1: shape = [1] * len(mu.size()) shape[dim] = self.gain.size()[0] gain = gain.view(shape) bias = bias.view(shape) return gain * (x - mu) / (sigma + self.epsilon) + bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = 1e-06 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp28 + tmp26 tmp30 = tmp12 / tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + x2, tmp32, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0[grid(256)](buf1, primals_2, primals_1, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf1, primals_1 class NormalizeNew(nn.Module): def __init__(self, features, epsilon=1e-06): super(NormalizeNew, self).__init__() self.gain = nn.Parameter(torch.ones(features)) self.bias = nn.Parameter(torch.zeros(features)) self.epsilon = epsilon def forward(self, input_0): primals_2 = self.gain primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
NingNing-C/neurips19-graph-protein-design
Normalize
false
11,753
[ "MIT" ]
0
9daba22083c04ad2528aed47f4b5dc97e2951132
https://github.com/NingNing-C/neurips19-graph-protein-design/tree/9daba22083c04ad2528aed47f4b5dc97e2951132
DQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/2z/c2zmcl35l5prktstr76tht2sddh7nj6zotdnhodvim4sz7mxut2e.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rn/crnqz7p4p2tzqanql5i55teqzlggwe7o5pppywh36vjdillkofmn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (30, 4), (4, 1)) assert_size_stride(primals_2, (30, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (10, 30), (30, 1)) assert_size_stride(primals_5, (10, ), (1, )) assert_size_stride(primals_6, (4, 10), (10, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 30), (30, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 30), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 30), (480, 120, 30, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 1920, grid=grid(1920), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(primals_4, (30, 10), (1, 30), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 640, grid=grid(640), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 4), (1, 10), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(buf3, (64, 10), (10, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((30, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 30), (30, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DQN(nn.Module): def __init__(self, state_size, action_size): super(DQN, self).__init__() self.fc1 = nn.Linear(state_size, 30) self.fc2 = nn.Linear(30, 10) self.fc3 = nn.Linear(10, action_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 10 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (30, 4), (4, 1)) assert_size_stride(primals_2, (30,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (10, 30), (30, 1)) assert_size_stride(primals_5, (10,), (1,)) assert_size_stride(primals_6, (4, 10), (10, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 30), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 30), (480, 120, 30, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1920)](buf1, primals_2, buf6, 1920, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(primals_4, (30, 10), (1, 30), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(640)](buf3, primals_5, buf5, 640, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 4), (1, 10), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor( buf3, (64, 10), (10, 1), 0), primals_6, buf5, primals_4, buf6 class DQNNew(nn.Module): def __init__(self, state_size, action_size): super(DQNNew, self).__init__() self.fc1 = nn.Linear(state_size, 30) self.fc2 = nn.Linear(30, 10) self.fc3 = nn.Linear(10, action_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
NickHclos/DDPG-PyTorch
DQN
false
11,754
[ "MIT" ]
0
9f6df328c275ff5c579fa0e4f7b30ab234cf236d
https://github.com/NickHclos/DDPG-PyTorch/tree/9f6df328c275ff5c579fa0e4f7b30ab234cf236d
DAFAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/in/cinpsvuoyhz6qmlmbhyhbylx7r2qwlmioevovcpj3suugwg3n5qo.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_6), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4n/c4niw632n4yhpyujditwdc6ltobyms6fbgeunv2p433a6aknfhoj.py # Topologically Sorted Source Nodes: [add, add_1, s, mul_1, sub, mul_2, masked_logits], Original ATen: [aten.add, aten.mul, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # masked_logits => add_3 # mul_1 => mul_1 # mul_2 => mul_2 # s => add_2 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %expand_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %bmm), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_7), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %primals_8), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -1e+30), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = (xindex // 4) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_out_ptr0 + (x4), xmask) tmp6 = tl.load(in_ptr3 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp8 = tmp5 + tmp7 tmp9 = tmp0 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp0 tmp12 = -1e+30 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tl.store(in_out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_3, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs => div, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sc/cscznd23aybxbkt2gb6k6fg4afc6v5egelerail7xuobjq4icgug.py # Topologically Sorted Source Nodes: [incoming], Original ATen: [aten.cat] # Source node to ATen node mapping: # incoming => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %bmm_1], 2), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lt/cltrufxywqfg7sccjlmktgu2tnz5suk62zlgdcsny6xvu55lyl5y.py # Topologically Sorted Source Nodes: [gate, incoming_1], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # gate => sigmoid # incoming_1 => mul_3 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_10,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %cat), kwargs = {}) triton_poi_fused_mul_sigmoid_5 = async_compile.triton('triton_poi_fused_mul_sigmoid_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_9, (8, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf0) del primals_4 buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_5, out=buf1) del primals_5 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_6, buf2, 64, grid=grid(64), stream=stream0) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, s2], Original ATen: [aten.mul, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add, add_1, s, mul_1, sub, mul_2, masked_logits], Original ATen: [aten.add, aten.mul, aten.rsub] triton_poi_fused_add_mul_rsub_1.run(buf4, primals_8, buf0, buf1, primals_7, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del primals_7 buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, primals_2, out=buf7) buf8 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [incoming], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(primals_1, buf7, buf8, 128, grid=grid(128), stream=stream0) del buf7 buf9 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 8), (8, 1), 0), reinterpret_tensor(primals_9, (8, 8), (1, 8), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [gate, incoming_1], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_5.run(buf9, buf8, buf10, 128, grid=grid(128), stream=stream0) return (buf10, primals_1, primals_2, primals_8, buf6, buf8, buf9, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def masked_softmax(logits, mask, dim=-1, log_softmax=False): """Take the softmax of `logits` over given dimension, and set entries to 0 wherever `mask` is 0. Args: logits (torch.Tensor): Inputs to the softmax function. mask (torch.Tensor): Same shape as `logits`, with 0 indicating positions that should be assigned 0 probability in the output. dim (int): Dimension over which to take softmax. log_softmax (bool): Take log-softmax rather than regular softmax. E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax. Returns: probs (torch.Tensor): Result of taking masked softmax over the logits. """ mask = mask.type(torch.float32) masked_logits = mask * logits + (1 - mask) * -1e+30 softmax_fn = F.log_softmax if log_softmax else F.softmax probs = softmax_fn(masked_logits, dim) return probs class DAFAttention(nn.Module): """As BiDAF attention, but we only keep track of context-to-question attention """ def __init__(self, hidden_size, drop_prob=0.1): super(DAFAttention, self).__init__() self.drop_prob = drop_prob self.c_weight = nn.Parameter(torch.zeros(hidden_size, 1)) self.q_weight = nn.Parameter(torch.zeros(hidden_size, 1)) self.cq_weight = nn.Parameter(torch.zeros(1, 1, hidden_size)) for weight in (self.c_weight, self.q_weight, self.cq_weight): nn.init.xavier_uniform_(weight) self.bias = nn.Parameter(torch.zeros(1)) self.RelevanceGate = nn.Linear(2 * hidden_size, 2 * hidden_size, bias=False) def forward(self, c, q, c_mask, q_mask): batch_size, c_len, _ = c.size() q_len = q.size(1) c_mask.sum(-1) s = self.get_similarity_matrix(c, q) c_mask = c_mask.view(batch_size, c_len, 1) q_mask = q_mask.view(batch_size, 1, q_len) s1 = masked_softmax(s, q_mask, dim=2) a = torch.bmm(s1, q) incoming = torch.cat([c, a], dim=2) gate = torch.sigmoid(self.RelevanceGate(incoming)) incoming = gate * incoming return incoming def get_similarity_matrix(self, c, q): """Get the "similarity matrix" between context and query (using the terminology of the BiDAF paper). A naive implementation as described in BiDAF would concatenate the three vectors then project the result with a single weight matrix. This method is a more memory-efficient implementation of the same operation. See Also: Equation 1 in https://arxiv.org/abs/1611.01603 """ c_len, q_len = c.size(1), q.size(1) c = F.dropout(c, self.drop_prob, self.training) q = F.dropout(q, self.drop_prob, self.training) s0 = torch.matmul(c, self.c_weight).expand([-1, -1, q_len]) s1 = torch.matmul(q, self.q_weight).transpose(1, 2).expand([-1, c_len, -1]) s2 = torch.matmul(c * self.cq_weight, q.transpose(1, 2)) s = s0 + s1 + s2 + self.bias return s def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 1]), torch.rand([4, 1, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex // 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp4 = tl.load(in_out_ptr0 + x4, xmask) tmp6 = tl.load(in_ptr3 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp8 = tmp5 + tmp7 tmp9 = tmp0 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp0 tmp12 = -1e+30 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tl.store(in_out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_9, (8, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf0) del primals_4 buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_5, out=buf1) del primals_5 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](primals_1, primals_6, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(primals_2, (4, 4, 4), ( 16, 1, 4), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_add_mul_rsub_1[grid(64)](buf4, primals_8, buf0, buf1, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del primals_7 buf5 = buf2 del buf2 triton_poi_fused__softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_3[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = buf5 del buf5 extern_kernels.bmm(buf6, primals_2, out=buf7) buf8 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_4[grid(128)](primals_1, buf7, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (16, 8), (8, 1), 0), reinterpret_tensor(primals_9, (8, 8), (1, 8), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_mul_sigmoid_5[grid(128)](buf9, buf8, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) return buf10, primals_1, primals_2, primals_8, buf6, buf8, buf9, primals_9 def masked_softmax(logits, mask, dim=-1, log_softmax=False): """Take the softmax of `logits` over given dimension, and set entries to 0 wherever `mask` is 0. Args: logits (torch.Tensor): Inputs to the softmax function. mask (torch.Tensor): Same shape as `logits`, with 0 indicating positions that should be assigned 0 probability in the output. dim (int): Dimension over which to take softmax. log_softmax (bool): Take log-softmax rather than regular softmax. E.g., some PyTorch functions such as `F.nll_loss` expect log-softmax. Returns: probs (torch.Tensor): Result of taking masked softmax over the logits. """ mask = mask.type(torch.float32) masked_logits = mask * logits + (1 - mask) * -1e+30 softmax_fn = F.log_softmax if log_softmax else F.softmax probs = softmax_fn(masked_logits, dim) return probs class DAFAttentionNew(nn.Module): """As BiDAF attention, but we only keep track of context-to-question attention """ def __init__(self, hidden_size, drop_prob=0.1): super(DAFAttentionNew, self).__init__() self.drop_prob = drop_prob self.c_weight = nn.Parameter(torch.zeros(hidden_size, 1)) self.q_weight = nn.Parameter(torch.zeros(hidden_size, 1)) self.cq_weight = nn.Parameter(torch.zeros(1, 1, hidden_size)) for weight in (self.c_weight, self.q_weight, self.cq_weight): nn.init.xavier_uniform_(weight) self.bias = nn.Parameter(torch.zeros(1)) self.RelevanceGate = nn.Linear(2 * hidden_size, 2 * hidden_size, bias=False) def get_similarity_matrix(self, c, q): """Get the "similarity matrix" between context and query (using the terminology of the BiDAF paper). A naive implementation as described in BiDAF would concatenate the three vectors then project the result with a single weight matrix. This method is a more memory-efficient implementation of the same operation. See Also: Equation 1 in https://arxiv.org/abs/1611.01603 """ c_len, q_len = c.size(1), q.size(1) c = F.dropout(c, self.drop_prob, self.training) q = F.dropout(q, self.drop_prob, self.training) s0 = torch.matmul(c, self.c_weight).expand([-1, -1, q_len]) s1 = torch.matmul(q, self.q_weight).transpose(1, 2).expand([-1, c_len, -1]) s2 = torch.matmul(c * self.cq_weight, q.transpose(1, 2)) s = s0 + s1 + s2 + self.bias return s def forward(self, input_0, input_1, input_2, input_3): primals_4 = self.c_weight primals_5 = self.q_weight primals_6 = self.cq_weight primals_7 = self.bias primals_9 = self.RelevanceGate.weight primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 primals_8 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
NicholasPaulBrazeauSanchez/squad
DAFAttention
false
11,755
[ "MIT" ]
0
7343f41b186f1647e474824e5035c8dd639028b2
https://github.com/NicholasPaulBrazeauSanchez/squad/tree/7343f41b186f1647e474824e5035c8dd639028b2
GEGLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/g6/cg6py454hsmh5ek5ufygwdjqk6x5t4pxnpc52hre5drrru6gkirg.py # Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul] # Source node to ATen node mapping: # gelu => add, erf, mul, mul_1, mul_2 # mul => mul_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %mul_2), kwargs = {}) triton_poi_fused_gelu_mul_0 = async_compile.triton('triton_poi_fused_gelu_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865476 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp10 = tmp0 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_gelu_mul_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim=-1) return x * F.gelu(gates) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_gelu_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865476 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp10 = tmp0 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_gelu_mul_0[grid(128)](arg0_1, buf0, 128, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class GEGLUNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NomadicDaggy/DALLE-pytorch
GEGLU
false
11,756
[ "MIT" ]
0
ecadc12e8063763ad45de50773e5c746262cdfd3
https://github.com/NomadicDaggy/DALLE-pytorch/tree/ecadc12e8063763ad45de50773e5c746262cdfd3
MNIST_CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/xd/cxdqslrdqajmcxikxhvxi7lkzd2yepfzcwkkltrpstapeq35h632.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ra/crarmf7s2qf36jg27hprl42qtwcxcnnoyrgzgevtstzj4qgsdzwl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/e4/ce4nidkyu2gtcdpalogjljsg5wvmcfnzpr4d7mxmzgqhcik7e3zy.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/uo/cuoq67x7pplkn56jmv4egzgakdmdolviuhclk6uuvy2isp3yvvam.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_2 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused_native_group_norm_5 = async_compile.triton('triton_per_fused_native_group_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[32, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 32 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 8 r3 = (rindex // 8) x0 = xindex % 8 x1 = (xindex // 8) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (64*r3) + (1024*x1)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 128, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 128.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + (x4), tmp23, xmask) tl.store(out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr1 + (x4), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/t3/ct3qwupet5zpwc3rrfmucbarfddm4ezt2y7zf5ute5oce57arckm.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_2 => add_1, mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) triton_poi_fused_native_group_norm_6 = async_compile.triton('triton_poi_fused_native_group_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = (xindex // 1024) tmp0 = tl.load(in_ptr0 + (x3), None) tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 128.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bo/cboj3lo2ix24qbhixyncx6gvd7fcgojynowxk4mu7hyobzavs4tx.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7q/c7q6tque53rs7lodp6ydfpgpqa75zh7pikmsrf2pnpy6czejrkpz.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_5 => add_2, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) triton_per_fused_native_group_norm_8 = async_compile.triton('triton_per_fused_native_group_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[32, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 32 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = (rindex // 16) x0 = xindex % 8 x1 = (xindex // 8) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (128*r3) + (512*x1)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + (x4), tmp23, xmask) tl.store(out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr1 + (x4), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/uu/cuu4nxa6fxukpo23zd5i5bbo3jmi4tcdz5jxk75g5k63t4k6dxob.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_5 => add_3, mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {}) triton_poi_fused_native_group_norm_9 = async_compile.triton('triton_poi_fused_native_group_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = (xindex // 512) tmp0 = tl.load(in_ptr0 + (x3), None) tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xr/cxrvhmzov25motoxdbptp5xb5kgxlq4dxjyz2c5uqkf2isadwdos.py # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean] # Source node to ATen node mapping: # x_11 => add_7, mul_7 # x_12 => mean # Graph fragment: # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %unsqueeze_23), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_20), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_7, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_native_group_norm_10 = async_compile.triton('triton_poi_fused_mean_native_group_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_native_group_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 128 x1 = (xindex // 128) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1)), xmask) tmp3 = tl.load(in_ptr1 + ((x2 // 16)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((x2 // 16)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (128 + x0 + (512*x1)), xmask) tmp23 = tl.load(in_ptr0 + (256 + x0 + (512*x1)), xmask) tmp30 = tl.load(in_ptr0 + (384 + x0 + (512*x1)), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = tmp17 - tmp3 tmp19 = tmp18 * tmp10 tmp20 = tmp19 * tmp12 tmp21 = tmp20 + tmp14 tmp22 = tmp15 + tmp21 tmp24 = triton_helpers.maximum(tmp1, tmp23) tmp25 = tmp24 - tmp3 tmp26 = tmp25 * tmp10 tmp27 = tmp26 * tmp12 tmp28 = tmp27 + tmp14 tmp29 = tmp22 + tmp28 tmp31 = triton_helpers.maximum(tmp1, tmp30) tmp32 = tmp31 - tmp3 tmp33 = tmp32 * tmp10 tmp34 = tmp33 * tmp12 tmp35 = tmp34 + tmp14 tmp36 = tmp29 + tmp35 tmp37 = 4.0 tmp38 = tmp36 / tmp37 tl.store(out_ptr0 + (x2), tmp38, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, ), (1, )) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, ), (1, )) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, ), (1, )) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, ), (1, )) assert_size_stride(primals_17, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 256, 9, grid=grid(256, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_10, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_14, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_14 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf6, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_5.run(buf6, buf7, buf8, buf11, 32, 128, grid=grid(32), stream=stream0) buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_6.run(buf6, buf7, buf8, primals_4, primals_5, buf10, 4096, grid=grid(4096), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf13, primals_7, 2048, grid=grid(2048), stream=stream0) del primals_7 buf14 = buf8; del buf8 # reuse buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf13, buf14, buf15, buf18, 32, 64, grid=grid(32), stream=stream0) buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_9.run(buf13, buf14, buf15, primals_8, primals_9, buf17, 2048, grid=grid(2048), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf20, primals_11, 2048, grid=grid(2048), stream=stream0) del primals_11 buf21 = buf15; del buf15 # reuse buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf20, buf21, buf22, buf25, 32, 64, grid=grid(32), stream=stream0) buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_9.run(buf20, buf21, buf22, primals_12, primals_13, buf24, 2048, grid=grid(2048), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf27, primals_15, 2048, grid=grid(2048), stream=stream0) del primals_15 buf28 = buf22; del buf22 # reuse buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf27, buf28, buf29, buf31, 32, 64, grid=grid(32), stream=stream0) buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean] triton_poi_fused_mean_native_group_norm_10.run(buf27, buf28, buf29, primals_16, primals_17, buf32, 512, grid=grid(512), stream=stream0) del buf29 del primals_17 return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1, primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16, buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0), reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17, reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor(buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21, (4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0), buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0), reinterpret_tensor(buf31, (4, 8), (8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class SqueezeLastTwo(nn.Module): """A module which squeezes the last two dimensions, ordinary squeeze can be a problem for batch size 1""" def __init__(self): super(SqueezeLastTwo, self).__init__() def forward(self, x): return x.view(x.shape[0], x.shape[1]) class MNIST_CNN(nn.Module): """ Hand-tuned architecture for MNIST. Weirdness I've noticed so far with this architecture: - adding a linear layer after the mean-pool in features hurts RotatedMNIST-100 generalization severely. """ n_outputs = 128 def __init__(self, input_shape): super(MNIST_CNN, self).__init__() self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1) self.bn0 = nn.GroupNorm(8, 64) self.bn1 = nn.GroupNorm(8, 128) self.bn2 = nn.GroupNorm(8, 128) self.bn3 = nn.GroupNorm(8, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.squeezeLastTwo = SqueezeLastTwo() def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.bn0(x) x = self.conv2(x) x = F.relu(x) x = self.bn1(x) x = self.conv3(x) x = F.relu(x) x = self.bn2(x) x = self.conv4(x) x = F.relu(x) x = self.bn3(x) x = self.avgpool(x) x = self.squeezeLastTwo(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 32 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 8 r3 = rindex // 8 x0 = xindex % 8 x1 = xindex // 8 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 64 * r3 + 1024 * x1), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 128, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 128.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + x4, tmp23, xmask) tl.store(out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr1 + x4, tmp18, xmask) @triton.jit def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = xindex // 1024 tmp0 = tl.load(in_ptr0 + x3, None) tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 128.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 32 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = rindex // 16 x0 = xindex % 8 x1 = xindex // 8 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 128 * r3 + 512 * x1), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + x4, tmp23, xmask) tl.store(out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr1 + x4, tmp18, xmask) @triton.jit def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = xindex // 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 128 x1 = xindex // 128 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1), xmask) tmp3 = tl.load(in_ptr1 + x2 // 16, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x2 // 16, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (128 + x0 + 512 * x1), xmask) tmp23 = tl.load(in_ptr0 + (256 + x0 + 512 * x1), xmask) tmp30 = tl.load(in_ptr0 + (384 + x0 + 512 * x1), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = tmp17 - tmp3 tmp19 = tmp18 * tmp10 tmp20 = tmp19 * tmp12 tmp21 = tmp20 + tmp14 tmp22 = tmp15 + tmp21 tmp24 = triton_helpers.maximum(tmp1, tmp23) tmp25 = tmp24 - tmp3 tmp26 = tmp25 * tmp10 tmp27 = tmp26 * tmp12 tmp28 = tmp27 + tmp14 tmp29 = tmp22 + tmp28 tmp31 = triton_helpers.maximum(tmp1, tmp30) tmp32 = tmp31 - tmp3 tmp33 = tmp32 * tmp10 tmp34 = tmp33 * tmp12 tmp35 = tmp34 + tmp14 tmp36 = tmp29 + tmp35 tmp37 = 4.0 tmp38 = tmp36 / tmp37 tl.store(out_ptr0 + x2, tmp38, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64,), (1,)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128,), (1,)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128,), (1,)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128,), (1,)) assert_size_stride(primals_17, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(256, 9)](primals_1, buf0, 256, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(8192, 9)](primals_6, buf2, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_10, buf3, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_14, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5 del buf5 triton_poi_fused_convolution_4[grid(4096)](buf6, primals_2, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_5[grid(32)](buf6, buf7, buf8, buf11, 32, 128, XBLOCK=8, num_warps=8, num_stages=1) buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch .float32) triton_poi_fused_native_group_norm_6[grid(4096)](buf6, buf7, buf8, primals_4, primals_5, buf10, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128)) buf13 = buf12 del buf12 triton_poi_fused_convolution_7[grid(2048)](buf13, primals_7, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf14 = buf8 del buf8 buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf13, buf14, buf15, buf18, 32, 64, XBLOCK=8, num_warps=4, num_stages=1) buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) triton_poi_fused_native_group_norm_9[grid(2048)](buf13, buf14, buf15, primals_8, primals_9, buf17, 2048, XBLOCK=256, num_warps =4, num_stages=1) del primals_9 buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128)) buf20 = buf19 del buf19 triton_poi_fused_convolution_7[grid(2048)](buf20, primals_11, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf21 = buf15 del buf15 buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf20, buf21, buf22, buf25, 32, 64, XBLOCK=8, num_warps=4, num_stages=1) buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) triton_poi_fused_native_group_norm_9[grid(2048)](buf20, buf21, buf22, primals_12, primals_13, buf24, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128)) buf27 = buf26 del buf26 triton_poi_fused_convolution_7[grid(2048)](buf27, primals_15, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf28 = buf22 del buf22 buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf27, buf28, buf29, buf31, 32, 64, XBLOCK=8, num_warps=4, num_stages=1) buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch. float32) triton_poi_fused_mean_native_group_norm_10[grid(512)](buf27, buf28, buf29, primals_16, primals_17, buf32, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf29 del primals_17 return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1, primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16, buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0), reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17, reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor( buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21, (4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0), buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0), reinterpret_tensor(buf31, (4, 8), (8, 1), 0)) class SqueezeLastTwo(nn.Module): """A module which squeezes the last two dimensions, ordinary squeeze can be a problem for batch size 1""" def __init__(self): super(SqueezeLastTwo, self).__init__() def forward(self, x): return x.view(x.shape[0], x.shape[1]) class MNIST_CNNNew(nn.Module): """ Hand-tuned architecture for MNIST. Weirdness I've noticed so far with this architecture: - adding a linear layer after the mean-pool in features hurts RotatedMNIST-100 generalization severely. """ n_outputs = 128 def __init__(self, input_shape): super(MNIST_CNNNew, self).__init__() self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1) self.bn0 = nn.GroupNorm(8, 64) self.bn1 = nn.GroupNorm(8, 128) self.bn2 = nn.GroupNorm(8, 128) self.bn3 = nn.GroupNorm(8, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.squeezeLastTwo = SqueezeLastTwo() def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_10 = self.conv3.weight primals_8 = self.conv3.bias primals_14 = self.conv4.weight primals_9 = self.conv4.bias primals_4 = self.bn0.weight primals_5 = self.bn0.bias primals_11 = self.bn1.weight primals_12 = self.bn1.bias primals_13 = self.bn2.weight primals_15 = self.bn2.bias primals_16 = self.bn3.weight primals_17 = self.bn3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
Neronjust2017/DomainBed
MNIST_CNN
false
11,757
[ "MIT" ]
0
42be49a316a74799b95d6a5e29bb210477c7f828
https://github.com/Neronjust2017/DomainBed/tree/42be49a316a74799b95d6a5e29bb210477c7f828
BoundSin
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/vp/cvpc55lt3l2owcwndt777vegsrq4gm7oa7jxzrn47qc6xud2rego.py # Topologically Sorted Source Nodes: [sin], Original ATen: [aten.sin] # Source node to ATen node mapping: # sin => sin # Graph fragment: # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_sin_0 = async_compile.triton('triton_poi_fused_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.sin(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sin], Original ATen: [aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from numbers import Number from torch.nn import MSELoss def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): if not isinstance(eps, Number): if not isinstance(eps, torch.Tensor): self.eps = torch.tensor(eps) else: self.eps = eps if len(self.eps.shape) == 1: self.eps = torch.diag(self.eps) assert self.eps.shape[0] == self.eps.shape[1 ], 'Argument [eps] must form a n by n square matrix.' self.norm = 2 else: self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): if isinstance(self.eps, Number): deviation = A.norm(self.dual_norm, -1) * self.eps else: deviation = A.matmul(self.eps.transpose(0, 1)).norm( self.dual_norm, -1) bound = A.matmul(x) + sign * deviation.unsqueeze(-1) elif isinstance(self.eps, Number): bound = x + sign * self.eps else: bound = x + sign * self.eps.transpose(0, 1).norm(self. dual_norm, -1) bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundSin(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) def forward(self, x): return torch.sin(x) def infer_batch_dim(self, batch_size, *x): return x[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_name': 4, 'name': 4, 'ori_name': 4, 'attr': 4, 'inputs': 4, 'output_index': 4, 'options': _mock_config(loss_fusion =MSELoss()), 'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math import numpy as np import torch.nn as nn import torch.nn.functional as F from numbers import Number assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.sin(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): if not isinstance(eps, Number): if not isinstance(eps, torch.Tensor): self.eps = torch.tensor(eps) else: self.eps = eps if len(self.eps.shape) == 1: self.eps = torch.diag(self.eps) assert self.eps.shape[0] == self.eps.shape[1 ], 'Argument [eps] must form a n by n square matrix.' self.norm = 2 else: self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): if isinstance(self.eps, Number): deviation = A.norm(self.dual_norm, -1) * self.eps else: deviation = A.matmul(self.eps.transpose(0, 1)).norm( self.dual_norm, -1) bound = A.matmul(x) + sign * deviation.unsqueeze(-1) elif isinstance(self.eps, Number): bound = x + sign * self.eps else: bound = x + sign * self.eps.transpose(0, 1).norm(self. dual_norm, -1) bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundSinNew(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) def infer_batch_dim(self, batch_size, *x): return x[0] def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Mahoumaru/auto_LiRPA
BoundSin
false
11,758
[ "BSD-3-Clause" ]
0
b03a6c36eb1b921726778359d6d2b94e0cd7e480
https://github.com/Mahoumaru/auto_LiRPA/tree/b03a6c36eb1b921726778359d6d2b94e0cd7e480
Mutan
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3a/c3a5oztsg6dyv3ssxw36kupxhcoz2sh2zetkdm273nuswuw6d6fm.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sum] # Source node to ATen node mapping: # z => sum_1 # Graph fragment: # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_8, [1]), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[32768, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 25600 rnumel = 15 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = rindex x0 = xindex % 1600 x1 = (xindex // 1600) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1600*r2) + (24000*x1)), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + (1600*r2) + (24000*x1)), rmask & xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1600, 4), (4, 1)) assert_size_stride(primals_3, (1600, ), (1, )) assert_size_stride(primals_4, (1600, 4), (4, 1)) assert_size_stride(primals_5, (1600, ), (1, )) assert_size_stride(primals_6, (24000, 1600), (1600, 1)) assert_size_stride(primals_7, (24000, ), (1, )) assert_size_stride(primals_8, (24000, 1600), (1600, 1)) assert_size_stride(primals_9, (24000, ), (1, )) assert_size_stride(primals_10, (4, 1600), (1600, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) # Topologically Sorted Source Nodes: [x0], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1600), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 64), reinterpret_tensor(primals_4, (4, 1600), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 24000), (24000, 1), torch.float32) # Topologically Sorted Source Nodes: [m0], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6, (1600, 24000), (1, 1600), 0), alpha=1, beta=1, out=buf2) del primals_7 buf3 = empty_strided_cuda((16, 24000), (24000, 1), torch.float32) # Topologically Sorted Source Nodes: [m1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf1, reinterpret_tensor(primals_8, (1600, 24000), (1, 1600), 0), alpha=1, beta=1, out=buf3) del primals_9 buf4 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(buf2, buf3, buf4, 25600, 15, grid=grid(25600), stream=stream0) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf4, reinterpret_tensor(primals_10, (1600, 4), (1, 1600), 0), alpha=1, beta=1, out=buf5) del primals_11 return (buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 64), buf0, buf2, buf1, buf3, buf4, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1600, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1600, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1600, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1600, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((24000, 1600), (1600, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((24000, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((24000, 1600), (1600, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((24000, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1600), (1600, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Mutan(nn.Module): def __init__(self, input_dims, output_dim, mm_dim=1600, rank=15, shared =False, normalize=False, dropout_input=0.0, dropout_pre_lin=0.0, dropout_output=0.0): super(Mutan, self).__init__() self.input_dims = input_dims self.shared = shared self.mm_dim = mm_dim self.rank = rank self.output_dim = output_dim self.dropout_input = dropout_input self.dropout_pre_lin = dropout_pre_lin self.dropout_output = dropout_output self.normalize = normalize self.linear0 = nn.Linear(input_dims[0], mm_dim) self.merge_linear0 = nn.Linear(mm_dim, mm_dim * rank) if self.shared: self.linear1 = self.linear0 self.merge_linear1 = self.merge_linear0 else: self.linear1 = nn.Linear(input_dims[1], mm_dim) self.merge_linear1 = nn.Linear(mm_dim, mm_dim * rank) self.linear_out = nn.Linear(mm_dim, output_dim) self.n_params = sum(p.numel() for p in self.parameters() if p. requires_grad) def forward(self, x): x0 = self.linear0(x[0]) x1 = self.linear1(x[1]) if self.dropout_input > 0: x0 = F.dropout(x0, p=self.dropout_input, training=self.training) x1 = F.dropout(x1, p=self.dropout_input, training=self.training) m0 = self.merge_linear0(x0) m1 = self.merge_linear1(x1) m = m0 * m1 m = m.view(-1, self.rank, self.mm_dim) z = torch.sum(m, 1) if self.normalize: z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z)) z = F.normalize(z, p=2) if self.dropout_pre_lin > 0: z = F.dropout(z, p=self.dropout_pre_lin, training=self.training) z = self.linear_out(z) if self.dropout_output > 0: z = F.dropout(z, p=self.dropout_output, training=self.training) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dims': [4, 4], 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 25600 rnumel = 15 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex x0 = xindex % 1600 x1 = xindex // 1600 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1600 * r2 + 24000 * x1), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + 1600 * r2 + 24000 * x1), rmask & xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1600, 4), (4, 1)) assert_size_stride(primals_3, (1600,), (1,)) assert_size_stride(primals_4, (1600, 4), (4, 1)) assert_size_stride(primals_5, (1600,), (1,)) assert_size_stride(primals_6, (24000, 1600), (1600, 1)) assert_size_stride(primals_7, (24000,), (1,)) assert_size_stride(primals_8, (24000, 1600), (1600, 1)) assert_size_stride(primals_9, (24000,), (1,)) assert_size_stride(primals_10, (4, 1600), (1600, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1600), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 64), reinterpret_tensor(primals_4, (4, 1600), (1, 4 ), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 24000), (24000, 1), torch.float32) extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6, (1600, 24000), (1, 1600), 0), alpha=1, beta=1, out=buf2) del primals_7 buf3 = empty_strided_cuda((16, 24000), (24000, 1), torch.float32) extern_kernels.addmm(primals_9, buf1, reinterpret_tensor(primals_8, (1600, 24000), (1, 1600), 0), alpha=1, beta=1, out=buf3) del primals_9 buf4 = empty_strided_cuda((16, 1600), (1600, 1), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(25600)](buf2, buf3, buf4, 25600, 15, XBLOCK=32, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, buf4, reinterpret_tensor( primals_10, (1600, 4), (1, 1600), 0), alpha=1, beta=1, out=buf5) del primals_11 return buf5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 64 ), buf0, buf2, buf1, buf3, buf4, primals_10, primals_8, primals_6 class MutanNew(nn.Module): def __init__(self, input_dims, output_dim, mm_dim=1600, rank=15, shared =False, normalize=False, dropout_input=0.0, dropout_pre_lin=0.0, dropout_output=0.0): super(MutanNew, self).__init__() self.input_dims = input_dims self.shared = shared self.mm_dim = mm_dim self.rank = rank self.output_dim = output_dim self.dropout_input = dropout_input self.dropout_pre_lin = dropout_pre_lin self.dropout_output = dropout_output self.normalize = normalize self.linear0 = nn.Linear(input_dims[0], mm_dim) self.merge_linear0 = nn.Linear(mm_dim, mm_dim * rank) if self.shared: self.linear1 = self.linear0 self.merge_linear1 = self.merge_linear0 else: self.linear1 = nn.Linear(input_dims[1], mm_dim) self.merge_linear1 = nn.Linear(mm_dim, mm_dim * rank) self.linear_out = nn.Linear(mm_dim, output_dim) self.n_params = sum(p.numel() for p in self.parameters() if p. requires_grad) def forward(self, input_0): primals_2 = self.linear0.weight primals_3 = self.linear0.bias primals_6 = self.merge_linear0.weight primals_7 = self.merge_linear0.bias primals_4 = self.linear1.weight primals_5 = self.linear1.bias primals_8 = self.merge_linear1.weight primals_9 = self.merge_linear1.bias primals_10 = self.linear_out.weight primals_11 = self.linear_out.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
JoannaLXY/block.bootstrap.pytorch
Mutan
false
11,759
[ "BSD-3-Clause" ]
0
42c3e7616b704e05c6ff2376ff68b5b18044fe77
https://github.com/JoannaLXY/block.bootstrap.pytorch/tree/42c3e7616b704e05c6ff2376ff68b5b18044fe77
CRF
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hf/chfy6golfkp5hyoqxyfqo3cuiy7r25sg3yr3dcq6fpt7nsbdq6zt.py # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] # Source node to ATen node mapping: # crf_scores => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x5), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data.dataloader import torch.nn class CRF(torch.nn.Module): """ Conditional Random Field Implementation according to sgrvinod (https://github.com/sgrvinod). Classifier which predicts single tag / class / label for given word based on not just the word, but also on previous seen annotations. """ def __init__(self, tag_dictionary, tagset_size: 'int', init_from_state_dict: 'bool'): """ :param tag_dictionary: tag dictionary in order to find ID for start and stop tags :param tagset_size: number of tag from tag dictionary :param init_from_state_dict: whether we load pretrained model from state dict """ super(CRF, self).__init__() self.tagset_size = tagset_size self.transitions = torch.nn.Parameter(torch.randn(tagset_size, tagset_size)) if not init_from_state_dict: self.transitions.detach()[tag_dictionary.get_idx_for_item( START_TAG), :] = -10000 self.transitions.detach()[:, tag_dictionary.get_idx_for_item( STOP_TAG)] = -10000 self def forward(self, features: 'torch.tensor') ->torch.tensor: """ Forward propagation of Conditional Random Field. :param features: output from RNN / Linear layer in shape (batch size, seq len, hidden size) :return: CRF scores (emission scores for each token + transitions prob from previous state) in shape (batch_size, seq len, tagset size, tagset size) """ batch_size = features.size(0) seq_len = features.size(1) emission_scores = features emission_scores = emission_scores.unsqueeze(-1).expand(batch_size, seq_len, self.tagset_size, self.tagset_size) crf_scores = emission_scores + self.transitions.unsqueeze(0).unsqueeze( 0) return crf_scores def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'tag_dictionary': 4, 'tagset_size': 4, 'init_from_state_dict': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data.dataloader import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x5, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class CRFNew(torch.nn.Module): """ Conditional Random Field Implementation according to sgrvinod (https://github.com/sgrvinod). Classifier which predicts single tag / class / label for given word based on not just the word, but also on previous seen annotations. """ def __init__(self, tag_dictionary, tagset_size: 'int', init_from_state_dict: 'bool'): """ :param tag_dictionary: tag dictionary in order to find ID for start and stop tags :param tagset_size: number of tag from tag dictionary :param init_from_state_dict: whether we load pretrained model from state dict """ super(CRFNew, self).__init__() self.tagset_size = tagset_size self.transitions = torch.nn.Parameter(torch.randn(tagset_size, tagset_size)) if not init_from_state_dict: self.transitions.detach()[tag_dictionary.get_idx_for_item( START_TAG), :] = -10000 self.transitions.detach()[:, tag_dictionary.get_idx_for_item( STOP_TAG)] = -10000 self def forward(self, input_0): primals_2 = self.transitions primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
OatsProduction/flair
CRF
false
11,760
[ "MIT" ]
0
1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
https://github.com/OatsProduction/flair/tree/1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
PairwiseBCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/vf/cvfjgkoel2zhys242m4bi5mjv4jqnvyo2wiry7glxexa3ccphlm3.py # Topologically Sorted Source Nodes: [bce_loss, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mean] # Source node to ATen node mapping: # bce_loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub_1, sub_2, sub_3 # loss => mean # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_mean_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_mean_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [bce_loss, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_mean_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from abc import abstractmethod import torch.utils.data.dataloader import torch.nn.functional as F from torch import nn import torch.nn class SimilarityLoss(nn.Module): def __init__(self): super(SimilarityLoss, self).__init__() @abstractmethod def forward(self, inputs, targets): pass class PairwiseBCELoss(SimilarityLoss): """ Binary cross entropy between pair similarities and pair labels. """ def __init__(self, balanced=False): super(PairwiseBCELoss, self).__init__() self.balanced = balanced def forward(self, inputs, targets): n = inputs.shape[0] neg_targets = torch.ones_like(targets) - targets bce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') if self.balanced: weight_matrix = n * (targets / 2.0 + neg_targets / (2.0 * (n - 1))) bce_loss *= weight_matrix loss = bce_loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from abc import abstractmethod import torch.utils.data.dataloader from torch import nn import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_mean_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_mean_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class SimilarityLoss(nn.Module): def __init__(self): super(SimilarityLoss, self).__init__() @abstractmethod def forward(self, inputs, targets): pass class PairwiseBCELossNew(SimilarityLoss): """ Binary cross entropy between pair similarities and pair labels. """ def __init__(self, balanced=False): super(PairwiseBCELossNew, self).__init__() self.balanced = balanced def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
OatsProduction/flair
PairwiseBCELoss
false
11,761
[ "MIT" ]
0
1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
https://github.com/OatsProduction/flair/tree/1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
RankingLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ei/ceinvgcpzgbnvzzkf7c5i3c2enhdduwygzv3zzsjlmaj4v3fbqd2.py # Topologically Sorted Source Nodes: [ones_like, neg_targets, add, sub_1, relu, ranking_loss_matrix_1, neg_targets_01_sum, truediv, sum_3, mean, mul_2, add_1, sub_2, relu_1, ranking_loss_matrix_10, neg_targets_10_sum, truediv_1, sum_4, mean_1, mul_3, loss], Original ATen: [aten.ones_like, aten.sub, aten.add, aten.relu, aten.mul, aten.sum, aten.div, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # loss => add_2 # mean => mean # mean_1 => mean_1 # mul_2 => mul_2 # mul_3 => mul_3 # neg_targets => sub # neg_targets_01_sum => sum_1 # neg_targets_10_sum => sum_2 # ones_like => full_default # ranking_loss_matrix_1 => mul # ranking_loss_matrix_10 => mul_1 # relu => relu # relu_1 => relu_1 # sub_1 => sub_1 # sub_2 => sub_2 # sum_3 => sum_3 # sum_4 => sum_4 # truediv => div # truediv_1 => div_1 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 0.1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %view), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %relu), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %sum_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 0.1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %view_1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %relu_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [0]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sum_2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div_1, [0]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_4,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 33, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (5*r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (1)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp18 = tl.load(in_ptr0 + (2)) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp22 = tl.load(in_ptr0 + (3)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp27 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr0 + (4)) tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + (5)) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp41 = tl.load(in_ptr0 + (6)) tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK]) tmp45 = tl.load(in_ptr0 + (7)) tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp51 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr0 + (8)) tmp59 = tl.broadcast_to(tmp58, [XBLOCK, RBLOCK]) tmp61 = tl.load(in_ptr0 + (9)) tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp65 = tl.load(in_ptr0 + (10)) tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp69 = tl.load(in_ptr0 + (11)) tmp70 = tl.broadcast_to(tmp69, [XBLOCK, RBLOCK]) tmp75 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp77 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr0 + (12)) tmp83 = tl.broadcast_to(tmp82, [XBLOCK, RBLOCK]) tmp85 = tl.load(in_ptr0 + (13)) tmp86 = tl.broadcast_to(tmp85, [XBLOCK, RBLOCK]) tmp89 = tl.load(in_ptr0 + (14)) tmp90 = tl.broadcast_to(tmp89, [XBLOCK, RBLOCK]) tmp93 = tl.load(in_ptr0 + (15)) tmp94 = tl.broadcast_to(tmp93, [XBLOCK, RBLOCK]) tmp99 = tl.load(in_ptr0 + (r0), None) tmp101 = tl.load(in_ptr1 + (r0), None) tmp106 = tl.load(in_ptr0 + (4 + r0), None) tmp109 = tl.load(in_ptr0 + (8 + r0), None) tmp112 = tl.load(in_ptr0 + (12 + r0), None) tmp116 = tl.load(in_ptr1 + (4 + r0), None) tmp123 = tl.load(in_ptr1 + (8 + r0), None) tmp130 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 - tmp6 tmp8 = tl.full([1, 1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tmp2 * tmp9 tmp13 = tmp1 - tmp12 tmp16 = tmp1 - tmp15 tmp17 = tmp13 + tmp16 tmp20 = tmp1 - tmp19 tmp21 = tmp17 + tmp20 tmp24 = tmp1 - tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp10 / tmp25 tmp28 = tmp1 - tmp27 tmp30 = tmp29 + tmp4 tmp31 = tmp30 - tmp6 tmp32 = triton_helpers.maximum(tmp8, tmp31) tmp33 = tmp28 * tmp32 tmp36 = tmp1 - tmp35 tmp39 = tmp1 - tmp38 tmp40 = tmp36 + tmp39 tmp43 = tmp1 - tmp42 tmp44 = tmp40 + tmp43 tmp47 = tmp1 - tmp46 tmp48 = tmp44 + tmp47 tmp49 = tmp33 / tmp48 tmp50 = tmp26 + tmp49 tmp52 = tmp1 - tmp51 tmp54 = tmp53 + tmp4 tmp55 = tmp54 - tmp6 tmp56 = triton_helpers.maximum(tmp8, tmp55) tmp57 = tmp52 * tmp56 tmp60 = tmp1 - tmp59 tmp63 = tmp1 - tmp62 tmp64 = tmp60 + tmp63 tmp67 = tmp1 - tmp66 tmp68 = tmp64 + tmp67 tmp71 = tmp1 - tmp70 tmp72 = tmp68 + tmp71 tmp73 = tmp57 / tmp72 tmp74 = tmp50 + tmp73 tmp76 = tmp1 - tmp75 tmp78 = tmp77 + tmp4 tmp79 = tmp78 - tmp6 tmp80 = triton_helpers.maximum(tmp8, tmp79) tmp81 = tmp76 * tmp80 tmp84 = tmp1 - tmp83 tmp87 = tmp1 - tmp86 tmp88 = tmp84 + tmp87 tmp91 = tmp1 - tmp90 tmp92 = tmp88 + tmp91 tmp95 = tmp1 - tmp94 tmp96 = tmp92 + tmp95 tmp97 = tmp81 / tmp96 tmp98 = tmp74 + tmp97 tmp100 = tmp1 - tmp99 tmp102 = tmp101 + tmp4 tmp103 = tmp102 - tmp6 tmp104 = triton_helpers.maximum(tmp8, tmp103) tmp105 = tmp100 * tmp104 tmp107 = tmp1 - tmp106 tmp108 = tmp100 + tmp107 tmp110 = tmp1 - tmp109 tmp111 = tmp108 + tmp110 tmp113 = tmp1 - tmp112 tmp114 = tmp111 + tmp113 tmp115 = tmp105 / tmp114 tmp117 = tmp116 + tmp4 tmp118 = tmp117 - tmp6 tmp119 = triton_helpers.maximum(tmp8, tmp118) tmp120 = tmp107 * tmp119 tmp121 = tmp120 / tmp114 tmp122 = tmp115 + tmp121 tmp124 = tmp123 + tmp4 tmp125 = tmp124 - tmp6 tmp126 = triton_helpers.maximum(tmp8, tmp125) tmp127 = tmp110 * tmp126 tmp128 = tmp127 / tmp114 tmp129 = tmp122 + tmp128 tmp131 = tmp130 + tmp4 tmp132 = tmp131 - tmp6 tmp133 = triton_helpers.maximum(tmp8, tmp132) tmp134 = tmp113 * tmp133 tmp135 = tmp134 / tmp114 tmp136 = tmp129 + tmp135 tmp137 = tl.broadcast_to(tmp98, [XBLOCK, RBLOCK]) tmp139 = tl.sum(tmp137, 1)[:, None] tmp140 = tl.broadcast_to(tmp136, [XBLOCK, RBLOCK]) tmp142 = tl.sum(tmp140, 1)[:, None] tmp143 = 4.0 tmp144 = tmp139 / tmp143 tmp145 = 0.5 tmp146 = tmp144 * tmp145 tmp147 = tmp142 / tmp143 tmp148 = tmp147 * tmp145 tmp149 = tmp146 + tmp148 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp149, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [ones_like, neg_targets, add, sub_1, relu, ranking_loss_matrix_1, neg_targets_01_sum, truediv, sum_3, mean, mul_2, add_1, sub_2, relu_1, ranking_loss_matrix_10, neg_targets_10_sum, truediv_1, sum_4, mean_1, mul_3, loss], Original ATen: [aten.ones_like, aten.sub, aten.add, aten.relu, aten.mul, aten.sum, aten.div, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0.run(buf4, arg1_1, arg0_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from abc import abstractmethod import torch.utils.data.dataloader import torch.nn.functional as F from torch import nn import torch.nn class SimilarityLoss(nn.Module): def __init__(self): super(SimilarityLoss, self).__init__() @abstractmethod def forward(self, inputs, targets): pass class RankingLoss(SimilarityLoss): """ Triplet ranking loss between pair similarities and pair labels. """ def __init__(self, margin=0.1, direction_weights=[0.5, 0.5]): super(RankingLoss, self).__init__() self.margin = margin self.direction_weights = direction_weights def forward(self, inputs, targets): n = inputs.shape[0] neg_targets = torch.ones_like(targets) - targets ranking_loss_matrix_01 = neg_targets * F.relu(self.margin + inputs - torch.diag(inputs).view(n, 1)) ranking_loss_matrix_10 = neg_targets * F.relu(self.margin + inputs - torch.diag(inputs).view(1, n)) neg_targets_01_sum = torch.sum(neg_targets, dim=1) neg_targets_10_sum = torch.sum(neg_targets, dim=0) loss = self.direction_weights[0] * torch.mean(torch.sum( ranking_loss_matrix_01 / neg_targets_01_sum, dim=1) ) + self.direction_weights[1] * torch.mean(torch.sum( ranking_loss_matrix_10 / neg_targets_10_sum, dim=0)) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from abc import abstractmethod import torch.utils.data.dataloader from torch import nn import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + 5 * r0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + 1) tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp18 = tl.load(in_ptr0 + 2) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp22 = tl.load(in_ptr0 + 3) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp27 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr0 + 4) tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + 5) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp41 = tl.load(in_ptr0 + 6) tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK]) tmp45 = tl.load(in_ptr0 + 7) tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp51 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr0 + 8) tmp59 = tl.broadcast_to(tmp58, [XBLOCK, RBLOCK]) tmp61 = tl.load(in_ptr0 + 9) tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp65 = tl.load(in_ptr0 + 10) tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp69 = tl.load(in_ptr0 + 11) tmp70 = tl.broadcast_to(tmp69, [XBLOCK, RBLOCK]) tmp75 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp77 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr0 + 12) tmp83 = tl.broadcast_to(tmp82, [XBLOCK, RBLOCK]) tmp85 = tl.load(in_ptr0 + 13) tmp86 = tl.broadcast_to(tmp85, [XBLOCK, RBLOCK]) tmp89 = tl.load(in_ptr0 + 14) tmp90 = tl.broadcast_to(tmp89, [XBLOCK, RBLOCK]) tmp93 = tl.load(in_ptr0 + 15) tmp94 = tl.broadcast_to(tmp93, [XBLOCK, RBLOCK]) tmp99 = tl.load(in_ptr0 + r0, None) tmp101 = tl.load(in_ptr1 + r0, None) tmp106 = tl.load(in_ptr0 + (4 + r0), None) tmp109 = tl.load(in_ptr0 + (8 + r0), None) tmp112 = tl.load(in_ptr0 + (12 + r0), None) tmp116 = tl.load(in_ptr1 + (4 + r0), None) tmp123 = tl.load(in_ptr1 + (8 + r0), None) tmp130 = tl.load(in_ptr1 + (12 + r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 - tmp6 tmp8 = tl.full([1, 1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tmp2 * tmp9 tmp13 = tmp1 - tmp12 tmp16 = tmp1 - tmp15 tmp17 = tmp13 + tmp16 tmp20 = tmp1 - tmp19 tmp21 = tmp17 + tmp20 tmp24 = tmp1 - tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp10 / tmp25 tmp28 = tmp1 - tmp27 tmp30 = tmp29 + tmp4 tmp31 = tmp30 - tmp6 tmp32 = triton_helpers.maximum(tmp8, tmp31) tmp33 = tmp28 * tmp32 tmp36 = tmp1 - tmp35 tmp39 = tmp1 - tmp38 tmp40 = tmp36 + tmp39 tmp43 = tmp1 - tmp42 tmp44 = tmp40 + tmp43 tmp47 = tmp1 - tmp46 tmp48 = tmp44 + tmp47 tmp49 = tmp33 / tmp48 tmp50 = tmp26 + tmp49 tmp52 = tmp1 - tmp51 tmp54 = tmp53 + tmp4 tmp55 = tmp54 - tmp6 tmp56 = triton_helpers.maximum(tmp8, tmp55) tmp57 = tmp52 * tmp56 tmp60 = tmp1 - tmp59 tmp63 = tmp1 - tmp62 tmp64 = tmp60 + tmp63 tmp67 = tmp1 - tmp66 tmp68 = tmp64 + tmp67 tmp71 = tmp1 - tmp70 tmp72 = tmp68 + tmp71 tmp73 = tmp57 / tmp72 tmp74 = tmp50 + tmp73 tmp76 = tmp1 - tmp75 tmp78 = tmp77 + tmp4 tmp79 = tmp78 - tmp6 tmp80 = triton_helpers.maximum(tmp8, tmp79) tmp81 = tmp76 * tmp80 tmp84 = tmp1 - tmp83 tmp87 = tmp1 - tmp86 tmp88 = tmp84 + tmp87 tmp91 = tmp1 - tmp90 tmp92 = tmp88 + tmp91 tmp95 = tmp1 - tmp94 tmp96 = tmp92 + tmp95 tmp97 = tmp81 / tmp96 tmp98 = tmp74 + tmp97 tmp100 = tmp1 - tmp99 tmp102 = tmp101 + tmp4 tmp103 = tmp102 - tmp6 tmp104 = triton_helpers.maximum(tmp8, tmp103) tmp105 = tmp100 * tmp104 tmp107 = tmp1 - tmp106 tmp108 = tmp100 + tmp107 tmp110 = tmp1 - tmp109 tmp111 = tmp108 + tmp110 tmp113 = tmp1 - tmp112 tmp114 = tmp111 + tmp113 tmp115 = tmp105 / tmp114 tmp117 = tmp116 + tmp4 tmp118 = tmp117 - tmp6 tmp119 = triton_helpers.maximum(tmp8, tmp118) tmp120 = tmp107 * tmp119 tmp121 = tmp120 / tmp114 tmp122 = tmp115 + tmp121 tmp124 = tmp123 + tmp4 tmp125 = tmp124 - tmp6 tmp126 = triton_helpers.maximum(tmp8, tmp125) tmp127 = tmp110 * tmp126 tmp128 = tmp127 / tmp114 tmp129 = tmp122 + tmp128 tmp131 = tmp130 + tmp4 tmp132 = tmp131 - tmp6 tmp133 = triton_helpers.maximum(tmp8, tmp132) tmp134 = tmp113 * tmp133 tmp135 = tmp134 / tmp114 tmp136 = tmp129 + tmp135 tmp137 = tl.broadcast_to(tmp98, [XBLOCK, RBLOCK]) tmp139 = tl.sum(tmp137, 1)[:, None] tmp140 = tl.broadcast_to(tmp136, [XBLOCK, RBLOCK]) tmp142 = tl.sum(tmp140, 1)[:, None] tmp143 = 4.0 tmp144 = tmp139 / tmp143 tmp145 = 0.5 tmp146 = tmp144 * tmp145 tmp147 = tmp142 / tmp143 tmp148 = tmp147 * tmp145 tmp149 = tmp146 + tmp148 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp149, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_div_mean_mul_ones_like_relu_sub_sum_0[grid(1)]( buf4, arg1_1, arg0_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf4, class SimilarityLoss(nn.Module): def __init__(self): super(SimilarityLoss, self).__init__() @abstractmethod def forward(self, inputs, targets): pass class RankingLossNew(SimilarityLoss): """ Triplet ranking loss between pair similarities and pair labels. """ def __init__(self, margin=0.1, direction_weights=[0.5, 0.5]): super(RankingLossNew, self).__init__() self.margin = margin self.direction_weights = direction_weights def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
OatsProduction/flair
RankingLoss
false
11,762
[ "MIT" ]
0
1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
https://github.com/OatsProduction/flair/tree/1cf2c9a9ae487e279dce9f6b92c41fa32c4563cf
FrameAvgPool
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/fk/cfkcunh3plyysuvib63zgkougyqv2ia22pa4qcifvxy3tij7w7nx.py # Topologically Sorted Source Nodes: [vis_h], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # vis_h => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/l5/cl5sxfxzphslwufowywi3gzknqkh7vzlbg5ksmlhwebbayh7gahv.py # Topologically Sorted Source Nodes: [vis_h_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # vis_h_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze_1, [1, 4], [1, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [vis_h], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 16, grid=grid(16), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [vis_h_1], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf1, buf2, 4, grid=grid(4), stream=stream0) return (reinterpret_tensor(buf2, (4, 1), (1, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn.parallel import torch.nn as nn import torch.utils.data import torch.backends.cudnn class FrameAvgPool(nn.Module): def __init__(self, cfg): super(FrameAvgPool, self).__init__() input_size = cfg.INPUT_SIZE hidden_size = cfg.HIDDEN_SIZE kernel_size = cfg.KERNEL_SIZE stride = cfg.STRIDE self.vis_conv = nn.Conv1d(input_size, hidden_size, 1, 1) self.avg_pool = nn.AvgPool1d(kernel_size, stride) def forward(self, visual_input): vis_h = torch.relu(self.vis_conv(visual_input)) vis_h = self.avg_pool(vis_h) return vis_h def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'cfg': _mock_config(INPUT_SIZE=4, HIDDEN_SIZE=4, KERNEL_SIZE=4, STRIDE=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn.parallel import torch.nn as nn import torch.utils.data import torch.backends.cudnn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16)](buf1, primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) triton_poi_fused_avg_pool2d_1[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) return reinterpret_tensor(buf2, (4, 1), (1, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0), buf3 class FrameAvgPoolNew(nn.Module): def __init__(self, cfg): super(FrameAvgPoolNew, self).__init__() input_size = cfg.INPUT_SIZE hidden_size = cfg.HIDDEN_SIZE kernel_size = cfg.KERNEL_SIZE stride = cfg.STRIDE self.vis_conv = nn.Conv1d(input_size, hidden_size, 1, 1) self.avg_pool = nn.AvgPool1d(kernel_size, stride) def forward(self, input_0): primals_1 = self.vis_conv.weight primals_2 = self.vis_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
MicroTensor-ai/episodic-memory
FrameAvgPool
false
11,763
[ "MIT" ]
0
295a3752ab94c7a6f45355aa2c54bffbf84b574f
https://github.com/MicroTensor-ai/episodic-memory/tree/295a3752ab94c7a6f45355aa2c54bffbf84b574f
RobertaClassificationHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ey/cey6dsgmzj2byupf73e6nwt5fetf5ne2sa57kzcmy7ejvaqhqb72.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf4, 64, grid=grid(64), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from typing import Optional class RobertaClassificationHead(nn.Module): def __init__(self, num_classes, input_dim, inner_dim: 'Optional[int]'= None, dropout: 'float'=0.1, activation=nn.ReLU): super().__init__() if not inner_dim: inner_dim = input_dim self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(dropout) self.out_proj = nn.Linear(inner_dim, num_classes) self.activation_fn = activation() def forward(self, features): x = features[:, 0, :] x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_classes': 4, 'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf2, primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor( buf2, (16, 4), (4, 1), 0), primals_4, buf4 class RobertaClassificationHeadNew(nn.Module): def __init__(self, num_classes, input_dim, inner_dim: 'Optional[int]'= None, dropout: 'float'=0.1, activation=nn.ReLU): super().__init__() if not inner_dim: inner_dim = input_dim self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(dropout) self.out_proj = nn.Linear(inner_dim, num_classes) self.activation_fn = activation() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_4 = self.out_proj.weight primals_5 = self.out_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
NivekT/text
RobertaClassificationHead
false
11,764
[ "BSD-3-Clause" ]
0
4908d3c88f92296a4c23be2f064ccde13cce50ce
https://github.com/NivekT/text/tree/4908d3c88f92296a4c23be2f064ccde13cce50ce
SpatialGather_Module
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs_1 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1, ocr_context], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch._utils class SpatialGather_Module(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. Output: The correlation of every class map with every feature map shape = [n, num_feats, num_classes, 1] """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_Module, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, feats, probs): batch_size, c, _, _ = probs.size(0), probs.size(1), probs.size(2 ), probs.size(3) probs = probs.view(batch_size, c, -1) feats = feats.view(batch_size, feats.size(1), -1) feats = feats.permute(0, 2, 1) probs = F.softmax(self.scale * probs, dim=2) ocr_context = torch.matmul(probs, feats) ocr_context = ocr_context.permute(0, 2, 1).unsqueeze(3) return ocr_context def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK= 1, num_warps=2, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), class SpatialGather_ModuleNew(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. Output: The correlation of every class map with every feature map shape = [n, num_feats, num_classes, 1] """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_ModuleNew, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NikV-JS/semantic-segmentation
SpatialGather_Module
false
11,765
[ "BSD-3-Clause" ]
0
68fd9ddc5498590371f064c8bebb03ac80932766
https://github.com/NikV-JS/semantic-segmentation/tree/68fd9ddc5498590371f064c8bebb03ac80932766
TextProcessor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/by/cbyavqfpm6cctsjn76scubidnajec26whr355vus7lq6jaaa5rcx.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf2, 64, grid=grid(64), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F def reset_parameters_util(model): pass class TextProcessor(nn.Module): """Processes sentence representations to the correct hidden dimension""" def __init__(self, desc_dim, hid_dim): super(TextProcessor, self).__init__() self.desc_dim = desc_dim self.hid_dim = hid_dim self.transform = nn.Linear(desc_dim, hid_dim) self.reset_parameters() def reset_parameters(self): reset_parameters_util(self) def forward(self, desc): bs, num_classes, desc_dim = desc.size() desc = desc.view(-1, desc_dim) out = self.transform(desc) out = out.view(bs, num_classes, -1) return F.relu(out) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'desc_dim': 4, 'hid_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2 def reset_parameters_util(model): pass class TextProcessorNew(nn.Module): """Processes sentence representations to the correct hidden dimension""" def __init__(self, desc_dim, hid_dim): super(TextProcessorNew, self).__init__() self.desc_dim = desc_dim self.hid_dim = hid_dim self.transform = nn.Linear(desc_dim, hid_dim) self.reset_parameters() def reset_parameters(self): reset_parameters_util(self) def forward(self, input_0): primals_2 = self.transform.weight primals_3 = self.transform.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
OfirShechter/NLPMultimodalGame
TextProcessor
false
11,766
[ "BSD-3-Clause" ]
0
79bd8476da0c2f3185ed7241932bc1165558917b
https://github.com/OfirShechter/NLPMultimodalGame/tree/79bd8476da0c2f3185ed7241932bc1165558917b
InnerProductDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/mb/cmb72vxh36b4k6lvmt4562lj3nrqtpyzst2qbon2yqx22gdjfa7x.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # adj => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0) del arg0_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, 16, grid=grid(16), stream=stream0) return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.mm(z, z.t())) return adj def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.modules.loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](buf1, 16, XBLOCK=16, num_warps =1, num_stages=1) return buf1, class InnerProductDecoderNew(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoderNew, self).__init__() self.dropout = dropout self.act = act def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PatriciaXiao/gae-pytorch
InnerProductDecoder
false
11,767
[ "MIT" ]
0
eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
https://github.com/PatriciaXiao/gae-pytorch/tree/eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
ResidualConvUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => relu_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hc/chcx47xohlbah6m2k2mpiyct2oijgy7vuqj7z6iime4huasayvby.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %relu), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %relu), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, buf0, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 return (buf4, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_2[grid(256)](buf4, buf0, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf4, primals_2, primals_4, buf0, buf2 class ResidualConvUnitNew(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Northshoot/3d-photo-inpainting
ResidualConvUnit
false
11,768
[ "MIT" ]
0
49dd36ce4a277929831f09d978721b3fdb87eb25
https://github.com/Northshoot/3d-photo-inpainting/tree/49dd36ce4a277929831f09d978721b3fdb87eb25
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/um/cumdt56px4jhgi4x7ers5m2jlyr4stfdyfhyb47o43khr5qzdg6f.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ja/cjapoylwc442ttbiaridhuezkvo2e7durqwl2lytr7aq6togjqw3.py # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # attn_weights_4 => div_1 # sum_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_17, [1]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_poi_fused_div_sum_4 = async_compile.triton('triton_poi_fused_div_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_7 buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_4.run(buf6, buf10, 64, grid=grid(64), stream=stream0) return (reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.utils.data from torch import nn from torch.nn import Parameter import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Timesteps can be masked by supplying a T x T mask in the `attn_mask` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: if static_kv: assert kv_same and not qkv_same key = value = None else: saved_state = None if qkv_same: q, k, v = self.in_proj_qkv(query) elif kv_same: q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k, v = self.in_proj_kv(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if saved_state is not None: if 'prev_key' in saved_state: if static_kv: k = saved_state['prev_key'] else: k = torch.cat((saved_state['prev_key'], k), dim=0) if 'prev_value' in saved_state: if static_kv: v = saved_state['prev_value'] else: v = torch.cat((saved_state['prev_value'], v), dim=0) saved_state['prev_key'] = k saved_state['prev_value'] = v self._set_input_buffer(incremental_state, saved_state) if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1) ], dim=1) src_len = k.size(0) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) k = k.contiguous().view(src_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) v = v.contiguous().view(src_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1) ], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_weights += attn_mask.unsqueeze(0) if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.float().masked_fill(key_padding_mask .unsqueeze(1).unsqueeze(2), float('-inf')).type_as(attn_weights ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as( attn_weights) attn_weights = F.dropout(attn_weights, p=self.dropout, training= self.training) attn = torch.bmm(attn_weights, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self. head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads else: attn_weights = None return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, 'attn_state') or {} def _set_input_buffer(self, incremental_state, buffer): utils.set_incremental_state(self, incremental_state, 'attn_state', buffer) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.utils.data from torch import nn from torch.nn import Parameter import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 16)](buf7, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_7 buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_div_sum_4[grid(64)](buf6, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) return reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0 ), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0) class MultiheadAttentionNew(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None): weight = self.in_proj_weight bias = self.in_proj_bias weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, 'attn_state') or {} def _set_input_buffer(self, incremental_state, buffer): utils.set_incremental_state(self, incremental_state, 'attn_state', buffer) def forward(self, input_0, input_1, input_2): primals_4 = self.in_proj_weight primals_5 = self.in_proj_bias primals_6 = self.out_proj.weight primals_7 = self.out_proj.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
Novemser/fairseq
MultiheadAttention
false
11,769
[ "BSD-3-Clause" ]
0
b9e29a4711a6c0b7923879d5d59f3e879f0f228a
https://github.com/Novemser/fairseq/tree/b9e29a4711a6c0b7923879d5d59f3e879f0f228a
RewardEstimator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/z5/cz5bgdo2gmhnnmtf6w7lrjkvliacxo7nomq7mbmjquxqyxqgt5bj.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf4, 128, grid=grid(128), stream=stream0) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F def reset_parameters_util(model): pass class RewardEstimator(nn.Module): """Estimates the reward the agent will receieved. Value used as a baseline in REINFORCE loss""" def __init__(self, hid_dim): super(RewardEstimator, self).__init__() self.hid_dim = hid_dim self.v1 = nn.Linear(hid_dim, math.ceil(hid_dim / 2)) self.v2 = nn.Linear(math.ceil(hid_dim / 2), 1) self.reset_parameters() def reset_parameters(self): reset_parameters_util(self) def forward(self, x): x = x.detach() x = F.relu(self.v1(x)) x = self.v2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hid_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_3, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf4 def reset_parameters_util(model): pass class RewardEstimatorNew(nn.Module): """Estimates the reward the agent will receieved. Value used as a baseline in REINFORCE loss""" def __init__(self, hid_dim): super(RewardEstimatorNew, self).__init__() self.hid_dim = hid_dim self.v1 = nn.Linear(hid_dim, math.ceil(hid_dim / 2)) self.v2 = nn.Linear(math.ceil(hid_dim / 2), 1) self.reset_parameters() def reset_parameters(self): reset_parameters_util(self) def forward(self, input_0): primals_2 = self.v1.weight primals_3 = self.v1.bias primals_4 = self.v2.weight primals_5 = self.v2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
OfirShechter/NLPMultimodalGame
RewardEstimator
false
11,770
[ "BSD-3-Clause" ]
0
79bd8476da0c2f3185ed7241932bc1165558917b
https://github.com/OfirShechter/NLPMultimodalGame/tree/79bd8476da0c2f3185ed7241932bc1165558917b
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ew/cewggrlrjef57abtf6el5udfhzggviurshs4m5fekyv42qhvvt7h.py # Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # mixture_w => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1), (4, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool) # Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 4, grid=grid(4), stream=stream0) return (buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class Encoder(nn.Module): """Estimation of the nonnegative mixture weight by a 1-D conv layer. """ def __init__(self, kernel_size, enc_dim, audio_channels): super(Encoder, self).__init__() self.conv1d_U = nn.Conv1d(audio_channels, enc_dim, kernel_size= kernel_size, stride=kernel_size // 2, bias=False) def forward(self, mixture): """ Args: mixture: [M, T], M is batch size, T is #samples Returns: mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1 """ mixture_w = F.relu(self.conv1d_U(mixture)) return mixture_w def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4, 'enc_dim': 4, 'audio_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1), (4, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) return buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), buf2 class EncoderNew(nn.Module): """Estimation of the nonnegative mixture weight by a 1-D conv layer. """ def __init__(self, kernel_size, enc_dim, audio_channels): super(EncoderNew, self).__init__() self.conv1d_U = nn.Conv1d(audio_channels, enc_dim, kernel_size= kernel_size, stride=kernel_size // 2, bias=False) def forward(self, input_0): primals_1 = self.conv1d_U.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
PanagiotisP/demucs
Encoder
false
11,771
[ "MIT" ]
0
d115d0773ca08a081f5b6bfe274cf0e4ed9e2677
https://github.com/PanagiotisP/demucs/tree/d115d0773ca08a081f5b6bfe274cf0e4ed9e2677
PartialConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/fj/cfjzvvqpec3bkltw3iqoicgjjjbjt5sjrhrkdgaltmhp7rqzs5eb.py # Topologically Sorted Source Nodes: [output, no_update_holes, mask_sum, sub, mul_1, truediv, output_pre, output_1, new_mask, new_mask_1], Original ATen: [aten.convolution, aten.eq, aten.masked_fill, aten.sub, aten.mul, aten.div, aten.add, aten.ones_like] # Source node to ATen node mapping: # mask_sum => full_default, where # mul_1 => mul_1 # new_mask => full_default_2 # new_mask_1 => where_2 # no_update_holes => eq # output => convolution # output_1 => full_default_1, where_1 # output_pre => add # sub => sub # truediv => div # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%convolution_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %convolution_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %expand), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 64), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %where), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %expand), kwargs = {}) # %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %add), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 1, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %full_default_2), kwargs = {}) triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1 = async_compile.triton('triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp4 tmp7 = 64.0 tmp8 = tmp6 * tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp2, tmp9, tmp0) tmp11 = tmp8 / tmp10 tmp12 = tmp11 + tmp4 tmp13 = tl.where(tmp2, tmp1, tmp12) tmp14 = tl.where(tmp2, tmp1, tmp9) tl.store(in_out_ptr0 + (x2), tmp13, xmask) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [output_mask], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del primals_2 del primals_5 buf3 = buf1; del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output, no_update_holes, mask_sum, sub, mul_1, truediv, output_pre, output_1, new_mask, new_mask_1], Original ATen: [aten.convolution, aten.eq, aten.masked_fill, aten.sub, aten.mul, aten.div, aten.add, aten.ones_like] triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1.run(buf3, buf2, primals_4, buf4, 16, grid=grid(16), stream=stream0) del primals_4 return (buf3, buf4, primals_3, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def weights_init(init_type='gaussian'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find('Linear') == 0 ) and hasattr(m, 'weight'): if init_type == 'gaussian': nn.init.normal_(m.weight, 0.0, 0.02) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight, gain=math.sqrt(2)) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, 'Unsupported initialization: {}'.format(init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0.0) return init_fun class PartialConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__() self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, False) self.input_conv.apply(weights_init('kaiming')) self.slide_winsize = in_channels * kernel_size * kernel_size torch.nn.init.constant_(self.mask_conv.weight, 1.0) for param in self.mask_conv.parameters(): param.requires_grad = False def forward(self, input, mask): output = self.input_conv(input * mask) if self.input_conv.bias is not None: output_bias = self.input_conv.bias.view(1, -1, 1, 1).expand_as( output) else: output_bias = torch.zeros_like(output) with torch.no_grad(): output_mask = self.mask_conv(mask) no_update_holes = output_mask == 0 mask_sum = output_mask.masked_fill_(no_update_holes, 1.0) output_pre = (output - output_bias ) * self.slide_winsize / mask_sum + output_bias output = output_pre.masked_fill_(no_update_holes, 0.0) new_mask = torch.ones_like(output) new_mask = new_mask.masked_fill_(no_update_holes, 0.0) return output, new_mask def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1( in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp4 tmp7 = 64.0 tmp8 = tmp6 * tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp2, tmp9, tmp0) tmp11 = tmp8 / tmp10 tmp12 = tmp11 + tmp4 tmp13 = tl.where(tmp2, tmp1, tmp12) tmp14 = tl.where(tmp2, tmp1, tmp9) tl.store(in_out_ptr0 + x2, tmp13, xmask) tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) del primals_2 del primals_5 buf3 = buf1 del buf1 buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_add_convolution_div_eq_masked_fill_mul_ones_like_sub_1[ grid(16)](buf3, buf2, primals_4, buf4, 16, XBLOCK=16, num_warps =1, num_stages=1) del primals_4 return buf3, buf4, primals_3, buf0, buf2 def weights_init(init_type='gaussian'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find('Linear') == 0 ) and hasattr(m, 'weight'): if init_type == 'gaussian': nn.init.normal_(m.weight, 0.0, 0.02) elif init_type == 'xavier': nn.init.xavier_normal_(m.weight, gain=math.sqrt(2)) elif init_type == 'kaiming': nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') elif init_type == 'orthogonal': nn.init.orthogonal_(m.weight, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, 'Unsupported initialization: {}'.format(init_type) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0.0) return init_fun class PartialConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super().__init__() self.input_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, False) self.input_conv.apply(weights_init('kaiming')) self.slide_winsize = in_channels * kernel_size * kernel_size torch.nn.init.constant_(self.mask_conv.weight, 1.0) for param in self.mask_conv.parameters(): param.requires_grad = False def forward(self, input_0, input_1): primals_1 = self.input_conv.weight primals_4 = self.input_conv.bias primals_2 = self.mask_conv.weight primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
Northshoot/3d-photo-inpainting
PartialConv
false
11,772
[ "MIT" ]
0
49dd36ce4a277929831f09d978721b3fdb87eb25
https://github.com/Northshoot/3d-photo-inpainting/tree/49dd36ce4a277929831f09d978721b3fdb87eb25
Baseline
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [features], Original ATen: [aten.cat] # Source node to ATen node mapping: # features => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bw/cbwhrneszzxf3i3obub3zg7rs3yfa7u6qcjcviv4jza2bgjmzxlc.py # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.clamp, aten.ge] # Source node to ATen node mapping: # hidden => clamp_min # Graph fragment: # %add_tensor : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_tensor, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_tensor, 0), kwargs = {}) triton_poi_fused_clamp_ge_1 = async_compile.triton('triton_poi_fused_clamp_ge_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [features], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) del primals_1 del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.clamp, aten.ge] triton_poi_fused_clamp_ge_1.run(buf1, primals_5, buf2, buf5, 16, grid=grid(16), stream=stream0) del buf1 del primals_5 buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [pred_score], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 return (buf4, buf0, buf2, primals_6, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class Baseline(nn.Module): """Baseline """ def __init__(self, hid_dim, x_dim, binary_dim, inp_dim): super(Baseline, self).__init__() self.x_dim = x_dim self.binary_dim = binary_dim self.inp_dim = inp_dim self.hid_dim = hid_dim self.linear1 = nn.Linear(x_dim + self.binary_dim + self.inp_dim, self.hid_dim) self.linear2 = nn.Linear(self.hid_dim, 1) def forward(self, x, binary, inp): """Estimate agent's loss based on the agent's input. Args: x: Image features. binary: Communication message. inp: Hidden state (used when agent is the Receiver). Output: score: An estimate of the agent's loss. """ features = [] if x is not None: features.append(x) if binary is not None: features.append(binary) if inp is not None: features.append(inp) features = torch.cat(features, 1) hidden = self.linear1(features).clamp(min=0) pred_score = self.linear2(hidden) return pred_score def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'hid_dim': 4, 'x_dim': 4, 'binary_dim': 4, 'inp_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_clamp_ge_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_clamp_ge_1[grid(16)](buf1, primals_5, buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del primals_5 buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 return buf4, buf0, buf2, primals_6, buf5 class BaselineNew(nn.Module): """Baseline """ def __init__(self, hid_dim, x_dim, binary_dim, inp_dim): super(BaselineNew, self).__init__() self.x_dim = x_dim self.binary_dim = binary_dim self.inp_dim = inp_dim self.hid_dim = hid_dim self.linear1 = nn.Linear(x_dim + self.binary_dim + self.inp_dim, self.hid_dim) self.linear2 = nn.Linear(self.hid_dim, 1) def forward(self, input_0, input_1, input_2): primals_4 = self.linear1.weight primals_5 = self.linear1.bias primals_6 = self.linear2.weight primals_7 = self.linear2.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
OfirShechter/NLPMultimodalGame
Baseline
false
11,773
[ "BSD-3-Clause" ]
0
79bd8476da0c2f3185ed7241932bc1165558917b
https://github.com/OfirShechter/NLPMultimodalGame/tree/79bd8476da0c2f3185ed7241932bc1165558917b
CanineSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del buf9 return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn import torch.utils.checkpoint class CanineSelfAttention(nn.Module): def __init__(self, config): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config. max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, from_tensor, to_tensor, attention_mask=None, head_mask=None, output_attentions=False): mixed_query_layer = self.query(from_tensor) key_layer = self.transpose_for_scores(self.key(to_tensor)) value_layer = self.transpose_for_scores(self.value(to_tensor)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): seq_length = from_tensor.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self. max_position_embeddings - 1) positional_embedding = positional_embedding if self.position_embedding_type == 'relative_key': relative_position_scores = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == 'relative_key_query': relative_position_scores_query = torch.einsum('bhld,lrd->bhlr', query_layer, positional_embedding) relative_position_scores_key = torch.einsum('bhrd,lrd->bhlr', key_layer, positional_embedding) attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: if attention_mask.ndim == 3: attention_mask = torch.unsqueeze(attention_mask, dim=1) attention_mask = (1.0 - attention_mask.float()) * -10000.0 attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, position_embedding_type=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf9 return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class CanineSelfAttentionNew(nn.Module): def __init__(self, config): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, 'position_embedding_type', 'absolute') if (self.position_embedding_type == 'relative_key' or self. position_embedding_type == 'relative_key_query'): self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config. max_position_embeddings - 1, self.attention_head_size) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, input_0, input_1): primals_1 = self.query.weight primals_2 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_7 = self.value.weight primals_8 = self.value.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Clemens123/transformers
CanineSelfAttention
false
11,774
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/kf/ckfbsz4oboduveqkdlkpkg5kmbncplgcwjsmqde23zgyjqkqvg2y.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.add] # Source node to ATen node mapping: # x => relu # x_1 => add # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_2), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xa/cxajtlnaldpqnaxjam637eaztqagzpiz2g2jfrayt4cedzev26o7.py # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => add_1 # x_4 => relu_1 # x_5 => add_2 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_4), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_1, %primals_5), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = tmp4 <= tmp7 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lr/clrt24b6zzoe26ly7wyc52xtag2l3e23e5ptcwxz4qsxgueous3x.py # Topologically Sorted Source Nodes: [x, x_7, x_8, add_4], Original ATen: [aten.relu, aten.mul, aten.add] # Source node to ATen node mapping: # add_4 => add_4 # x => relu # x_7 => mul # x_8 => add_3 # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %primals_7), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %add_3), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %relu), kwargs = {}) triton_poi_fused_add_mul_relu_2 = async_compile.triton('triton_poi_fused_add_mul_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_2', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp5 = tmp3 * tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) tl.store(out_ptr2 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_5, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_8, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_1.run(buf1, primals_4, primals_5, buf2, buf5, 256, grid=grid(256), stream=stream0) del primals_4 del primals_5 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x, x_7, x_8, add_4], Original ATen: [aten.relu, aten.mul, aten.add] triton_poi_fused_add_mul_relu_2.run(primals_1, buf3, primals_7, primals_8, buf4, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_8 return (buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class ResidualBlock(nn.Module): """ Residual block from R2D3/IMPALA Taken from [1,2] """ def __init__(self, num_channels, first_conv_weight_scale): super().__init__() self.conv1 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bias1 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias2 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias3 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias4 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.scale = nn.Parameter(torch.ones([num_channels, 1, 1])) with torch.no_grad(): self.conv2.weight *= 0 self.conv1.weight *= first_conv_weight_scale def forward(self, x): None x = F.relu(x, inplace=True) original = x x = x + self.bias1 x = self.conv1(x) x = x + self.bias2 x = F.relu(x, inplace=True) x = x + self.bias3 x = self.conv2(x) x = x * self.scale x = x + self.bias4 return original + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4, 'first_conv_weight_scale': 1.0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = tmp4 <= tmp7 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp5 = tmp3 * tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) tl.store(out_ptr2 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_5, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_8, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_relu_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(256)](buf1, primals_4, primals_5, buf2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 del primals_5 buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf1 del buf1 triton_poi_fused_add_mul_relu_2[grid(256)](primals_1, buf3, primals_7, primals_8, buf4, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_8 return buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5 class ResidualBlockNew(nn.Module): """ Residual block from R2D3/IMPALA Taken from [1,2] """ def __init__(self, num_channels, first_conv_weight_scale): super().__init__() self.conv1 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bias1 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias2 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias3 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.bias4 = nn.Parameter(torch.zeros([num_channels, 1, 1])) self.scale = nn.Parameter(torch.ones([num_channels, 1, 1])) with torch.no_grad(): self.conv2.weight *= 0 self.conv1.weight *= first_conv_weight_scale def forward(self, input_0): primals_2 = self.bias1 primals_4 = self.bias2 primals_5 = self.bias3 primals_7 = self.bias4 primals_8 = self.scale primals_3 = self.conv1.weight primals_6 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Oliver-Tautz/minecraft-bc-2020
ResidualBlock
false
11,775
[ "MIT" ]
0
d18ba1c1afbf92f897e4bbe70c2c71292510f928
https://github.com/Oliver-Tautz/minecraft-bc-2020/tree/d18ba1c1afbf92f897e4bbe70c2c71292510f928
OutConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/fz/cfzfr6im5s4qzpjlunfbib7yovw3vy25yvl62ydst3vivlkvnhfd.py # Topologically Sorted Source Nodes: [tmp, softmax], Original ATen: [aten.convolution, aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub, sum_1 # tmp => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_convolution_0 = async_compile.triton('triton_poi_fused__softmax_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp12 = tmp9 + tmp11 tmp13 = triton_helpers.maximum(tmp8, tmp12) tmp17 = tmp14 + tmp16 tmp18 = triton_helpers.maximum(tmp13, tmp17) tmp19 = tmp3 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp7 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp12 - tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp17 - tmp18 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tl.store(out_ptr0 + (x2), tmp18, xmask) tl.store(out_ptr1 + (x2), tmp29, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ye/cyeq7kt3vhx5yvzbvewnalpm7n77qbo4d2jv7td2ozztdkcvcqvz.py # Topologically Sorted Source Nodes: [tmp, softmax], Original ATen: [aten.convolution, aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub # tmp => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_convolution_1 = async_compile.triton('triton_poi_fused__softmax_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [tmp], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tmp, softmax], Original ATen: [aten.convolution, aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_convolution_0.run(buf0, primals_2, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [tmp, softmax], Original ATen: [aten.convolution, aten._softmax] triton_poi_fused__softmax_convolution_1.run(buf3, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_2 return (buf3, primals_1, primals_3, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.softmax = nn.Softmax(dim=1) def forward(self, x): tmp = self.conv(x) return self.softmax(tmp) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp12 = tmp9 + tmp11 tmp13 = triton_helpers.maximum(tmp8, tmp12) tmp17 = tmp14 + tmp16 tmp18 = triton_helpers.maximum(tmp13, tmp17) tmp19 = tmp3 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp7 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp12 - tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp17 - tmp18 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tl.store(out_ptr0 + x2, tmp18, xmask) tl.store(out_ptr1 + x2, tmp29, xmask) @triton.jit def triton_poi_fused__softmax_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_convolution_0[grid(64)](buf0, primals_2, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf0 del buf0 triton_poi_fused__softmax_convolution_1[grid(256)](buf3, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf2 del primals_2 return buf3, primals_1, primals_3, buf3 class OutConvNew(nn.Module): def __init__(self, in_channels, out_channels): super(OutConvNew, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.softmax = nn.Softmax(dim=1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Orelbenr/acoustic-fencing
OutConv
false
11,776
[ "MIT" ]
0
2d8c6121c915d2f12fae3c9d776e6339f028e35a
https://github.com/Orelbenr/acoustic-fencing/tree/2d8c6121c915d2f12fae3c9d776e6339f028e35a
GraphConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wv/cwvsxo4q6wyoxpozsubbimmg6xvl34ow44hy6yl5mwa23uuy77sa.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mm_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) del buf0 buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf2, buf3, 16, grid=grid(16), stream=stream0) return (buf2, buf3, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter import torch.nn.modules.loss class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.weight = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = torch.mm(input, self.weight) output = torch.spmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter import torch.nn.modules.loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf2, buf3, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0) class GraphConvolutionNew(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolutionNew, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.weight = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
PatriciaXiao/gae-pytorch
GraphConvolution
false
11,777
[ "MIT" ]
0
eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
https://github.com/PatriciaXiao/gae-pytorch/tree/eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
GCNModelVAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3w/c3w6ed26vbtzgzigkkyuiuwphm777x7aoogcxkvoly3ia7qifnzg.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # output_1 => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%mm_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf2, 16, grid=grid(16), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_4, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf3, out=buf4) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf5, out=buf6) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.mm] extern_kernels.mm(buf4, reinterpret_tensor(buf4, (4, 4), (1, 4), 0), out=buf7) return (buf7, buf4, buf6, buf2, buf4, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter import torch.nn as nn import torch.nn.modules.loss class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.weight = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = torch.mm(input, self.weight) output = torch.spmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.mm(z, z.t())) return adj class GCNModelVAE(nn.Module): def __init__(self, input_feat_dim, hidden_dim1, hidden_dim2, dropout): super(GCNModelVAE, self).__init__() self.gc1 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu) self.gc2 = GraphConvolution(hidden_dim1, hidden_dim2, dropout, act= lambda x: x) self.gc3 = GraphConvolution(hidden_dim1, hidden_dim2, dropout, act= lambda x: x) self.dc = InnerProductDecoder(dropout, act=lambda x: x) def encode(self, x, adj): hidden1 = self.gc1(x, adj) return self.gc2(hidden1, adj), self.gc3(hidden1, adj) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, x, adj): mu, logvar = self.encode(x, adj) z = self.reparameterize(mu, logvar) return self.dc(z), mu, logvar def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_feat_dim': 4, 'hidden_dim1': 4, 'hidden_dim2': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.nn.functional as F from torch.nn.modules.module import Module from torch.nn.parameter import Parameter import torch.nn as nn import torch.nn.modules.loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_4, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf3, out=buf4) buf5 = buf3 del buf3 extern_kernels.mm(buf2, primals_5, out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf5, out=buf6) buf7 = buf5 del buf5 extern_kernels.mm(buf4, reinterpret_tensor(buf4, (4, 4), (1, 4), 0), out=buf7) return buf7, buf4, buf6, buf2, buf4, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0) class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.weight = Parameter(torch.FloatTensor(in_features, out_features)) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = torch.mm(input, self.weight) output = torch.spmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.mm(z, z.t())) return adj class GCNModelVAENew(nn.Module): def __init__(self, input_feat_dim, hidden_dim1, hidden_dim2, dropout): super(GCNModelVAENew, self).__init__() self.gc1 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu) self.gc2 = GraphConvolution(hidden_dim1, hidden_dim2, dropout, act= lambda x: x) self.gc3 = GraphConvolution(hidden_dim1, hidden_dim2, dropout, act= lambda x: x) self.dc = InnerProductDecoder(dropout, act=lambda x: x) def encode(self, x, adj): hidden1 = self.gc1(x, adj) return self.gc2(hidden1, adj), self.gc3(hidden1, adj) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_2 = self.gc2.weight primals_3 = self.gc3.weight primals_4 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1], output[2]
PatriciaXiao/gae-pytorch
GCNModelVAE
false
11,778
[ "MIT" ]
0
eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
https://github.com/PatriciaXiao/gae-pytorch/tree/eb0e9bdf9a2f23d38941ac731bd481bd6da737b9
BothContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/42/c42q6xmrtx4mk6cvsm764oigvfmjedisa43isepa27ioqcfzfgtm.py # Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # sub => sub # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %addmm_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, buf4, buf2, buf5, 16, grid=grid(16), stream=stream0) return (buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class BothContextGate(nn.Module): """Apply the context gate to both contexts""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(BothContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh((1.0 - z) * target + z * source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(16)](buf1, buf4, buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class BothContextGateNew(nn.Module): """Apply the context gate to both contexts""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(BothContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
PiescesHusky/OpenNMT-py
BothContextGate
false
11,779
[ "MIT" ]
0
7276cf94f989c50b3169742f64e64142897d1ec0
https://github.com/PiescesHusky/OpenNMT-py/tree/7276cf94f989c50b3169742f64e64142897d1ec0
ContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/x7/cx7xziu4lpr42gzh3hblzhyhhr2agimvsluvyrub77hqbwauajw5.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # z => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_1, primals_2, buf4, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 del primals_9 return (buf2, buf3, buf5, primals_3, buf0, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = buf1 del buf1 triton_poi_fused_sigmoid_1[grid(16)](buf2, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_2[grid(32)](primals_1, primals_2, buf4, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 del primals_9 return buf2, buf3, buf5, primals_3, buf0, buf2, buf4 class ContextGateNew(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGateNew, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, input_0, input_1, input_2): primals_4 = self.gate.weight primals_5 = self.gate.bias primals_1 = self.source_proj.weight primals_7 = self.source_proj.bias primals_8 = self.target_proj.weight primals_9 = self.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2]
PiescesHusky/OpenNMT-py
ContextGate
false
11,780
[ "MIT" ]
0
7276cf94f989c50b3169742f64e64142897d1ec0
https://github.com/PiescesHusky/OpenNMT-py/tree/7276cf94f989c50b3169742f64e64142897d1ec0
TargetContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7l/c7lf5woemwxcoeo376uvq4tswpw24vydykzmrhtxemqtbvcbg3gw.py # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %add_tensor), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_out_ptr0 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp6 = tmp4 + tmp5 tmp7 = tmp3 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, buf1, buf4, primals_7, 16, grid=grid(16), stream=stream0) del primals_7 return (buf5, primals_3, buf0, buf1, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class TargetContextGate(nn.Module): """Apply the context gate only to the target context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(TargetContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh(z * target + source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_out_ptr0 + x2, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp6 = tmp4 + tmp5 tmp7 = tmp3 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = buf2 del buf2 triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, buf1, buf4, primals_7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_7 return buf5, primals_3, buf0, buf1, buf3, buf4, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class TargetContextGateNew(nn.Module): """Apply the context gate only to the target context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(TargetContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
PiescesHusky/OpenNMT-py
TargetContextGate
false
11,781
[ "MIT" ]
0
7276cf94f989c50b3169742f64e64142897d1ec0
https://github.com/PiescesHusky/OpenNMT-py/tree/7276cf94f989c50b3169742f64e64142897d1ec0
SourceContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6s/c6s456zdtwmlik5mrlyh27gyo7fuehy7vzu5kdq6caawwt6hjyvr.py # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor, %mul), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), out=buf4) del primals_8 buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, primals_9, buf1, buf2, 16, grid=grid(16), stream=stream0) del primals_9 return (buf5, primals_3, buf0, buf1, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGate(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh(target + z * source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8 ), 0), out=buf4) del primals_8 buf5 = buf4 del buf4 triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, primals_9, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 return buf5, primals_3, buf0, buf1, buf2, buf3, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGateNew(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
PiescesHusky/OpenNMT-py
SourceContextGate
false
11,782
[ "MIT" ]
0
7276cf94f989c50b3169742f64e64142897d1ec0
https://github.com/PiescesHusky/OpenNMT-py/tree/7276cf94f989c50b3169742f64e64142897d1ec0
relu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/vt/cvt5va4h5q4vsog6u4y2lbtpnebzhbv2cs6oarhmehuoszkkjfsd.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %relu), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(arg0_1, arg0_1, 256, grid=grid(256), stream=stream0) return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class relu(nn.Module): def forward(self, x): return F.relu(x, inplace=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](arg0_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) return arg0_1, class reluNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PistonY/MobileNetV3.pytorch
relu
false
11,783
[ "MIT" ]
0
9dc56359247d8a63a9a392bb51183ba0f8a94f33
https://github.com/PistonY/MobileNetV3.pytorch/tree/9dc56359247d8a63a9a392bb51183ba0f8a94f33
Hswish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from itertools import product as product class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HswishNew(nn.Module): def __init__(self, inplace=True): super(HswishNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PoWeiChiao/3DDFA_V2
Hswish
false
11,784
[ "MIT" ]
0
5b4ae883705a1f5b1f15c19203bedbd47fc8a832
https://github.com/PoWeiChiao/3DDFA_V2/tree/5b4ae883705a1f5b1f15c19203bedbd47fc8a832
ConvReLUNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/gy/cgylhqrp7uo6ulwwvwcaavkdj6lb3xbmk43eobqwwqruey33hhwc.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + (x2), tmp13, xmask) tl.store(out_ptr1 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/pa/cpaccjq76xvjux47qgs7wy4lqiq65radyhdwdqtrvh44sdzkani6.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_4, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del buf2 del buf3 del primals_5 return (reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F from torch import nn import torch.utils.data import torch.optim class ConvReLUNorm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNorm, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, padding=kernel_size // 2) self.norm = nn.LayerNorm(out_channels) self.dropout = nn.Dropout(dropout) def forward(self, signal): out = F.relu(self.conv(signal)) out = self.norm(out.transpose(1, 2)).transpose(1, 2) return self.dropout(out) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + x2, tmp13, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(16, 4)](buf1, buf2, buf3, primals_4, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del buf2 del buf3 del primals_5 return reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0 ), primals_1, primals_3, primals_4, buf1 class ConvReLUNormNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNormNew, self).__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, padding=kernel_size // 2) self.norm = nn.LayerNorm(out_channels) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.norm.weight primals_5 = self.norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
PiotrDabkowski/NeMo
ConvReLUNorm
false
11,785
[ "Apache-2.0" ]
0
7c251e9035b24136cf130f3caf760087e5ccf07c
https://github.com/PiotrDabkowski/NeMo/tree/7c251e9035b24136cf130f3caf760087e5ccf07c
LayerNorm1D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/kn/cknns27twhmh46fkkh76rwaeaiuw6btrbbfooydhhvbpqusrv4ep.py # Topologically Sorted Source Nodes: [sub, add, x, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # sub => sub # x => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {}) triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = (xindex // 64) x5 = xindex % 16 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x4), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, add, x, mul, add_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm1D(nn.Module): def __init__(self, num_outputs, eps=1e-05, affine=True): super(LayerNorm1D, self).__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(1, num_outputs)) self.bias = nn.Parameter(torch.zeros(1, num_outputs)) def forward(self, inputs): input_mean = inputs.mean(1, keepdim=True).expand_as(inputs) input_std = inputs.std(1, keepdim=True).expand_as(inputs) x = (inputs - input_mean) / (input_std + self.eps) return x * self.weight.expand_as(x) + self.bias.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_outputs': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = xindex // 64 x5 = xindex % 16 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x4, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNorm1DNew(nn.Module): def __init__(self, num_outputs, eps=1e-05, affine=True): super(LayerNorm1DNew, self).__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(1, num_outputs)) self.bias = nn.Parameter(torch.zeros(1, num_outputs)) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Pluriscient/learn-to-learn
LayerNorm1D
false
11,786
[ "MIT" ]
0
4aa0143522eb90f6439b83ed424d12b434cb344b
https://github.com/Pluriscient/learn-to-learn/tree/4aa0143522eb90f6439b83ed424d12b434cb344b
FC1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wy/cwy4bkom3heduy3pyh2rq7ovts2vzyguxif2kaciolhpijlgg3gt.py # Topologically Sorted Source Nodes: [mul, x1], Original ATen: [aten.mul, aten.relu] # Source node to ATen node mapping: # mul => mul # x1 => relu # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mul,), kwargs = {}) triton_poi_fused_mul_relu_0 = async_compile.triton('triton_poi_fused_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/5m/c5mxenpn5rr2lxzye7beyvzolhkdh7biz2mzwnxf3aa2bgsefunj.py # Topologically Sorted Source Nodes: [mul_1, x2], Original ATen: [aten.mul, aten.relu] # Source node to ATen node mapping: # mul_1 => mul_1 # x2 => relu_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 4), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mul_1,), kwargs = {}) triton_poi_fused_mul_relu_1 = async_compile.triton('triton_poi_fused_mul_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/tu/ctuuweetop4wyriwx22j73szuytd6b636pl2izrk4cujngosviqm.py # Topologically Sorted Source Nodes: [mul_2, x3], Original ATen: [aten.mul, aten.relu] # Source node to ATen node mapping: # mul_2 => mul_2 # x3 => relu_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 4), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mul_2,), kwargs = {}) triton_poi_fused_mul_relu_2 = async_compile.triton('triton_poi_fused_mul_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/gr/cgrym6dwvbkt22j65a5kfulntzhchvna45jnofcrtlpa4354pqii.py # Topologically Sorted Source Nodes: [mul_3, x4], Original ATen: [aten.mul, aten.sigmoid] # Source node to ATen node mapping: # mul_3 => mul_3 # x4 => sigmoid # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 4), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul_3,), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.sigmoid(tmp5) tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (2, 4), (4, 1)) assert_size_stride(primals_7, (2, ), (1, )) assert_size_stride(primals_8, (1, 2), (2, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [mul, x1], Original ATen: [aten.mul, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_mul_relu_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [mul_1, x2], Original ATen: [aten.mul, aten.relu] triton_poi_fused_mul_relu_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [mul_2, x3], Original ATen: [aten.mul, aten.relu] triton_poi_fused_mul_relu_2.run(buf5, primals_7, 128, grid=grid(128), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 2), (2, 1), 0), reinterpret_tensor(primals_8, (2, 1), (1, 2), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [mul_3, x4], Original ATen: [aten.mul, aten.sigmoid] triton_poi_fused_mul_sigmoid_3.run(buf7, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 return (buf1, buf3, buf5, buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FC1(nn.Module): def __init__(self, nInput, activate, weight): super(FC1, self).__init__() self.nInput = nInput self.fc1 = nn.Linear(self.nInput, self.nInput * 2) self.fc2 = nn.Linear(self.nInput * 2, self.nInput) self.fc3 = nn.Linear(self.nInput, self.nInput // 2) self.fc4 = nn.Linear(self.nInput // 2, 1) self.weight = weight if activate == 'sigmoid': self.activate = nn.Sigmoid() else: self.activate = nn.ReLU() self.dropout = nn.Dropout(p=0.2) self.sigmoid = nn.Sigmoid() def forward(self, x): x1 = self.activate(self.weight * self.dropout(self.fc1(x))) x2 = self.activate(self.weight * self.dropout(self.fc2(x1))) x3 = self.activate(self.weight * self.fc3(x2)) x4 = self.sigmoid(self.weight * self.fc4(x3)) return x1, x2, x3, x4 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nInput': 4, 'activate': 4, 'weight': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_mul_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_mul_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.sigmoid(tmp5) tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (2, 4), (4, 1)) assert_size_stride(primals_7, (2,), (1,)) assert_size_stride(primals_8, (1, 2), (2, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_relu_0[grid(512)](buf1, primals_2, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_mul_relu_1[grid(256)](buf3, primals_5, 256, XBLOCK =128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf4 triton_poi_fused_mul_relu_2[grid(128)](buf5, primals_7, 128, XBLOCK =128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 2), (2, 1), 0), reinterpret_tensor(primals_8, (2, 1), (1, 2), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_mul_sigmoid_3[grid(64)](buf7, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 return buf1, buf3, buf5, buf7, reinterpret_tensor(primals_3, (64, 4), ( 4, 1), 0), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4 class FC1New(nn.Module): def __init__(self, nInput, activate, weight): super(FC1New, self).__init__() self.nInput = nInput self.fc1 = nn.Linear(self.nInput, self.nInput * 2) self.fc2 = nn.Linear(self.nInput * 2, self.nInput) self.fc3 = nn.Linear(self.nInput, self.nInput // 2) self.fc4 = nn.Linear(self.nInput // 2, 1) self.weight = weight if activate == 'sigmoid': self.activate = nn.Sigmoid() else: self.activate = nn.ReLU() self.dropout = nn.Dropout(p=0.2) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2], output[3]
Po-Chun-Chien/LUT-Net
FC1
false
11,787
[ "MIT" ]
0
413559027980db2585d939cd4a514a172b62f57d
https://github.com/Po-Chun-Chien/LUT-Net/tree/413559027980db2585d939cd4a514a172b62f57d
DecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_2 => clone_5 # Graph fragment: # %clone_5 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bs/cbsluabtq7ll426nybkislhh3cajm6f7ggrxam362hohynwnvtk6.py # Topologically Sorted Source Nodes: [eq_1], Original ATen: [aten.eq] # Source node to ATen node mapping: # eq_1 => eq_1 # Graph fragment: # %eq_1 : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_20, 0), kwargs = {}) triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/36/c36zsmb2dr2xwh3h6rcgpb7jdbbcmy6kovknslvyz4kid7i57lf5.py # Topologically Sorted Source Nodes: [dot_score_2, dot_score_3, attn_score_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_score_1 => amax_1, exp_1, sub_2, sum_2 # dot_score_2 => div_2 # dot_score_3 => full_default, where_1 # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_29, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default, %div_2), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [-1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + (x2), tmp20, xmask) tl.store(out_ptr1 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/wk/cwkdg3dnhowxdap7def2juvpsbrycmveqwliujtpqakkhtthzuod.py # Topologically Sorted Source Nodes: [dot_score_2, dot_score_3, attn_score_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_score_1 => amax_1, div_3, exp_1, sub_2 # dot_score_2 => div_2 # dot_score_3 => full_default, where_1 # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_29, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default, %div_2), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [-1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x4), xmask) tmp6 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone_8 # Graph fragment: # %clone_8 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_16,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ij/cijbhplgxtufwlpqdghk2mzxbtgittgxkd56nycypbmt3l4duyts.py # Topologically Sorted Source Nodes: [add_1, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_3 # ffn_input => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_35, %view_35), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 + tmp0 tmp3 = tmp2 + tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 + tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp12 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp6 - tmp12 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp9 - tmp12 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = tmp23 / tmp11 tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tl.store(out_ptr0 + (x0), tmp12, xmask) tl.store(out_ptr1 + (x0), tmp27, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/b4/cb4vishslu36oij3anjk3n4l3aqwdu26tnp46tzd5jxxryn4ad7i.py # Topologically Sorted Source Nodes: [add_1, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_3 # ffn_input => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_3, var_mean_1 # Graph fragment: # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_35, %view_35), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_23), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_24), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 + tmp0 tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_37,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/he/chevf4d6tadiz3y2a2abr2lj2bvo3wyfykoivwj2s4xedp3vdjuf.py # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] # Source node to ATen node mapping: # add_2 => add_6 # Graph fragment: # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %view_39), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hn/chnyp4bqchi6cc3qkpikodtjzt7sfs4gz3r2kunqaesb7ahrywso.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_7, rsqrt_2, var_mean_2 # Graph fragment: # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_6, [2]), kwargs = {correction: 0, keepdim: True}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_7,), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/al/cal3txxjlyumb2wxf6pzsp7g5yvv5ygiluv6ygjjzldvb2woph4t.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_7, add_8, mul_4, mul_5, rsqrt_2, sub_4, var_mean_2 # Graph fragment: # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_6, [2]), kwargs = {correction: 0, keepdim: True}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_7,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %getitem_5), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %rsqrt_2), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_29), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_30), kwargs = {}) triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_21, (4, 4), (4, 1)) assert_size_stride(primals_22, (4, ), (1, )) assert_size_stride(primals_23, (4, ), (1, )) assert_size_stride(primals_24, (4, ), (1, )) assert_size_stride(primals_25, (4, 4), (4, 1)) assert_size_stride(primals_26, (4, ), (1, )) assert_size_stride(primals_27, (4, 4), (4, 1)) assert_size_stride(primals_28, (4, ), (1, )) assert_size_stride(primals_29, (4, ), (1, )) assert_size_stride(primals_30, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf0) del primals_13 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf1) del primals_15 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf2) del primals_18 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_14, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_14 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_16, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_16 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [eq_1], Original ATen: [aten.eq] triton_poi_fused_eq_1.run(primals_20, buf6, 64, grid=grid(64), stream=stream0) del primals_20 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [dot_score_2, dot_score_3, attn_score_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [dot_score_2, dot_score_3, attn_score_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [scaled_attention_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_19, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_19 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [scaled_attention_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [linear_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_22, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_22 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add_1, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, ffn_input], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf13, buf14, buf15, primals_23, primals_24, buf16, 64, grid=grid(64), stream=stream0) del primals_24 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_25, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf18, primals_26, buf24, 64, grid=grid(64), stream=stream0) del primals_26 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_27, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [add_2], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf20, buf16, primals_28, 64, grid=grid(64), stream=stream0) del primals_28 buf21 = buf15; del buf15 # reuse buf22 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf20, buf21, buf22, primals_29, primals_30, buf23, 64, grid=grid(64), stream=stream0) del buf21 del buf22 del primals_30 return (buf23, primals_23, primals_29, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (16, 4), (4, 1), 0), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(buf18, (16, 4), (4, 1), 0), buf20, primals_27, buf24, primals_25, primals_21, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, q, k, v, mask): batch_size = q.shape[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.reshape_for_multi_heads_attention(q) k = self.reshape_for_multi_heads_attention(k) v = self.reshape_for_multi_heads_attention(v) scaled_attention, _attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = scaled_attention.transpose(2, 1).contiguous().view( batch_size, -1, self.d_model) return self.wo(scaled_attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) def forward(self, x): return self.w_2(F.relu(self.w_1(x))) class DecoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super(DecoderLayer, self).__init__() self.self_attention = MultiHeadAttention(d_model, num_heads) self.cross_attention = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionwiseFeedForward(d_model, d_ff) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.layernorm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) def forward(self, x, enc_output, padding_mask, look_ahead_mask): self_attention_output = self.dropout1(self.self_attention(x, x, x, look_ahead_mask)) self.layernorm1(x + self_attention_output) cross_attention_output = self.dropout2(self.cross_attention(x, enc_output, enc_output, padding_mask)) ffn_input = self.layernorm2(cross_attention_output + cross_attention_output) ffn_output = self.dropout3(self.feed_forward(ffn_input)) output = self.layernorm3(ffn_input + ffn_output) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'num_heads': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + x2, tmp20, xmask) tl.store(out_ptr1 + x2, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = xindex // 4 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_out_ptr0 + x4, xmask) tmp6 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -1000000000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + x4, tmp10, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 + tmp0 tmp3 = tmp2 + tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 + tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp8 tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp12 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp6 - tmp12 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp9 - tmp12 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = tmp23 / tmp11 tmp25 = 1e-05 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tl.store(out_ptr0 + x0, tmp12, xmask) tl.store(out_ptr1 + x0, tmp27, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = tmp0 + tmp0 tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_21, (4, 4), (4, 1)) assert_size_stride(primals_22, (4,), (1,)) assert_size_stride(primals_23, (4,), (1,)) assert_size_stride(primals_24, (4,), (1,)) assert_size_stride(primals_25, (4, 4), (4, 1)) assert_size_stride(primals_26, (4,), (1,)) assert_size_stride(primals_27, (4, 4), (4, 1)) assert_size_stride(primals_28, (4,), (1,)) assert_size_stride(primals_29, (4,), (1,)) assert_size_stride(primals_30, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf0) del primals_13 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_17, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf1) del primals_15 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_17, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf2) del primals_18 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_14, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_14 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_16, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_16 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_eq_1[grid(64)](primals_20, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_20 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6, buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_19, buf10, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_19 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_22, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_22 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf13, buf14, buf15, primals_23, primals_24, buf16, 64, XBLOCK=64, num_warps= 1, num_stages=1) del primals_24 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_25, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0) del buf17 buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf18, primals_26, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_26 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_27, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0) del buf19 triton_poi_fused_add_8[grid(64)](buf20, buf16, primals_28, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_28 buf21 = buf15 del buf15 buf22 = buf14 del buf14 triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_10[grid(64)](buf20, buf21, buf22, primals_29, primals_30, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 del buf22 del primals_30 return buf23, primals_23, primals_29, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (16, 4), (4, 1), 0 ), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0 ), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf18, (16, 4), (4, 1), 0 ), buf20, primals_27, buf24, primals_25, primals_21, reinterpret_tensor( buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) def scaled_dot_product_attention(query, keys, values, mask=None): d_k = keys.shape[-1] dot_score = query @ keys.transpose(-2, -1) / math.sqrt(d_k) if mask is not None: dot_score = dot_score.masked_fill(mask == 0, -1000000000.0) attn_score = torch.softmax(dot_score, dim=-1) return attn_score @ values, attn_score class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.depth = d_model // num_heads self.d_model = self.num_heads * self.depth self.wq = nn.Linear(d_model, d_model) self.wk = nn.Linear(d_model, d_model) self.wv = nn.Linear(d_model, d_model) self.wo = nn.Linear(d_model, d_model) def reshape_for_multi_heads_attention(self, t): batch_size = t.shape[0] t = t.view(batch_size, -1, self.num_heads, self.depth) return t.transpose(1, 2) def forward(self, q, k, v, mask): batch_size = q.shape[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) q = self.reshape_for_multi_heads_attention(q) k = self.reshape_for_multi_heads_attention(k) v = self.reshape_for_multi_heads_attention(v) scaled_attention, _attention_weights = scaled_dot_product_attention(q, k, v, mask) scaled_attention = scaled_attention.transpose(2, 1).contiguous().view( batch_size, -1, self.d_model) return self.wo(scaled_attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) def forward(self, x): return self.w_2(F.relu(self.w_1(x))) class DecoderLayerNew(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout=0.1): super(DecoderLayerNew, self).__init__() self.self_attention = MultiHeadAttention(d_model, num_heads) self.cross_attention = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionwiseFeedForward(d_model, d_ff) self.layernorm1 = nn.LayerNorm(d_model) self.layernorm2 = nn.LayerNorm(d_model) self.layernorm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) def forward(self, input_0, input_1, input_2, input_3): primals_2 = self.self_attention.wq.weight primals_3 = self.self_attention.wq.bias primals_4 = self.self_attention.wk.weight primals_5 = self.self_attention.wk.bias primals_6 = self.self_attention.wv.weight primals_7 = self.self_attention.wv.bias primals_9 = self.self_attention.wo.weight primals_10 = self.self_attention.wo.bias primals_13 = self.cross_attention.wq.weight primals_11 = self.cross_attention.wq.bias primals_15 = self.cross_attention.wk.weight primals_12 = self.cross_attention.wk.bias primals_18 = self.cross_attention.wv.weight primals_14 = self.cross_attention.wv.bias primals_21 = self.cross_attention.wo.weight primals_16 = self.cross_attention.wo.bias primals_25 = self.feed_forward.w_1.weight primals_19 = self.feed_forward.w_1.bias primals_27 = self.feed_forward.w_2.weight primals_22 = self.feed_forward.w_2.bias primals_23 = self.layernorm1.weight primals_24 = self.layernorm1.bias primals_26 = self.layernorm2.weight primals_28 = self.layernorm2.bias primals_29 = self.layernorm3.weight primals_30 = self.layernorm3.bias primals_1 = input_0 primals_8 = input_1 primals_17 = input_2 primals_20 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30]) return output[0]
NathanYanJing/TransformerReplication
DecoderLayer
false
11,788
[ "MIT" ]
0
b20f987dcc507724971f843c2d214c9c76bd8e34
https://github.com/NathanYanJing/TransformerReplication/tree/b20f987dcc507724971f843c2d214c9c76bd8e34
MaskedInstanceNorm1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hv/chvlig3vkflhzd7ivdbf6ojzalx44fop7l6z3mhozziz64jmw5ck.py # Topologically Sorted Source Nodes: [mul, sum_2, cnt, cnt_for_mu, mu, sub, sigma, mul_1, sum_3, sub_1, cnt_fot_sigma, sigma_1, add, sigma_2], Original ATen: [aten.mul, aten.sum, aten.clamp, aten.div, aten.sub, aten.pow, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # cnt => sum_1 # cnt_for_mu => clamp_max, clamp_min # cnt_fot_sigma => clamp_max_1, clamp_min_1 # mu => div # mul => mul # mul_1 => mul_1 # sigma => pow_1 # sigma_1 => div_1 # sigma_2 => sqrt # sub => sub # sub_1 => sub_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %unsqueeze), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%unsqueeze, [-1], True), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 100000.0), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %clamp_max), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %unsqueeze), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, 1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 1.0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 100000.0), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %clamp_max_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0 = async_compile.triton('triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x0 = xindex % 16 x2 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0) + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 + tmp4 tmp16 = tmp15 + tmp8 tmp17 = tmp16 + tmp12 tmp18 = 1.0 tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp20 = 100000.0 tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tmp14 / tmp21 tmp23 = tmp0 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp24 * tmp1 tmp26 = tmp3 - tmp22 tmp27 = tmp26 * tmp26 tmp28 = tmp27 * tmp4 tmp29 = tmp25 + tmp28 tmp30 = tmp7 - tmp22 tmp31 = tmp30 * tmp30 tmp32 = tmp31 * tmp8 tmp33 = tmp29 + tmp32 tmp34 = tmp11 - tmp22 tmp35 = tmp34 * tmp34 tmp36 = tmp35 * tmp12 tmp37 = tmp33 + tmp36 tmp38 = tmp17 - tmp18 tmp39 = triton_helpers.maximum(tmp38, tmp18) tmp40 = triton_helpers.minimum(tmp39, tmp20) tmp41 = tmp37 / tmp40 tmp42 = 1e-08 tmp43 = tmp41 + tmp42 tmp44 = libdevice.sqrt(tmp43) tl.store(out_ptr0 + (x4), tmp22, xmask) tl.store(in_out_ptr0 + (x4), tmp44, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/x7/cx7htd3xitvxaxetefd5p23n7ecwnggzfyxx3t47rzzxl37p6cg2.py # Topologically Sorted Source Nodes: [cnt, sub_2, sub_1, cnt_fot_sigma, sigma_1, add, sigma_2, y], Original ATen: [aten.sum, aten.sub, aten.clamp, aten.div, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # cnt => sum_1 # cnt_fot_sigma => clamp_max_1, clamp_min_1 # sigma_1 => div_1 # sigma_2 => sqrt # sub_1 => sub_1 # sub_2 => sub_2 # y => div_2 # Graph fragment: # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%unsqueeze, [-1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, 1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 1.0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 100000.0), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %clamp_max_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %sqrt), kwargs = {}) triton_poi_fused_add_clamp_div_sqrt_sub_sum_1 = async_compile.triton('triton_poi_fused_add_clamp_div_sqrt_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_sqrt_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_sqrt_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x4 = (xindex // 4) x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, sum_2, cnt, cnt_for_mu, mu, sub, sigma, mul_1, sum_3, sub_1, cnt_fot_sigma, sigma_1, add, sigma_2], Original ATen: [aten.mul, aten.sum, aten.clamp, aten.div, aten.sub, aten.pow, aten.add, aten.sqrt] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0.run(buf2, arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cnt, sub_2, sub_1, cnt_fot_sigma, sigma_1, add, sigma_2, y], Original ATen: [aten.sum, aten.sub, aten.clamp, aten.div, aten.add, aten.sqrt] triton_poi_fused_add_clamp_div_sqrt_sub_sum_1.run(arg1_1, buf0, buf2, buf3, 1024, grid=grid(1024), stream=stream0) del arg1_1 del buf0 del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.optim class MaskedInstanceNorm1d(nn.Module): """Instance norm + masking.""" MAX_CNT = 100000.0 def __init__(self, d_channel: 'int', unbiased: 'bool'=True, affine: 'bool'=False): super().__init__() self.d_channel = d_channel self.unbiased = unbiased self.affine = affine if self.affine: gamma = torch.ones(d_channel, dtype=torch.float) beta = torch.zeros_like(gamma) self.register_parameter('gamma', nn.Parameter(gamma)) self.register_parameter('beta', nn.Parameter(beta)) def forward(self, x: 'torch.Tensor', x_mask: 'torch.Tensor' ) ->torch.Tensor: """`x`: [B,C,T], `x_mask`: [B,T] => [B,C,T].""" x_mask = x_mask.unsqueeze(1).type_as(x) cnt = x_mask.sum(dim=-1, keepdim=True) cnt_for_mu = cnt.clamp(1.0, self.MAX_CNT) mu = (x * x_mask).sum(dim=-1, keepdim=True) / cnt_for_mu sigma = (x - mu) ** 2 cnt_fot_sigma = (cnt - int(self.unbiased)).clamp(1.0, self.MAX_CNT) sigma = (sigma * x_mask).sum(dim=-1, keepdim=True) / cnt_fot_sigma sigma = (sigma + 1e-08).sqrt() y = (x - mu) / sigma if self.affine: gamma = self.gamma.unsqueeze(0).unsqueeze(-1) beta = self.beta.unsqueeze(0).unsqueeze(-1) y = y * gamma + beta return y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_channel': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x0 = xindex % 16 x2 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 * x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0 + 64 * x2), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0 + 64 * x2), xmask, eviction_policy ='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0 + 64 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 + tmp4 tmp16 = tmp15 + tmp8 tmp17 = tmp16 + tmp12 tmp18 = 1.0 tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp20 = 100000.0 tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tmp14 / tmp21 tmp23 = tmp0 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp24 * tmp1 tmp26 = tmp3 - tmp22 tmp27 = tmp26 * tmp26 tmp28 = tmp27 * tmp4 tmp29 = tmp25 + tmp28 tmp30 = tmp7 - tmp22 tmp31 = tmp30 * tmp30 tmp32 = tmp31 * tmp8 tmp33 = tmp29 + tmp32 tmp34 = tmp11 - tmp22 tmp35 = tmp34 * tmp34 tmp36 = tmp35 * tmp12 tmp37 = tmp33 + tmp36 tmp38 = tmp17 - tmp18 tmp39 = triton_helpers.maximum(tmp38, tmp18) tmp40 = triton_helpers.minimum(tmp39, tmp20) tmp41 = tmp37 / tmp40 tmp42 = 1e-08 tmp43 = tmp41 + tmp42 tmp44 = libdevice.sqrt(tmp43) tl.store(out_ptr0 + x4, tmp22, xmask) tl.store(in_out_ptr0 + x4, tmp44, xmask) @triton.jit def triton_poi_fused_add_clamp_div_sqrt_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x4 = xindex // 4 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x5, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_clamp_div_mul_pow_sqrt_sub_sum_0[grid(256)](buf2, arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_clamp_div_sqrt_sub_sum_1[grid(1024)](arg1_1, buf0, buf2, buf3, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 del buf0 del buf2 return buf3, class MaskedInstanceNorm1dNew(nn.Module): """Instance norm + masking.""" MAX_CNT = 100000.0 def __init__(self, d_channel: 'int', unbiased: 'bool'=True, affine: 'bool'=False): super().__init__() self.d_channel = d_channel self.unbiased = unbiased self.affine = affine if self.affine: gamma = torch.ones(d_channel, dtype=torch.float) beta = torch.zeros_like(gamma) self.register_parameter('gamma', nn.Parameter(gamma)) self.register_parameter('beta', nn.Parameter(beta)) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
PiotrDabkowski/NeMo
MaskedInstanceNorm1d
false
11,789
[ "Apache-2.0" ]
0
7c251e9035b24136cf130f3caf760087e5ccf07c
https://github.com/PiotrDabkowski/NeMo/tree/7c251e9035b24136cf130f3caf760087e5ccf07c
Model_CIFAR10
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3s/c3swieudbq6hlerbvzxffejbssgds5rhgg5xk7zaijlgerjj4eqy.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/o5/co5xgxhjhlo7bknaeay7cl5wcvnoj7iz2upia7zbzhelekrx6iym.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_per_fused__log_softmax_1 = async_compile.triton('triton_per_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (50, 1024), (1024, 1)) assert_size_stride(primals_3, (50, ), (1, )) assert_size_stride(primals_4, (10, 50), (50, 1)) assert_size_stride(primals_5, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (1024, 50), (1, 1024), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 200, grid=grid(200), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf2) del primals_5 buf5 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_1.run(buf2, buf5, 4, 10, grid=grid(4), stream=stream0) del buf2 return (buf5, primals_1, buf1, buf5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((50, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Model_CIFAR10(nn.Module): def __init__(self): super(Model_CIFAR10, self).__init__() self.linear1 = nn.Linear(32 * 32, 50) self.linear2 = nn.Linear(50, 10) def forward(self, inputs): x = inputs.view(-1, 32 * 32) x = F.relu(self.linear1(x)) x = self.linear2(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 1024])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__log_softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (50, 1024), (1024, 1)) assert_size_stride(primals_3, (50,), (1,)) assert_size_stride(primals_4, (10, 50), (50, 1)) assert_size_stride(primals_5, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 50), (50, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (1024, 50), (1, 1024), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(200)](buf1, primals_3, 200, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf2) del primals_5 buf5 = empty_strided_cuda((4, 10), (10, 1), torch.float32) triton_per_fused__log_softmax_1[grid(4)](buf2, buf5, 4, 10, XBLOCK= 1, num_warps=2, num_stages=1) del buf2 return buf5, primals_1, buf1, buf5, primals_4 class Model_CIFAR10New(nn.Module): def __init__(self): super(Model_CIFAR10New, self).__init__() self.linear1 = nn.Linear(32 * 32, 50) self.linear2 = nn.Linear(50, 10) def forward(self, input_0): primals_2 = self.linear1.weight primals_3 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Pluriscient/learn-to-learn
Model_CIFAR10
false
11,790
[ "MIT" ]
0
4aa0143522eb90f6439b83ed424d12b434cb344b
https://github.com/Pluriscient/learn-to-learn/tree/4aa0143522eb90f6439b83ed424d12b434cb344b
TransformerDecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/vh/cvhiot6d7wcfsuy6rh4gl4pcavsvp2otvw6mzmz3nqtaqwsotole.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_12, [1, 4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i1', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x3 = xindex tmp0 = x0 + ((-1)*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = tmp5 == tmp4 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/37/c37im5gvzgd54i6pwdkzbzagjgm2hlvyuufc537slxun4obyhoes.py # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights => exp, sum_1 # masked_fill_ => full_default_2, where_1 # Graph fragment: # %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default_2, %bmm), kwargs = {}) # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + (x0), tmp20, xmask) tl.store(out_ptr1 + (x0), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s7/cs7tkqbp32zttfoqu3noo4dzger63apkogo36sj6lkru33bw54tm.py # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights => div_1, exp # masked_fill_ => full_default_2, where_1 # Graph fragment: # %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default_2, %bmm), kwargs = {}) # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_18, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/y6/cy6mkjdwes62jaih4dzebyknvxezhquh37cme5cflrxbxff3z675.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub_2 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_10), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_11), kwargs = {}) triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/36/c367rcv2obfrr3jnd6iifol46chcr6me3cdxpbe7jwum3jppqkna.py # Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat_1 => repeat_1 # Graph fragment: # %repeat_1 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_32, [1, 4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_7 = async_compile.triton('triton_poi_fused_repeat_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6h/c6hd5ncxoecwkbb7fby7ebnhqlwhh4mzmufikxyk5aouosneh42d.py # Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_2], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights_2 => exp_1, sum_2 # masked_fill_ => full_default_2 # masked_fill__1 => where_2 # Graph fragment: # %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_33, %full_default_2, %bmm_2), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {}) triton_poi_fused__softmax_masked_fill_8 = async_compile.triton('triton_poi_fused__softmax_masked_fill_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + (x2), tmp20, xmask) tl.store(out_ptr1 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s5/cs5gdmm3aovofwif2w4uihyrz2dnsg43d5yononneqsiaiy2q2eu.py # Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_2], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights_2 => div_3, exp_1 # masked_fill_ => full_default_2 # masked_fill__1 => where_2 # Graph fragment: # %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_33, %full_default_2, %bmm_2), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_poi_fused__softmax_masked_fill_9 = async_compile.triton('triton_poi_fused__softmax_masked_fill_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex x4 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/cn/ccn3ztml5qupb2u6trhxfni5siq2chr5f7il63gpx775u3hi6iz5.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.add] # Source node to ATen node mapping: # x_4 => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_37), kwargs = {}) triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s5/cs5qfpz5dtrtoopym4yheekk2kuetbhcvypaqjhns7stzzfhkjha.py # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_38, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_11 = async_compile.triton('triton_poi_fused_native_layer_norm_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dr/cdrqch7dkzd6wgbo46meh7vw2wmmm5avruav7pzwc4s4i4zleekn.py # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_4, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_38, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_38, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_22), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_23), kwargs = {}) triton_poi_fused_native_layer_norm_12 = async_compile.triton('triton_poi_fused_native_layer_norm_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/d2/cd2jzht7h5xjxoygvrqqi5z6h7ymzldxrfdzzcr3hgci55wxxltm.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_6 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_41,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_13 = async_compile.triton('triton_poi_fused_relu_threshold_backward_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_13(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (4, 4), (4, 1)) assert_size_stride(primals_21, (4, ), (1, )) assert_size_stride(primals_22, (4, ), (1, )) assert_size_stride(primals_23, (4, ), (1, )) assert_size_stride(primals_24, (4, 4), (4, 1)) assert_size_stride(primals_25, (4, ), (1, )) assert_size_stride(primals_26, (4, 4), (4, 1)) assert_size_stride(primals_27, (4, ), (1, )) assert_size_stride(primals_28, (4, ), (1, )) assert_size_stride(primals_29, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf3, primals_7, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_prod], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] triton_poi_fused_repeat_1.run(buf7, 256, grid=grid(256), stream=stream0) buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0); del buf2 # reuse buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_2.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_3.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [attentioned], Original ATen: [aten.bmm] extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_9 buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(buf13, primals_1, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(buf13, primals_1, buf14, buf15, primals_10, primals_11, buf16, 64, grid=grid(64), stream=stream0) del primals_11 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf16, reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_4], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf17, primals_15, buf18, 16, 4, grid=grid(16, 4), stream=stream0) del primals_15 buf19 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf19) del primals_16 buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf20) del primals_18 buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_6], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf20, primals_19, buf21, 16, 4, grid=grid(16, 4), stream=stream0) del primals_19 buf22 = reinterpret_tensor(buf20, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [contiguous_5], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf19, primals_17, buf22, 16, 4, grid=grid(16, 4), stream=stream0) del primals_17 buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_prod_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [repeat_1], Original ATen: [aten.repeat] triton_poi_fused_repeat_7.run(primals_12, buf24, 64, grid=grid(64), stream=stream0) del primals_12 buf25 = reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 64), 0); del buf19 # reuse buf26 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_2], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_8.run(buf24, buf23, buf25, buf26, 64, grid=grid(64), stream=stream0) buf27 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [masked_fill_, masked_fill__1, attn_weights_2], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_9.run(buf27, buf24, buf25, buf26, 256, grid=grid(256), stream=stream0) buf28 = reinterpret_tensor(buf26, (16, 4, 1), (4, 1, 1), 0); del buf26 # reuse # Topologically Sorted Source Nodes: [attentioned_2], Original ATen: [aten.bmm] extern_kernels.bmm(buf27, reinterpret_tensor(buf21, (16, 4, 1), (4, 1, 0), 0), out=buf28) buf29 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf25 # reuse # Topologically Sorted Source Nodes: [contiguous_7], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf28, buf29, 16, 4, grid=grid(16, 4), stream=stream0) buf30 = reinterpret_tensor(buf28, (16, 4), (4, 1), 0); del buf28 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_20, (4, 4), (1, 4), 0), out=buf30) buf31 = reinterpret_tensor(buf30, (4, 4, 4), (16, 4, 1), 0); del buf30 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf31, buf16, primals_21, 64, grid=grid(64), stream=stream0) del primals_21 buf32 = buf15; del buf15 # reuse buf33 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf31, buf32, buf33, 16, grid=grid(16), stream=stream0) buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_12.run(buf31, buf32, buf33, primals_22, primals_23, buf34, 64, grid=grid(64), stream=stream0) del primals_23 buf35 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf34, reinterpret_tensor(primals_24, (4, 4), (1, 4), 0), out=buf35) buf36 = reinterpret_tensor(buf35, (4, 4, 4), (16, 4, 1), 0); del buf35 # reuse buf42 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_13.run(buf36, primals_25, buf42, 64, grid=grid(64), stream=stream0) del primals_25 buf37 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(primals_26, (4, 4), (1, 4), 0), out=buf37) buf38 = reinterpret_tensor(buf37, (4, 4, 4), (16, 4, 1), 0); del buf37 # reuse # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf38, buf34, primals_27, 64, grid=grid(64), stream=stream0) del primals_27 buf39 = buf33; del buf33 # reuse buf40 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_11.run(buf38, buf39, buf40, 16, grid=grid(16), stream=stream0) buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_12.run(buf38, buf39, buf40, primals_28, primals_29, buf41, 64, grid=grid(64), stream=stream0) del buf39 del buf40 del primals_29 return (reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0), primals_1, primals_10, primals_22, primals_28, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(buf31, (16, 4), (4, 1), 0), buf34, reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(buf38, (16, 4), (4, 1), 0), primals_26, buf42, primals_24, primals_20, reinterpret_tensor(buf21, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 1), 0), primals_14, primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F from torch import nn def _normalize(tensor, norm_layer): """ Broadcast layer norm """ size = tensor.size() return norm_layer(tensor.view(-1, size[-1])).view(size) class MultiHeadAttention(nn.Module): def __init__(self, n_heads, dim, dropout=0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.attn_dropout = nn.Dropout(p=dropout) self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) def forward(self, query, key=None, value=None, mask=None): batch_size, query_len, dim = query.size() assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured' assert mask is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) def prepare_head(tensor): _bsz, seq_len, _ = tensor.size() tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head) tensor = tensor.transpose(1, 2).contiguous().view(batch_size * n_heads, seq_len, dim_per_head) return tensor if key is None and value is None: key = value = query elif value is None: value = key _, key_len, dim = key.size() q = prepare_head(self.q_lin(query)) k = prepare_head(self.k_lin(key)) v = prepare_head(self.v_lin(value)) dot_prod = q.bmm(k.transpose(1, 2)) attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1, n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len ).view(batch_size * n_heads, query_len, key_len) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, -float(1e+20)) attn_weights = F.softmax(dot_prod / scale, dim=-1) attn_weights = self.attn_dropout(attn_weights) attentioned = attn_weights.bmm(v) attentioned = attentioned.view(batch_size, n_heads, query_len, dim_per_head).transpose(1, 2).contiguous().view(batch_size, query_len, dim) out = self.out_lin(attentioned) return out class TransformerFFN(nn.Module): def __init__(self, dim, dim_hidden, relu_dropout=0): super(TransformerFFN, self).__init__() self.relu_dropout = nn.Dropout(p=relu_dropout) self.lin1 = nn.Linear(dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, dim) nn.init.xavier_uniform_(self.lin1.weight) nn.init.xavier_uniform_(self.lin2.weight) def forward(self, x): x = F.relu(self.lin1(x)) x = self.relu_dropout(x) x = self.lin2(x) return x class TransformerDecoderLayer(nn.Module): def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout =0.0, relu_dropout=0.0, dropout=0.0): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.dropout = nn.Dropout(p=dropout) self.self_attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm1 = nn.LayerNorm(embedding_size) self.encoder_attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm2 = nn.LayerNorm(embedding_size) self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout= relu_dropout) self.norm3 = nn.LayerNorm(embedding_size) def forward(self, x, encoder_output, encoder_mask): decoder_mask = self._create_selfattn_mask(x) residual = x x = self.self_attention(query=x, mask=decoder_mask) x = self.dropout(x) x = x + residual x = _normalize(x, self.norm1) residual = x x = self.encoder_attention(query=x, key=encoder_output, value= encoder_output, mask=encoder_mask) x = self.dropout(x) x = residual + x x = _normalize(x, self.norm2) residual = x x = self.ffn(x) x = self.dropout(x) x = residual + x x = _normalize(x, self.norm3) return x def _create_selfattn_mask(self, x): bsz = x.size(0) time = x.size(1) mask = torch.tril(x.new(time, time).fill_(1)) mask = mask.unsqueeze(0).expand(bsz, -1, -1) return mask def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_heads': 4, 'embedding_size': 4, 'ffn_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_repeat_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x3 = xindex tmp0 = x0 + -1 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = tmp5 == tmp4 tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + x0, tmp20, xmask) tl.store(out_ptr1 + x0, tmp35, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_repeat_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + x2, tmp20, xmask) tl.store(out_ptr1 + x2, tmp35, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex x4 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_13(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (4, 4), (4, 1)) assert_size_stride(primals_21, (4,), (1,)) assert_size_stride(primals_22, (4,), (1,)) assert_size_stride(primals_23, (4,), (1,)) assert_size_stride(primals_24, (4, 4), (4, 1)) assert_size_stride(primals_25, (4,), (1,)) assert_size_stride(primals_26, (4, 4), (4, 1)) assert_size_stride(primals_27, (4,), (1,)) assert_size_stride(primals_28, (4,), (1,)) assert_size_stride(primals_29, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf1, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf2 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf3, primals_7, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf3 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_5, buf5, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_repeat_1[grid(256)](buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0) del buf2 buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) triton_poi_fused__softmax_masked_fill_2[grid(64)](buf7, buf6, buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = buf6 del buf6 triton_poi_fused__softmax_masked_fill_3[grid(256)](buf10, buf7, buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0) del buf9 extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_9 buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32) triton_poi_fused_native_layer_norm_5[grid(16)](buf13, primals_1, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(64)](buf13, primals_1, buf14, buf15, primals_10, primals_11, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(buf16, reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf17, primals_15, buf18, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_15 buf19 = buf17 del buf17 extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf19) del primals_16 buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf20) del primals_18 buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf20, primals_19, buf21, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_19 buf22 = reinterpret_tensor(buf20, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf20 triton_poi_fused_clone_0[grid(16, 4)](buf19, primals_17, buf22, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_17 buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool) triton_poi_fused_repeat_7[grid(64)](primals_12, buf24, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_12 buf25 = reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 64), 0) del buf19 buf26 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) triton_poi_fused__softmax_masked_fill_8[grid(64)](buf24, buf23, buf25, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) buf27 = buf23 del buf23 triton_poi_fused__softmax_masked_fill_9[grid(256)](buf27, buf24, buf25, buf26, 256, XBLOCK=128, num_warps=4, num_stages=1) buf28 = reinterpret_tensor(buf26, (16, 4, 1), (4, 1, 1), 0) del buf26 extern_kernels.bmm(buf27, reinterpret_tensor(buf21, (16, 4, 1), (4, 1, 0), 0), out=buf28) buf29 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf25 triton_poi_fused_clone_4[grid(16, 4)](buf28, buf29, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf30 = reinterpret_tensor(buf28, (16, 4), (4, 1), 0) del buf28 extern_kernels.mm(reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_20, (4, 4), (1, 4), 0), out=buf30) buf31 = reinterpret_tensor(buf30, (4, 4, 4), (16, 4, 1), 0) del buf30 triton_poi_fused_add_10[grid(64)](buf31, buf16, primals_21, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_21 buf32 = buf15 del buf15 buf33 = buf14 del buf14 triton_poi_fused_native_layer_norm_11[grid(16)](buf31, buf32, buf33, 16, XBLOCK=16, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_12[grid(64)](buf31, buf32, buf33, primals_22, primals_23, buf34, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_23 buf35 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(buf34, reinterpret_tensor(primals_24, (4, 4), (1, 4), 0), out=buf35) buf36 = reinterpret_tensor(buf35, (4, 4, 4), (16, 4, 1), 0) del buf35 buf42 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_13[grid(64)](buf36, primals_25, buf42, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_25 buf37 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(primals_26, (4, 4), (1, 4), 0), out=buf37) buf38 = reinterpret_tensor(buf37, (4, 4, 4), (16, 4, 1), 0) del buf37 triton_poi_fused_add_10[grid(64)](buf38, buf34, primals_27, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_27 buf39 = buf33 del buf33 buf40 = buf32 del buf32 triton_poi_fused_native_layer_norm_11[grid(16)](buf38, buf39, buf40, 16, XBLOCK=16, num_warps=1, num_stages=1) buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_12[grid(64)](buf38, buf39, buf40, primals_28, primals_29, buf41, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf39 del buf40 del primals_29 return (reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0), primals_1, primals_10, primals_22, primals_28, buf7, buf10, reinterpret_tensor (buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor( primals_13, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor( buf29, (16, 4), (4, 1), 0), reinterpret_tensor(buf31, (16, 4), (4, 1), 0), buf34, reinterpret_tensor(buf36, (16, 4), (4, 1), 0), reinterpret_tensor(buf38, (16, 4), (4, 1), 0), primals_26, buf42, primals_24, primals_20, reinterpret_tensor(buf21, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 1), 0), primals_14, primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0)) def _normalize(tensor, norm_layer): """ Broadcast layer norm """ size = tensor.size() return norm_layer(tensor.view(-1, size[-1])).view(size) class MultiHeadAttention(nn.Module): def __init__(self, n_heads, dim, dropout=0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.attn_dropout = nn.Dropout(p=dropout) self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) def forward(self, query, key=None, value=None, mask=None): batch_size, query_len, dim = query.size() assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured' assert mask is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) def prepare_head(tensor): _bsz, seq_len, _ = tensor.size() tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head) tensor = tensor.transpose(1, 2).contiguous().view(batch_size * n_heads, seq_len, dim_per_head) return tensor if key is None and value is None: key = value = query elif value is None: value = key _, key_len, dim = key.size() q = prepare_head(self.q_lin(query)) k = prepare_head(self.k_lin(key)) v = prepare_head(self.v_lin(value)) dot_prod = q.bmm(k.transpose(1, 2)) attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1, n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len ).view(batch_size * n_heads, query_len, key_len) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, -float(1e+20)) attn_weights = F.softmax(dot_prod / scale, dim=-1) attn_weights = self.attn_dropout(attn_weights) attentioned = attn_weights.bmm(v) attentioned = attentioned.view(batch_size, n_heads, query_len, dim_per_head).transpose(1, 2).contiguous().view(batch_size, query_len, dim) out = self.out_lin(attentioned) return out class TransformerFFN(nn.Module): def __init__(self, dim, dim_hidden, relu_dropout=0): super(TransformerFFN, self).__init__() self.relu_dropout = nn.Dropout(p=relu_dropout) self.lin1 = nn.Linear(dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, dim) nn.init.xavier_uniform_(self.lin1.weight) nn.init.xavier_uniform_(self.lin2.weight) def forward(self, x): x = F.relu(self.lin1(x)) x = self.relu_dropout(x) x = self.lin2(x) return x class TransformerDecoderLayerNew(nn.Module): def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout =0.0, relu_dropout=0.0, dropout=0.0): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.dropout = nn.Dropout(p=dropout) self.self_attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm1 = nn.LayerNorm(embedding_size) self.encoder_attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm2 = nn.LayerNorm(embedding_size) self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout= relu_dropout) self.norm3 = nn.LayerNorm(embedding_size) def _create_selfattn_mask(self, x): bsz = x.size(0) time = x.size(1) mask = torch.tril(x.new(time, time).fill_(1)) mask = mask.unsqueeze(0).expand(bsz, -1, -1) return mask def forward(self, input_0, input_1, input_2): primals_2 = self.self_attention.q_lin.weight primals_3 = self.self_attention.q_lin.bias primals_4 = self.self_attention.k_lin.weight primals_5 = self.self_attention.k_lin.bias primals_6 = self.self_attention.v_lin.weight primals_7 = self.self_attention.v_lin.bias primals_8 = self.self_attention.out_lin.weight primals_9 = self.self_attention.out_lin.bias primals_10 = self.norm1.weight primals_11 = self.norm1.bias primals_12 = self.encoder_attention.q_lin.weight primals_15 = self.encoder_attention.q_lin.bias primals_14 = self.encoder_attention.k_lin.weight primals_17 = self.encoder_attention.k_lin.bias primals_16 = self.encoder_attention.v_lin.weight primals_19 = self.encoder_attention.v_lin.bias primals_18 = self.encoder_attention.out_lin.weight primals_21 = self.encoder_attention.out_lin.bias primals_22 = self.norm2.weight primals_23 = self.norm2.bias primals_20 = self.ffn.lin1.weight primals_25 = self.ffn.lin1.bias primals_24 = self.ffn.lin2.weight primals_27 = self.ffn.lin2.bias primals_28 = self.norm3.weight primals_29 = self.norm3.bias primals_1 = input_0 primals_13 = input_1 primals_26 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29]) return output[0]
OneDirection9/Persona-Dialogue-Generation
TransformerDecoderLayer
false
11,791
[ "MIT" ]
0
9696659efe668177bb775dc4192b4b6dd41a9ce1
https://github.com/OneDirection9/Persona-Dialogue-Generation/tree/9696659efe668177bb775dc4192b4b6dd41a9ce1
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/oz/cozo2tvc7hyhhuvn7mvono4mqt4xjxbetoafx6siwgnsijj54xyl.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_12, [1, 4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bx/cbxsgautsk4bd7exwaatk4zmdcujosx2bs6glhzldma6whelf3xa.py # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights => exp, sum_1 # masked_fill_ => full_default, where # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + (x2), tmp20, xmask) tl.store(out_ptr1 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/k3/ck3ynjvzkegtm2kjok34x3fffzfegirtmypcfcgbywxdahuilxmg.py # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn_weights => div_1, exp # masked_fill_ => full_default, where # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex x4 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_18, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/y6/cy6mkjdwes62jaih4dzebyknvxezhquh37cme5cflrxbxff3z675.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_21,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/he/chevf4d6tadiz3y2a2abr2lj2bvo3wyfykoivwj2s4xedp3vdjuf.py # Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add] # Source node to ATen node mapping: # tensor_8 => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_23), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hn/chnyp4bqchi6cc3qkpikodtjzt7sfs4gz3r2kunqaesb7ahrywso.py # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_24, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2i/c2it3bfvz5dki6xljhyv3o2tjme4rnp2cbavnrl4nu6kpvzqdzbp.py # Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul] # Source node to ATen node mapping: # tensor_10 => mul_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_25, %unsqueeze), kwargs = {}) triton_poi_fused_mul_10 = async_compile.triton('triton_poi_fused_mul_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_4, buf1, 16, 4, grid=grid(16, 4), stream=stream0) del primals_4 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf3, primals_8, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_6, buf5, 16, 4, grid=grid(16, 4), stream=stream0) del primals_6 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_prod], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] triton_poi_fused_repeat_1.run(primals_2, buf7, 64, grid=grid(64), stream=stream0) buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0); del buf2 # reuse buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_2.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_3.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [attentioned], Original ATen: [aten.bmm] extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_5.run(primals_1, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_6.run(primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0) del primals_12 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf18, primals_14, buf24, 64, grid=grid(64), stream=stream0) del primals_14 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf20, buf16, primals_16, 64, grid=grid(64), stream=stream0) del primals_16 buf21 = buf15; del buf15 # reuse buf22 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul] triton_poi_fused_mul_10.run(buf20, buf21, buf22, primals_17, primals_18, primals_2, buf23, 64, grid=grid(64), stream=stream0) del buf21 del buf22 del primals_18 return (buf23, primals_1, primals_2, primals_11, primals_17, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F from torch import nn def _normalize(tensor, norm_layer): """ Broadcast layer norm """ size = tensor.size() return norm_layer(tensor.view(-1, size[-1])).view(size) class MultiHeadAttention(nn.Module): def __init__(self, n_heads, dim, dropout=0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.attn_dropout = nn.Dropout(p=dropout) self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) def forward(self, query, key=None, value=None, mask=None): batch_size, query_len, dim = query.size() assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured' assert mask is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) def prepare_head(tensor): _bsz, seq_len, _ = tensor.size() tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head) tensor = tensor.transpose(1, 2).contiguous().view(batch_size * n_heads, seq_len, dim_per_head) return tensor if key is None and value is None: key = value = query elif value is None: value = key _, key_len, dim = key.size() q = prepare_head(self.q_lin(query)) k = prepare_head(self.k_lin(key)) v = prepare_head(self.v_lin(value)) dot_prod = q.bmm(k.transpose(1, 2)) attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1, n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len ).view(batch_size * n_heads, query_len, key_len) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, -float(1e+20)) attn_weights = F.softmax(dot_prod / scale, dim=-1) attn_weights = self.attn_dropout(attn_weights) attentioned = attn_weights.bmm(v) attentioned = attentioned.view(batch_size, n_heads, query_len, dim_per_head).transpose(1, 2).contiguous().view(batch_size, query_len, dim) out = self.out_lin(attentioned) return out class TransformerFFN(nn.Module): def __init__(self, dim, dim_hidden, relu_dropout=0): super(TransformerFFN, self).__init__() self.relu_dropout = nn.Dropout(p=relu_dropout) self.lin1 = nn.Linear(dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, dim) nn.init.xavier_uniform_(self.lin1.weight) nn.init.xavier_uniform_(self.lin2.weight) def forward(self, x): x = F.relu(self.lin1(x)) x = self.relu_dropout(x) x = self.lin2(x) return x class TransformerEncoderLayer(nn.Module): def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout =0.0, relu_dropout=0.0, dropout=0.0): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm1 = nn.LayerNorm(embedding_size) self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout= relu_dropout) self.norm2 = nn.LayerNorm(embedding_size) self.dropout = nn.Dropout(p=dropout) def forward(self, tensor, mask): tensor = tensor + self.dropout(self.attention(tensor, mask=mask)) tensor = _normalize(tensor, self.norm1) tensor = tensor + self.dropout(self.ffn(tensor)) tensor = _normalize(tensor, self.norm2) tensor *= mask.unsqueeze(-1).float() return tensor def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_heads': 4, 'embedding_size': 4, 'ffn_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp8 = tl.where(tmp6, tmp2, tmp7) tmp9 = tmp8 * tmp4 tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tl.where(tmp11, tmp2, tmp12) tmp14 = tmp13 * tmp4 tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tl.where(tmp16, tmp2, tmp17) tmp19 = tmp18 * tmp4 tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tl_math.exp(tmp22) tmp24 = tmp9 - tmp20 tmp25 = tmp24 * tmp4 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp14 - tmp20 tmp29 = tmp28 * tmp4 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tmp32 = tmp19 - tmp20 tmp33 = tmp32 * tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp31 + tmp34 tl.store(out_ptr0 + x2, tmp20, xmask) tl.store(out_ptr1 + x2, tmp35, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex x4 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp2 = -1.0000000200408773e+20 tmp3 = tl.where(tmp0, tmp2, tmp1) tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp4 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tl.store(in_out_ptr0 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_4, buf1, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_4 buf2 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf3, primals_8, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_8 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf3 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_6, buf5, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_6 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool) triton_poi_fused_repeat_1[grid(64)](primals_2, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0) del buf2 buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) triton_poi_fused__softmax_masked_fill_2[grid(64)](buf7, buf6, buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = buf6 del buf6 triton_poi_fused__softmax_masked_fill_3[grid(256)](buf10, buf7, buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0) del buf9 extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32) buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32) triton_poi_fused_native_layer_norm_5[grid(16)](primals_1, buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_6[grid(64)](primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17) buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0) del buf17 buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf18, primals_14, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_14 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0) del buf19 triton_poi_fused_add_8[grid(64)](buf20, buf16, primals_16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_16 buf21 = buf15 del buf15 buf22 = buf14 del buf14 triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_10[grid(64)](buf20, buf21, buf22, primals_17, primals_18, primals_2, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 del buf22 del primals_18 return (buf23, primals_1, primals_2, primals_11, primals_17, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor( buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0)) def _normalize(tensor, norm_layer): """ Broadcast layer norm """ size = tensor.size() return norm_layer(tensor.view(-1, size[-1])).view(size) class MultiHeadAttention(nn.Module): def __init__(self, n_heads, dim, dropout=0): super(MultiHeadAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.attn_dropout = nn.Dropout(p=dropout) self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) def forward(self, query, key=None, value=None, mask=None): batch_size, query_len, dim = query.size() assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured' assert mask is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) def prepare_head(tensor): _bsz, seq_len, _ = tensor.size() tensor = tensor.view(batch_size, tensor.size(1), n_heads, dim_per_head) tensor = tensor.transpose(1, 2).contiguous().view(batch_size * n_heads, seq_len, dim_per_head) return tensor if key is None and value is None: key = value = query elif value is None: value = key _, key_len, dim = key.size() q = prepare_head(self.q_lin(query)) k = prepare_head(self.k_lin(key)) v = prepare_head(self.v_lin(value)) dot_prod = q.bmm(k.transpose(1, 2)) attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1, n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len ).view(batch_size * n_heads, query_len, key_len) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, -float(1e+20)) attn_weights = F.softmax(dot_prod / scale, dim=-1) attn_weights = self.attn_dropout(attn_weights) attentioned = attn_weights.bmm(v) attentioned = attentioned.view(batch_size, n_heads, query_len, dim_per_head).transpose(1, 2).contiguous().view(batch_size, query_len, dim) out = self.out_lin(attentioned) return out class TransformerFFN(nn.Module): def __init__(self, dim, dim_hidden, relu_dropout=0): super(TransformerFFN, self).__init__() self.relu_dropout = nn.Dropout(p=relu_dropout) self.lin1 = nn.Linear(dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, dim) nn.init.xavier_uniform_(self.lin1.weight) nn.init.xavier_uniform_(self.lin2.weight) def forward(self, x): x = F.relu(self.lin1(x)) x = self.relu_dropout(x) x = self.lin2(x) return x class TransformerEncoderLayerNew(nn.Module): def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout =0.0, relu_dropout=0.0, dropout=0.0): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.attention = MultiHeadAttention(n_heads, embedding_size, dropout=attention_dropout) self.norm1 = nn.LayerNorm(embedding_size) self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout= relu_dropout) self.norm2 = nn.LayerNorm(embedding_size) self.dropout = nn.Dropout(p=dropout) def forward(self, input_0, input_1): primals_2 = self.attention.q_lin.weight primals_4 = self.attention.q_lin.bias primals_3 = self.attention.k_lin.weight primals_6 = self.attention.k_lin.bias primals_5 = self.attention.v_lin.weight primals_8 = self.attention.v_lin.bias primals_7 = self.attention.out_lin.weight primals_10 = self.attention.out_lin.bias primals_11 = self.norm1.weight primals_12 = self.norm1.bias primals_9 = self.ffn.lin1.weight primals_14 = self.ffn.lin1.bias primals_13 = self.ffn.lin2.weight primals_16 = self.ffn.lin2.bias primals_17 = self.norm2.weight primals_18 = self.norm2.bias primals_1 = input_0 primals_15 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return output[0]
OneDirection9/Persona-Dialogue-Generation
TransformerEncoderLayer
false
11,792
[ "MIT" ]
0
9696659efe668177bb775dc4192b4b6dd41a9ce1
https://github.com/OneDirection9/Persona-Dialogue-Generation/tree/9696659efe668177bb775dc4192b4b6dd41a9ce1
DeiTEmbeddings
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/n5/cn53kutdhlbunayahmqxnq32y7m3jg2zlxxjfj3hzzpb5jsrqgdk.py # Topologically Sorted Source Nodes: [embeddings, embeddings_1], Original ATen: [aten.cat, aten.add] # Source node to ATen node mapping: # embeddings => cat # embeddings_1 => add # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1, %permute], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %primals_6), kwargs = {}) triton_poi_fused_add_cat_0 = async_compile.triton('triton_poi_fused_add_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 3 x0 = xindex % 4 x2 = (xindex // 12) x3 = xindex % 12 x4 = xindex tmp21 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (x0), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp9, tmp10, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tmp22 = tmp20 + tmp21 tl.store(out_ptr0 + (x4), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_6, (1, 3, 4), (12, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [embeddings, embeddings_1], Original ATen: [aten.cat, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_cat_0.run(primals_4, primals_5, buf0, primals_3, primals_6, buf1, 48, grid=grid(48), stream=stream0) del buf0 del primals_3 del primals_4 del primals_5 del primals_6 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 3, 4), (12, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import collections import torch from torch import nn import torch.utils.checkpoint import collections.abc def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return x, x class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768): super().__init__() image_size = to_2tuple(image_size) patch_size = to_2tuple(patch_size) num_patches = image_size[1] // patch_size[1] * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size= patch_size, stride=patch_size) def forward(self, pixel_values, interpolate_pos_encoding=False): _batch_size, _num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class DeiTEmbeddings(nn.Module): """ Construct the CLS token, distillation token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.distillation_token = nn.Parameter(torch.zeros(1, 1, config. hidden_size)) self.patch_embeddings = PatchEmbeddings(image_size=config. image_size, patch_size=config.patch_size, num_channels=config. num_channels, embed_dim=config.hidden_size) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values): batch_size = pixel_values.shape[0] embeddings = self.patch_embeddings(pixel_values) cls_tokens = self.cls_token.expand(batch_size, -1, -1) distillation_tokens = self.distillation_token.expand(batch_size, -1, -1 ) embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings ), dim=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, image_size=4, patch_size=4, num_channels=4, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections from torch import nn import torch.utils.checkpoint import collections.abc assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 3 x0 = xindex % 4 x2 = xindex // 12 x3 = xindex % 12 x4 = xindex tmp21 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last') tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + x0, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 3, tl.int64) tmp14 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp11 & xmask, eviction_policy ='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + x0, tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp9, tmp10, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tmp22 = tmp20 + tmp21 tl.store(out_ptr0 + x4, tmp22, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_6, (1, 3, 4), (12, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 3, 4), (12, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_cat_0[grid(48)](primals_4, primals_5, buf0, primals_3, primals_6, buf1, 48, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_3 del primals_4 del primals_5 del primals_6 return buf1, primals_1, primals_2 def to_2tuple(x): if isinstance(x, collections.abc.Iterable): return x return x, x class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768): super().__init__() image_size = to_2tuple(image_size) patch_size = to_2tuple(patch_size) num_patches = image_size[1] // patch_size[1] * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size= patch_size, stride=patch_size) def forward(self, pixel_values, interpolate_pos_encoding=False): _batch_size, _num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class DeiTEmbeddingsNew(nn.Module): """ Construct the CLS token, distillation token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.distillation_token = nn.Parameter(torch.zeros(1, 1, config. hidden_size)) self.patch_embeddings = PatchEmbeddings(image_size=config. image_size, patch_size=config.patch_size, num_channels=config. num_channels, embed_dim=config.hidden_size) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0): primals_4 = self.cls_token primals_5 = self.distillation_token primals_6 = self.position_embeddings primals_1 = self.patch_embeddings.projection.weight primals_3 = self.patch_embeddings.projection.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Clemens123/transformers
DeiTEmbeddings
false
11,793
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/cf/ccfgxezxafzrchfoupettzwuwyvp63xojv5p7oaeoavhmxd3nxhh.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/o5/co5xgxhjhlo7bknaeay7cl5wcvnoj7iz2upia7zbzhelekrx6iym.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_per_fused__log_softmax_1 = async_compile.triton('triton_per_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (32, 784), (784, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (10, 32), (32, 1)) assert_size_stride(primals_5, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 32), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (32, 10), (1, 32), 0), alpha=1, beta=1, out=buf2) del primals_5 buf5 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_1.run(buf2, buf5, 4, 10, grid=grid(4), stream=stream0) del buf2 return (buf5, primals_1, buf1, buf5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear1 = nn.Linear(28 * 28, 32) self.linear2 = nn.Linear(32, 10) def forward(self, inputs): x = inputs.view(-1, 28 * 28) x = F.relu(self.linear1(x)) x = self.linear2(x) return F.log_softmax(x) def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__log_softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (32, 784), (784, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (10, 32), (32, 1)) assert_size_stride(primals_5, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 32 ), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(128)](buf1, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (32, 10), (1, 32), 0), alpha=1, beta=1, out=buf2) del primals_5 buf5 = empty_strided_cuda((4, 10), (10, 1), torch.float32) triton_per_fused__log_softmax_1[grid(4)](buf2, buf5, 4, 10, XBLOCK= 1, num_warps=2, num_stages=1) del buf2 return buf5, primals_1, buf1, buf5, primals_4 class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() self.linear1 = nn.Linear(28 * 28, 32) self.linear2 = nn.Linear(32, 10) def forward(self, input_0): primals_2 = self.linear1.weight primals_3 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Pluriscient/learn-to-learn
Model
false
11,794
[ "MIT" ]
0
4aa0143522eb90f6439b83ed424d12b434cb344b
https://github.com/Pluriscient/learn-to-learn/tree/4aa0143522eb90f6439b83ed424d12b434cb344b
LxmertAttentionOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ai/cai32p2ssjvpyulvuzcicdszqe3thbavgxn4jeed6uatjnl7yq2s.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/nk/cnkbkukjfarsysqlaadkg24xmqibk3adq5p7jyfnt6k6loydbn2r.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mn/cmntyljhuirhsdjg2yosgzllpkpxqedxgoyk6gunquq2rf3kl7u5.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_2, primals_4, 256, grid=grid(256), stream=stream0) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_6 return (buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, hidden_dropout_prob= 0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_2, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(256)](buf1, buf2, buf3, primals_5, primals_6, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_6 return buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1 class LxmertAttentionOutputNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_5 = self.LayerNorm.weight primals_6 = self.LayerNorm.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Clemens123/transformers
LxmertAttentionOutput
false
11,795
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
ResidualBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ba/cba3dn7beshdzv7hwacmgs5xk75nqsfksfqjj6tajh7uagenh3e5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] # Source node to ATen node mapping: # x => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 + tmp0 tl.store(out_ptr1 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, arg0_1, 256, grid=grid(256), stream=stream0) return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels, self.out_channels = in_channels, out_channels self.blocks = nn.Identity() self.shortcut = nn.Identity() def forward(self, x): residual = x if self.apply_shortcut: residual = self.shortcut(x) x = self.blocks(x) x += residual return x @property def apply_shortcut(self): return self.in_channels != self.out_channels def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 + tmp0 tl.store(out_ptr1 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) return arg0_1, class ResidualBlockNew(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels, self.out_channels = in_channels, out_channels self.blocks = nn.Identity() self.shortcut = nn.Identity() @property def apply_shortcut(self): return self.in_channels != self.out_channels def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Rachneet/amc-app
ResidualBlock
false
11,796
[ "MIT" ]
0
20b586608d454a3033333e285f0dbc91e5c6e07f
https://github.com/Rachneet/amc-app/tree/20b586608d454a3033333e285f0dbc91e5c6e07f
StyleResidual
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nj/cnjqvzdxcui5ygocv2a5nlfxiqfekt6jgipfoplz34gwfzo2zd5f.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %squeeze), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_4, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_4 return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.optim class StyleResidual(nn.Module): """Styling.""" def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1): super().__init__() self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x: 'torch.Tensor', s: 'torch.Tensor') ->torch.Tensor: """`x`: [B,C,T], `s`: [B,S,T] => [B,C,T].""" return x + self.rs(s) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_channel': 4, 'd_style': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4), (16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(16)](buf1, primals_4, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_4 return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0) class StyleResidualNew(nn.Module): """Styling.""" def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1): super().__init__() self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, input_0, input_1): primals_1 = self.rs.weight primals_2 = self.rs.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
PiotrDabkowski/NeMo
StyleResidual
false
11,797
[ "Apache-2.0" ]
0
7c251e9035b24136cf130f3caf760087e5ccf07c
https://github.com/PiotrDabkowski/NeMo/tree/7c251e9035b24136cf130f3caf760087e5ccf07c
MultiHeadAttn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/gu/cguak4pmui2ydemh2nfin5rax4se6fwibhum52l6wzraswotmhe6.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone] # Source node to ATen node mapping: # q => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/wt/cwtwhu7iqo5rair5bnweuo5khmb7e5l2qv2pku3hann6ogfos7mk.py # Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone] # Source node to ATen node mapping: # v => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/v4/cv4ht4ztzq6xell45o2uwdqpaatovskqg4idcdyplfbbfxu7r6h6.py # Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone] # Source node to ATen node mapping: # k => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/c5/cc5335fx2gusb6qgcjpudfhou76zahyma2ckrjw26lmkw2q3zxd3.py # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_prob => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zh/czh6tw7ngffcygnivwvcjex5edxy3ms4t27ymyn2hemxlpspxzq7.py # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_prob => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/my/cmyquxsupn5jxhfg2hje2gcqqg62qnzzhyxd7jixp5puholjjh5o.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (64*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ns/cnspfsjjmvserkfymbru7x5vm2xumtyor5javdiv74jr3avx67rq.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7u/c7uxwow3tztifyrr5oj6dotpbrh7qtup53xfydkt35y65ajtfwre.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_6), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (48, 4), (4, 1)) assert_size_stride(primals_3, (48, ), (1, )) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 48), (48, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 48), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, primals_3, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf0, primals_3, buf3, 256, grid=grid(256), stream=stream0) del buf0 del primals_3 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [attn_vec], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf7, buf8, 256, grid=grid(256), stream=stream0) del buf7 buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf9, buf10, buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf9, buf10, buf11, primals_5, primals_6, buf12, 64, grid=grid(64), stream=stream0) del buf10 del buf11 del primals_6 return (buf12, primals_1, primals_5, buf6, reinterpret_tensor(buf8, (16, 16), (16, 1), 0), buf9, primals_4, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((48, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F from torch import nn import torch.utils.data import torch.optim class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=-1) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def forward_einsum(self, h, attn_mask=None): c = h if self.pre_lnorm: c = self.layer_norm(c) head_q = self.q_net(h) head_k, head_v = torch.chunk(self.kv_net(c), 2, -1) head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head) head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head) head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head) attn_score = torch.einsum('bind,bjnd->bnij', (head_q, head_k)) attn_score.mul_(self.scale) if attn_mask is not None and attn_mask.any().item(): attn_score.masked_fill_(attn_mask[:, None, None, :], -float('inf')) attn_prob = F.softmax(attn_score, dim=3) attn_prob = self.dropatt(attn_prob) attn_vec = torch.einsum('bnij,bjnd->bind', (attn_prob, head_v)) attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec. size(1), self.n_head * self.d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = h + attn_out else: output = self.layer_norm(h + attn_out) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_head': 4, 'd_model': 4, 'd_head': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import functional as F from torch import nn import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (48, 4), (4, 1)) assert_size_stride(primals_3, (48,), (1,)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 48), (48, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 48), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](buf0, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf0, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_4[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_1, buf9, buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(64)](primals_1, buf9, buf10, buf11, primals_5, primals_6, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf10 del buf11 del primals_6 return buf12, primals_1, primals_5, buf6, reinterpret_tensor(buf8, (16, 16), (16, 1), 0), buf9, primals_4, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0) class MultiHeadAttnNew(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttnNew, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=-1) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def forward_einsum(self, h, attn_mask=None): c = h if self.pre_lnorm: c = self.layer_norm(c) head_q = self.q_net(h) head_k, head_v = torch.chunk(self.kv_net(c), 2, -1) head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head) head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head) head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head) attn_score = torch.einsum('bind,bjnd->bnij', (head_q, head_k)) attn_score.mul_(self.scale) if attn_mask is not None and attn_mask.any().item(): attn_score.masked_fill_(attn_mask[:, None, None, :], -float('inf')) attn_prob = F.softmax(attn_score, dim=3) attn_prob = self.dropatt(attn_prob) attn_vec = torch.einsum('bnij,bjnd->bind', (attn_prob, head_v)) attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec. size(1), self.n_head * self.d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = h + attn_out else: output = self.layer_norm(h + attn_out) return output def forward(self, input_0): primals_2 = self.qkv_net.weight primals_3 = self.qkv_net.bias primals_4 = self.o_net.weight primals_5 = self.layer_norm.weight primals_6 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
PiotrDabkowski/NeMo
MultiHeadAttn
false
11,798
[ "Apache-2.0" ]
0
7c251e9035b24136cf130f3caf760087e5ccf07c
https://github.com/PiotrDabkowski/NeMo/tree/7c251e9035b24136cf130f3caf760087e5ccf07c
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.clone] # Source node to ATen node mapping: # est_source => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ya/cyansxctlvhajqdzgxv2kjzkrfue2yk5b7zcghioinbkozfplw4p.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unfold,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6j/c6juc6x25rr7bgnzf4oaq33rhwltgxnvbhmtsesl5zb44cxvh7yy.py # Topologically Sorted Source Nodes: [result], Original ATen: [aten.new_zeros] # Source node to ATen node mapping: # result => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 5, 2], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_new_zeros_2 = async_compile.triton('triton_poi_fused_new_zeros_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xb/cxbfxmtpaol2omszf65qwsw7tytxjjletmkmxzwzpfbadheygk4s.py # Topologically Sorted Source Nodes: [result, index_add_], Original ATen: [aten.new_zeros, aten.index_add] # Source node to ATen node mapping: # index_add_ => index_put # result => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 5, 2], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [None, None, None, %view_4], %view_3, True), kwargs = {}) triton_poi_fused_index_add_new_zeros_3 = async_compile.triton('triton_poi_fused_index_add_new_zeros_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_add_new_zeros_3', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_add_new_zeros_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 8 x2 = (xindex // 16) % 4 x3 = (xindex // 64) % 4 x4 = (xindex // 256) x5 = xindex % 16 x0 = xindex % 2 x6 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + ((4*x2) + (16*(x5 // 4)) + (64*x3) + (64*((x5 + (16*x2)) // 64)) + (256*x4) + (256*((x5 + (16*x2) + (64*x3)) // 256)) + (x5 % 4)), xmask) tmp1 = tl.full([XBLOCK], 5, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 5)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 5") tl.atomic_add(out_ptr0 + (x0 + (2*tmp4) + (10*x6)), tmp6, xmask, sem='relaxed') ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.int64) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf2, 8, grid=grid(8), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 5, 2), (160, 40, 10, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [result], Original ATen: [aten.new_zeros] triton_poi_fused_new_zeros_2.run(buf3, 640, grid=grid(640), stream=stream0) # Topologically Sorted Source Nodes: [result, index_add_], Original ATen: [aten.new_zeros, aten.index_add] triton_poi_fused_index_add_new_zeros_3.run(buf2, buf1, buf3, 1024, grid=grid(1024), stream=stream0) del buf1 return (reinterpret_tensor(buf3, (4, 4, 4, 10), (160, 40, 10, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (8, ), (1, ), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn def overlap_and_add(signal, frame_step): outer_dimensions = signal.size()[:-2] frames, frame_length = signal.size()[-2:] subframe_length = math.gcd(frame_length, frame_step) subframe_step = frame_step // subframe_length subframes_per_frame = frame_length // subframe_length output_size = frame_step * (frames - 1) + frame_length output_subframes = output_size // subframe_length subframe_signal = signal.view(*outer_dimensions, -1, subframe_length) frame = torch.arange(0, output_subframes, device=signal.device).unfold( 0, subframes_per_frame, subframe_step) frame = frame.long() frame = frame.contiguous().view(-1) result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length) result.index_add_(-2, frame, subframe_signal) result = result.view(*outer_dimensions, -1) return result class Decoder(nn.Module): def __init__(self, enc_dim, transform_window, audio_channels): super(Decoder, self).__init__() self.transform_window = transform_window self.audio_channels = audio_channels self.basis_signals = nn.Linear(enc_dim, audio_channels * transform_window, bias=False) def forward(self, mixture_w): """ Args: mixture_w: [M, N, K] est_mask: [M, C, N, K] Returns: est_source: [M, C, T] """ source_w = torch.transpose(mixture_w, 2, 3) est_source = self.basis_signals(source_w) m, c, k, _ = est_source.size() est_source = est_source.view(m, c, k, self.audio_channels, -1 ).transpose(2, 3).contiguous() est_source = overlap_and_add(est_source, self.transform_window // 2) return est_source def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'enc_dim': 4, 'transform_window': 4, 'audio_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x0 + x1 tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_index_add_new_zeros_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 8 x2 = xindex // 16 % 4 x3 = xindex // 64 % 4 x4 = xindex // 256 x5 = xindex % 16 x0 = xindex % 2 x6 = xindex // 16 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (4 * x2 + 16 * (x5 // 4) + 64 * x3 + 64 * ((x5 + 16 * x2) // 64) + 256 * x4 + 256 * ((x5 + 16 * x2 + 64 * x3) // 256 ) + x5 % 4), xmask) tmp1 = tl.full([XBLOCK], 5, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 5) | ~xmask, 'index out of bounds: 0 <= tmp4 < 5') tl.atomic_add(out_ptr0 + (x0 + 2 * tmp4 + 10 * x6), tmp6, xmask, sem= 'relaxed') def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 2), (2, 1), torch.int64) triton_poi_fused_clone_1[grid(8)](buf2, 8, XBLOCK=8, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 5, 2), (160, 40, 10, 2, 1), torch.float32) triton_poi_fused_new_zeros_2[grid(640)](buf3, 640, XBLOCK=256, num_warps=4, num_stages=1) triton_poi_fused_index_add_new_zeros_3[grid(1024)](buf2, buf1, buf3, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return reinterpret_tensor(buf3, (4, 4, 4, 10), (160, 40, 10, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( buf2, (8,), (1,), 0) def overlap_and_add(signal, frame_step): outer_dimensions = signal.size()[:-2] frames, frame_length = signal.size()[-2:] subframe_length = math.gcd(frame_length, frame_step) subframe_step = frame_step // subframe_length subframes_per_frame = frame_length // subframe_length output_size = frame_step * (frames - 1) + frame_length output_subframes = output_size // subframe_length subframe_signal = signal.view(*outer_dimensions, -1, subframe_length) frame = torch.arange(0, output_subframes, device=signal.device).unfold( 0, subframes_per_frame, subframe_step) frame = frame.long() frame = frame.contiguous().view(-1) result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length) result.index_add_(-2, frame, subframe_signal) result = result.view(*outer_dimensions, -1) return result class DecoderNew(nn.Module): def __init__(self, enc_dim, transform_window, audio_channels): super(DecoderNew, self).__init__() self.transform_window = transform_window self.audio_channels = audio_channels self.basis_signals = nn.Linear(enc_dim, audio_channels * transform_window, bias=False) def forward(self, input_0): primals_2 = self.basis_signals.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
PanagiotisP/demucs
Decoder
false
11,799
[ "MIT" ]
0
d115d0773ca08a081f5b6bfe274cf0e4ed9e2677
https://github.com/PanagiotisP/demucs/tree/d115d0773ca08a081f5b6bfe274cf0e4ed9e2677
FusedLeakyReLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/cx/ccxnongcgusvhvf5whrpjbz4ddnlsjovjzjngbpjfxvhdw7ihrhu.py # Topologically Sorted Source Nodes: [add, leaky_relu, mul], Original ATen: [aten.add, aten.leaky_relu, aten.mul] # Source node to ATen node mapping: # add => add # leaky_relu => gt, mul, where # mul => mul_1 # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {}) triton_poi_fused_add_leaky_relu_mul_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 1.4142135623730951 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, leaky_relu, mul], Original ATen: [aten.add, aten.leaky_relu, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_0.run(primals_2, primals_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): if bias is not None: rest_dim = [1] * (input.ndim - bias.ndim - 1) return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2) * scale else: return F.leaky_relu(input, negative_slope=0.2) * scale class FusedLeakyReLU(nn.Module): def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5): super().__init__() if bias: self.bias = nn.Parameter(torch.zeros(channel)) else: self.bias = None self.negative_slope = negative_slope self.scale = scale def forward(self, input): return fused_leaky_relu(input, self.bias, self.negative_slope, self .scale) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 1.4142135623730951 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp9, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_0[grid(256)](primals_2, primals_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf1, buf0 def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): if bias is not None: rest_dim = [1] * (input.ndim - bias.ndim - 1) return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2) * scale else: return F.leaky_relu(input, negative_slope=0.2) * scale class FusedLeakyReLUNew(nn.Module): def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5): super().__init__() if bias: self.bias = nn.Parameter(torch.zeros(channel)) else: self.bias = None self.negative_slope = negative_slope self.scale = scale def forward(self, input_0): primals_1 = self.bias primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
RaghavaDhanya/stylegan2-pytorch
FusedLeakyReLU
false
11,800
[ "MIT", "BSD-2-Clause", "Apache-2.0" ]
0
6a2b0c228c56830a7e669bc66dc92073d3c81ca8
https://github.com/RaghavaDhanya/stylegan2-pytorch/tree/6a2b0c228c56830a7e669bc66dc92073d3c81ca8
Model_CIFAR10_CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 6 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 1176) x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kw/ckwrps2tqe3aykfpglbriki576qircverxupbkuj4bsydpwuiyls.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_per_fused__log_softmax_6 = async_compile.triton('triton_per_fused__log_softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_6(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120, ), (1, )) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84, ), (1, )) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_6.run(buf12, buf15, 4, 10, grid=grid(4), stream=stream0) del buf12 return (buf15, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf15, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Model_CIFAR10_CNN(nn.Module): def __init__(self): super(Model_CIFAR10_CNN, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__log_softmax_6(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 10), (10, 1), torch.float32) triton_per_fused__log_softmax_6[grid(4)](buf12, buf15, 4, 10, XBLOCK=1, num_warps=2, num_stages=1) del buf12 return (buf15, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf15, primals_10, primals_8, primals_6) class Model_CIFAR10_CNNNew(nn.Module): def __init__(self): super(Model_CIFAR10_CNNNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Pluriscient/learn-to-learn
Model_CIFAR10_CNN
false
11,801
[ "MIT" ]
0
4aa0143522eb90f6439b83ed424d12b434cb344b
https://github.com/Pluriscient/learn-to-learn/tree/4aa0143522eb90f6439b83ed424d12b434cb344b
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/rg/crg522m3y4v7k4jllgwpydciu6bjqsfnsxrer5whyf4hotsoe5rw.py # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # score_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/h7/ch7ziltjnllhlwal6dz2n67p6gl5e2gojxkzuefleah4glcy25od.py # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # score_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_3 del primals_4 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_5 del primals_6 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_8 return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), buf4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='dot_product', dropout=0): """ Attention Mechanism :param embed_dim: :param hidden_dim: :param out_dim: :param n_head: num of head (Multi-Head Attention) :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot) :return (?, q_len, out_dim,) """ super(Attention, self).__init__() if hidden_dim is None: hidden_dim = embed_dim // n_head if out_dim is None: out_dim = embed_dim self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.n_head = n_head self.score_function = score_function self.w_k = nn.Linear(embed_dim, n_head * hidden_dim) self.w_q = nn.Linear(embed_dim, n_head * hidden_dim) self.proj = nn.Linear(n_head * hidden_dim, out_dim) self.dropout = nn.Dropout(dropout) if score_function == 'mlp': self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2)) elif self.score_function == 'bi_linear': self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_dim) if self.weight is not None: self.weight.data.uniform_(-stdv, stdv) def forward(self, k, q): if len(q.shape) == 2: q = torch.unsqueeze(q, dim=1) if len(k.shape) == 2: k = torch.unsqueeze(k, dim=1) mb_size = k.shape[0] k_len = k.shape[1] q_len = q.shape[1] kx = self.w_k(k).view(mb_size, k_len, self.n_head, self.hidden_dim) kx = kx.permute(2, 0, 1, 3).contiguous().view(-1, k_len, self. hidden_dim) qx = self.w_q(q).view(mb_size, q_len, self.n_head, self.hidden_dim) qx = qx.permute(2, 0, 1, 3).contiguous().view(-1, q_len, self. hidden_dim) if self.score_function == 'dot_product': kt = kx.permute(0, 2, 1) score = torch.bmm(qx, kt) elif self.score_function == 'scaled_dot_product': kt = kx.permute(0, 2, 1) qkt = torch.bmm(qx, kt) score = torch.div(qkt, math.sqrt(self.hidden_dim)) elif self.score_function == 'mlp': kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1) qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1) kq = torch.cat((kxx, qxx), dim=-1) score = torch.tanh(torch.matmul(kq, self.weight)) elif self.score_function == 'bi_linear': qw = torch.matmul(qx, self.weight) kt = kx.permute(0, 2, 1) score = torch.bmm(qw, kt) else: raise RuntimeError('invalid score_function') score = F.softmax(score, dim=0) output = torch.bmm(score, kx) output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1) output = self.proj(output) output = self.dropout(output) return output, score def get_inputs(): return [torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4])] def get_init_inputs(): return [[], {'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_3 del primals_4 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_5 del primals_6 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused__softmax_1[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_8 return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0 ), buf4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0 ), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0) class AttentionNew(nn.Module): def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='dot_product', dropout=0): """ Attention Mechanism :param embed_dim: :param hidden_dim: :param out_dim: :param n_head: num of head (Multi-Head Attention) :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot) :return (?, q_len, out_dim,) """ super(AttentionNew, self).__init__() if hidden_dim is None: hidden_dim = embed_dim // n_head if out_dim is None: out_dim = embed_dim self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.n_head = n_head self.score_function = score_function self.w_k = nn.Linear(embed_dim, n_head * hidden_dim) self.w_q = nn.Linear(embed_dim, n_head * hidden_dim) self.proj = nn.Linear(n_head * hidden_dim, out_dim) self.dropout = nn.Dropout(dropout) if score_function == 'mlp': self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2)) elif self.score_function == 'bi_linear': self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_dim) if self.weight is not None: self.weight.data.uniform_(-stdv, stdv) def forward(self, input_0, input_1): primals_3 = self.w_k.weight primals_4 = self.w_k.bias primals_5 = self.w_q.weight primals_6 = self.w_q.bias primals_7 = self.proj.weight primals_8 = self.proj.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
RaleLee/conv-emotion
Attention
false
11,802
[ "MIT" ]
0
1b07223cbdfd52eb31e913e982d18ff1ed3daf08
https://github.com/RaleLee/conv-emotion/tree/1b07223cbdfd52eb31e913e982d18ff1ed3daf08
SoftmaxOutputLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4f/c4fohylrkpmotjodbcxka53btdcdzxeig62kpjpo2l45ahnmgqpg.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] # Source node to ATen node mapping: # max_1 => getitem_1 # Graph fragment: # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 1), kwargs = {}) triton_poi_fused_max_1 = async_compile.triton('triton_poi_fused_max_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp1 / tmp6 tmp9 = tmp7 > tmp8 tmp10 = tmp7 == tmp8 tmp11 = tmp7 != tmp7 tmp12 = tmp8 != tmp8 tmp13 = tmp11 > tmp12 tmp14 = tmp9 | tmp13 tmp15 = tmp11 & tmp12 tmp16 = tmp10 | tmp15 tmp17 = tl.full([1], 0, tl.int64) tmp18 = tl.full([1], 1, tl.int64) tmp19 = tmp17 < tmp18 tmp20 = tmp16 & tmp19 tmp21 = tmp14 | tmp20 tmp22 = tl.where(tmp21, tmp7, tmp8) tmp23 = tl.where(tmp21, tmp17, tmp18) tmp24 = tmp3 / tmp6 tmp25 = tmp22 > tmp24 tmp26 = tmp22 == tmp24 tmp27 = tmp22 != tmp22 tmp28 = tmp24 != tmp24 tmp29 = tmp27 > tmp28 tmp30 = tmp25 | tmp29 tmp31 = tmp27 & tmp28 tmp32 = tmp26 | tmp31 tmp33 = tl.full([1], 2, tl.int64) tmp34 = tmp23 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tmp30 | tmp35 tmp37 = tl.where(tmp36, tmp22, tmp24) tmp38 = tl.where(tmp36, tmp23, tmp33) tmp39 = tmp5 / tmp6 tmp40 = tmp37 > tmp39 tmp41 = tmp37 == tmp39 tmp42 = tmp37 != tmp37 tmp43 = tmp39 != tmp39 tmp44 = tmp42 > tmp43 tmp45 = tmp40 | tmp44 tmp46 = tmp42 & tmp43 tmp47 = tmp41 | tmp46 tmp48 = tl.full([1], 3, tl.int64) tmp49 = tmp38 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tmp45 | tmp50 tmp52 = tl.where(tmp51, tmp37, tmp39) tmp53 = tl.where(tmp51, tmp38, tmp48) tl.store(out_ptr0 + (x0), tmp53, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(arg1_1, reinterpret_tensor(arg2_1, (64, 4), (4, 1), 0), reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del arg0_1 del arg1_1 del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] triton_poi_fused_max_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class OutputLayer(nn.Module): """ Abstract base class for output layer. Handles projection to output labels """ def __init__(self, hidden_size, output_size): super(OutputLayer, self).__init__() self.output_size = output_size self.output_projection = nn.Linear(hidden_size, output_size) def loss(self, hidden, labels): raise NotImplementedError('Must implement {}.loss'.format(self. __class__.__name__)) class SoftmaxOutputLayer(OutputLayer): """ Implements a softmax based output layer """ def forward(self, hidden): logits = self.output_projection(hidden) probs = F.softmax(logits, -1) _, predictions = torch.max(probs, dim=-1) return predictions def loss(self, hidden, labels): logits = self.output_projection(hidden) log_probs = F.log_softmax(logits, -1) return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1) ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp1 / tmp6 tmp9 = tmp7 > tmp8 tmp10 = tmp7 == tmp8 tmp11 = tmp7 != tmp7 tmp12 = tmp8 != tmp8 tmp13 = tmp11 > tmp12 tmp14 = tmp9 | tmp13 tmp15 = tmp11 & tmp12 tmp16 = tmp10 | tmp15 tmp17 = tl.full([1], 0, tl.int64) tmp18 = tl.full([1], 1, tl.int64) tmp19 = tmp17 < tmp18 tmp20 = tmp16 & tmp19 tmp21 = tmp14 | tmp20 tmp22 = tl.where(tmp21, tmp7, tmp8) tmp23 = tl.where(tmp21, tmp17, tmp18) tmp24 = tmp3 / tmp6 tmp25 = tmp22 > tmp24 tmp26 = tmp22 == tmp24 tmp27 = tmp22 != tmp22 tmp28 = tmp24 != tmp24 tmp29 = tmp27 > tmp28 tmp30 = tmp25 | tmp29 tmp31 = tmp27 & tmp28 tmp32 = tmp26 | tmp31 tmp33 = tl.full([1], 2, tl.int64) tmp34 = tmp23 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tmp30 | tmp35 tmp37 = tl.where(tmp36, tmp22, tmp24) tmp38 = tl.where(tmp36, tmp23, tmp33) tmp39 = tmp5 / tmp6 tmp40 = tmp37 > tmp39 tmp41 = tmp37 == tmp39 tmp42 = tmp37 != tmp37 tmp43 = tmp39 != tmp39 tmp44 = tmp42 > tmp43 tmp45 = tmp40 | tmp44 tmp46 = tmp42 & tmp43 tmp47 = tmp41 | tmp46 tmp48 = tl.full([1], 3, tl.int64) tmp49 = tmp38 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tmp45 | tmp50 tl.where(tmp51, tmp37, tmp39) tmp53 = tl.where(tmp51, tmp38, tmp48) tl.store(out_ptr0 + x0, tmp53, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4,), (1,)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(arg1_1, reinterpret_tensor(arg2_1, (64, 4), (4, 1), 0), reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del arg0_1 del arg1_1 del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) triton_poi_fused_max_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 return buf2, class OutputLayer(nn.Module): """ Abstract base class for output layer. Handles projection to output labels """ def __init__(self, hidden_size, output_size): super(OutputLayer, self).__init__() self.output_size = output_size self.output_projection = nn.Linear(hidden_size, output_size) def loss(self, hidden, labels): raise NotImplementedError('Must implement {}.loss'.format(self. __class__.__name__)) class SoftmaxOutputLayerNew(OutputLayer): """ Implements a softmax based output layer """ def loss(self, hidden, labels): logits = self.output_projection(hidden) log_probs = F.log_softmax(logits, -1) return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1) ) def forward(self, input_0): arg0_1 = self.output_projection.weight arg1_1 = self.output_projection.bias arg2_1 = input_0 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Ravikiran2402/_MOEL
SoftmaxOutputLayer
false
11,803
[ "MIT" ]
0
57e311712c67e1e554a3a9187709f8e2728d19be
https://github.com/Ravikiran2402/_MOEL/tree/57e311712c67e1e554a3a9187709f8e2728d19be
Net1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/lg/clgnkdclmu24adiu7cbx7ybrhsind74uypy3cvuihzwv4hxzyjlf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s6/cs6oowloxihsa2iqf677aggor4dgxx3q4fq7upsksc3m7rf4j6xb.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 921600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3600) % 64 x0 = xindex % 3600 x4 = (xindex // 3600) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6v/c6votzbefolf4fzzmnc4okxekuuh37ajyccnmrjo4ze3cvigljbw.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_4 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 492032, grid=grid(492032), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_5, buf3, 921600, grid=grid(921600), stream=stream0) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 230400, grid=grid(230400), stream=stream0) return (reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0), primals_1, primals_3, primals_4, buf1, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data import torch.utils.data.distributed import torch.nn.parallel import torch.optim class Net1(nn.Module): def __init__(self): super(Net1, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data import torch.utils.data.distributed import torch.nn.parallel import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3600 % 64 x0 = xindex % 3600 x4 = xindex // 3600 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(492032)](buf1, primals_2, 492032, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) triton_poi_fused_convolution_relu_1[grid(921600)](buf2, primals_5, buf3, 921600, XBLOCK=512, num_warps=8, num_stages=1) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_2[grid(230400)](buf3, buf4, buf5, 230400, XBLOCK=512, num_warps=8, num_stages=1) return reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0 ), primals_1, primals_3, primals_4, buf1, buf3, buf4 class Net1New(nn.Module): def __init__(self): super(Net1New, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RadhikaB-97/deep-learning-containers
Net1
false
11,804
[ "Apache-2.0" ]
0
85ad01742613401f42908d75bb4ca23d11895f6c
https://github.com/RadhikaB-97/deep-learning-containers/tree/85ad01742613401f42908d75bb4ca23d11895f6c
Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3i/c3iahaec5pb6sirkwkcomrpurca6kdwlbapwy7tphk7f3x443klh.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # inputs => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [2, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = (-2) + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-8) + y0 + (4*x2) + (16*y1)), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + (7*y3)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 7, grid=grid(16, 7), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv(nn.Module): """ Convenience class that does padding and convolution for inputs in the format [batch_size, sequence length, hidden size] """ def __init__(self, input_size, output_size, kernel_size, pad_type): """ Parameters: input_size: Input feature size output_size: Output feature size kernel_size: Kernel width pad_type: left -> pad on the left side (to mask future data), both -> pad on both sides """ super(Conv, self).__init__() padding = (kernel_size - 1, 0) if pad_type == 'left' else ( kernel_size // 2, (kernel_size - 1) // 2) self.pad = nn.ConstantPad1d(padding, 0) self.conv = nn.Conv1d(input_size, output_size, kernel_size= kernel_size, padding=0) def forward(self, inputs): inputs = self.pad(inputs.permute(0, 2, 1)) outputs = self.conv(inputs).permute(0, 2, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'kernel_size': 4, 'pad_type': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = -2 + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-8 + y0 + 4 * x2 + 16 * y1), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + 7 * y3), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(16, 7)](primals_1, buf0, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0 class ConvNew(nn.Module): """ Convenience class that does padding and convolution for inputs in the format [batch_size, sequence length, hidden size] """ def __init__(self, input_size, output_size, kernel_size, pad_type): """ Parameters: input_size: Input feature size output_size: Output feature size kernel_size: Kernel width pad_type: left -> pad on the left side (to mask future data), both -> pad on both sides """ super(ConvNew, self).__init__() padding = (kernel_size - 1, 0) if pad_type == 'left' else ( kernel_size // 2, (kernel_size - 1) // 2) self.pad = nn.ConstantPad1d(padding, 0) self.conv = nn.Conv1d(input_size, output_size, kernel_size= kernel_size, padding=0) def forward(self, input_0): primals_1 = self.conv.weight primals_3 = self.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Ravikiran2402/_MOEL
Conv
false
11,805
[ "MIT" ]
0
57e311712c67e1e554a3a9187709f8e2728d19be
https://github.com/Ravikiran2402/_MOEL/tree/57e311712c67e1e554a3a9187709f8e2728d19be
BertSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qd/cqdo5wv3kploo6uotug3zsqyson32sal5bj7kasnk2vzliy3j5h6.py # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] # Source node to ATen node mapping: # eq => eq # Graph fragment: # %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_8, -10000.0), kwargs = {}) triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -10000.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ce/ccew3aarqwghirerz43ladwwc3gll4wqkuac6bilja56jcp4uqcm.py # Topologically Sorted Source Nodes: [att_scores, masked_fill_, att_scores_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # att_scores => div # att_scores_1 => amax, exp, sub, sum_1 # masked_fill_ => full_default, where # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -10000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -10000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + (x2), tmp20, xmask) tl.store(out_ptr1 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ur/cur63ty6ioejq5ketok6ig4an25ma7edi64jshpb6indrifcsprf.py # Topologically Sorted Source Nodes: [att_scores, masked_fill_, att_scores_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # att_scores => div # att_scores_1 => amax, div_1, exp, sub # masked_fill_ => full_default, where # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -10000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x4), xmask) tmp6 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -10000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf2, primals_7, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf0, primals_3, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] triton_poi_fused_eq_1.run(primals_8, buf6, 64, grid=grid(64), stream=stream0) del primals_8 buf7 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [att_scores, masked_fill_, att_scores_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [att_scores, masked_fill_, att_scores_1], Original ATen: [aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0) del buf7 buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [attn_value], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf11 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn_value], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) return (reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf6, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn import torch.nn.functional as F class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transform(self, x, linear_layer): bs, seq_len = x.shape[:2] proj = linear_layer(x) proj = proj.view(bs, seq_len, self.num_attention_heads, self. attention_head_size) proj = proj.transpose(1, 2) return proj def attention(self, key, query, value, attention_mask): att_scores = query @ key.transpose(-2, -1) / math.sqrt(self. attention_head_size) att_scores.masked_fill_(attention_mask == -10000.0, value=-10000.0) att_scores = F.softmax(att_scores, dim=-1) att_scores = self.dropout(att_scores) return att_scores @ value def forward(self, hidden_states, attention_mask): key_layer = self.transform(hidden_states, self.key) value_layer = self.transform(hidden_states, self.value) query_layer = self.transform(hidden_states, self.query) attn_value = self.attention(key_layer, query_layer, value_layer, attention_mask) return attn_value def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(num_attention_heads=4, hidden_size= 4, attention_probs_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -10000.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -10000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp6, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = tmp12 * tmp2 tmp14 = tl.where(tmp11, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = tmp17 * tmp2 tmp19 = tl.where(tmp16, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + x2, tmp20, xmask) tl.store(out_ptr1 + x2, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x4 = xindex x5 = xindex // 4 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_out_ptr0 + x4, xmask) tmp6 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = -10000.0 tmp5 = tl.where(tmp0, tmp4, tmp3) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(in_out_ptr0 + x4, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf2 triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_eq_1[grid(64)](primals_8, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_8 buf7 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf10, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf11 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) return reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf6, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class BertSelfAttentionNew(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transform(self, x, linear_layer): bs, seq_len = x.shape[:2] proj = linear_layer(x) proj = proj.view(bs, seq_len, self.num_attention_heads, self. attention_head_size) proj = proj.transpose(1, 2) return proj def attention(self, key, query, value, attention_mask): att_scores = query @ key.transpose(-2, -1) / math.sqrt(self. attention_head_size) att_scores.masked_fill_(attention_mask == -10000.0, value=-10000.0) att_scores = F.softmax(att_scores, dim=-1) att_scores = self.dropout(att_scores) return att_scores @ value def forward(self, input_0, input_1): primals_2 = self.query.weight primals_3 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_1 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Abhimanyu08/minbert-assignment
BertSelfAttention
false
11,806
[ "Apache-2.0" ]
0
1610364213b1aab2d5446175dffabd7e1742833b
https://github.com/Abhimanyu08/minbert-assignment/tree/1610364213b1aab2d5446175dffabd7e1742833b
FunnelClassificationHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # hidden_1 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class FunnelClassificationHead(nn.Module): def __init__(self, config, n_labels): super().__init__() self.linear_hidden = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.linear_out = nn.Linear(config.d_model, n_labels) def forward(self, hidden): hidden = self.linear_hidden(hidden) hidden = torch.tanh(hidden) hidden = self.dropout(hidden) return self.linear_out(hidden) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(d_model=4, hidden_dropout=0.5), 'n_labels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4 class FunnelClassificationHeadNew(nn.Module): def __init__(self, config, n_labels): super().__init__() self.linear_hidden = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.linear_out = nn.Linear(config.d_model, n_labels) def forward(self, input_0): primals_1 = self.linear_hidden.weight primals_2 = self.linear_hidden.bias primals_4 = self.linear_out.weight primals_5 = self.linear_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Clemens123/transformers
FunnelClassificationHead
false
11,807
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
Sine
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py # Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin] # Source node to ATen node mapping: # mul => mul # sin => sin # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 30), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {}) triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 30.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_mul_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class Sine(nn.Module): def __init(self): super().__init__() def forward(self, input): return torch.sin(30 * input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 30.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SineNew(nn.Module): def __init(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RisingStockPrices/sirenized-deepsdf
Sine
false
11,808
[ "MIT" ]
0
c0fb33e26b6bf0753c02adc5186af344e40a6d04
https://github.com/RisingStockPrices/sirenized-deepsdf/tree/c0fb33e26b6bf0753c02adc5186af344e40a6d04
SimpleAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/xq/cxqnkvz6ksfxzcebv4n77pe5u6roargnnmapis6ymq4r6b5krclq.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lz/clzpvkxf6ex2lbapm65egvjtcerb3lrxuftxtlzwwccfjna7dphr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0), out=buf3) return (reinterpret_tensor(buf3, (4, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SimpleAttention(nn.Module): def __init__(self, input_dim): super(SimpleAttention, self).__init__() self.input_dim = input_dim self.scalar = nn.Linear(self.input_dim, 1, bias=False) def forward(self, M, x=None): """ M -> (seq_len, batch, vector) x -> dummy argument for the compatibility with MatchingAttention """ scale = self.scalar(M) alpha = F.softmax(scale, dim=0).permute(1, 2, 0) attn_pool = torch.bmm(alpha, M.transpose(0, 1))[:, 0, :] return attn_pool, alpha def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0), out =buf3) return reinterpret_tensor(buf3, (4, 4), (4, 1), 0), reinterpret_tensor(buf2 , (4, 1, 4), (1, 1, 4), 0), primals_2, buf2 class SimpleAttentionNew(nn.Module): def __init__(self, input_dim): super(SimpleAttentionNew, self).__init__() self.input_dim = input_dim self.scalar = nn.Linear(self.input_dim, 1, bias=False) def forward(self, input_0): primals_1 = self.scalar.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
RaleLee/conv-emotion
SimpleAttention
false
11,809
[ "MIT" ]
0
1b07223cbdfd52eb31e913e982d18ff1ed3daf08
https://github.com/RaleLee/conv-emotion/tree/1b07223cbdfd52eb31e913e982d18ff1ed3daf08
act_model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_5 buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import random import torch import numpy as np import torch.nn as nn import torch.optim as optim from collections import deque class act_model(nn.Module): def __init__(self, inp, hidden, output): super(act_model, self).__init__() self.fc1 = nn.Linear(inp, hidden, bias=True) self.fc2 = nn.Linear(hidden, hidden, bias=True) self.fc3 = nn.Linear(hidden, output, bias=True) self.fc12 = nn.LeakyReLU() self.memory = deque(maxlen=500) self.gamma = 0.95 self.epsilon = 1.0 self.epsilon_min = 0.001 self.epsilon_decay = 0.995 self.mse = nn.MSELoss() self.optimizer = optim.Adam(self.parameters(), lr=0.001) def action(self, state): if random.random() <= self.epsilon: return np.random.choice(out, 1)[0] else: q_values = self.forward(state) return np.argmax(q_values.detach().numpy()) def memorize(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def replay(self, batch_size): if len(self.memory) < batch_size: return 0 minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: q_values = self.forward(next_state) target = reward + self.gamma * np.amax(q_values.detach(). numpy()) target_f = self.forward(state) target_f[action] = target target_g = self.forward(state) self.zero_grad() self.optimizer.zero_grad() loss = self.mse(target_g, target_f) loss.backward(retain_graph=True) self.optimizer.step() if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def load(self, PATH): torch.save(self, PATH) def save(self, PATH): model = torch.load(PATH) return model def forward(self, x): out = self.fc12(self.fc1(x)) out = self.fc12(self.fc2(out)) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inp': 4, 'hidden': 4, 'output': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import random import numpy as np import torch.nn as nn import torch.optim as optim from collections import deque assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf6 = buf3 del buf3 extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), primals_6, primals_4 class act_modelNew(nn.Module): def __init__(self, inp, hidden, output): super(act_modelNew, self).__init__() self.fc1 = nn.Linear(inp, hidden, bias=True) self.fc2 = nn.Linear(hidden, hidden, bias=True) self.fc3 = nn.Linear(hidden, output, bias=True) self.fc12 = nn.LeakyReLU() self.memory = deque(maxlen=500) self.gamma = 0.95 self.epsilon = 1.0 self.epsilon_min = 0.001 self.epsilon_decay = 0.995 self.mse = nn.MSELoss() self.optimizer = optim.Adam(self.parameters(), lr=0.001) def action(self, state): if random.random() <= self.epsilon: return np.random.choice(out, 1)[0] else: q_values = self.forward(state) return np.argmax(q_values.detach().numpy()) def memorize(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def replay(self, batch_size): if len(self.memory) < batch_size: return 0 minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: q_values = self.forward(next_state) target = reward + self.gamma * np.amax(q_values.detach(). numpy()) target_f = self.forward(state) target_f[action] = target target_g = self.forward(state) self.zero_grad() self.optimizer.zero_grad() loss = self.mse(target_g, target_f) loss.backward(retain_graph=True) self.optimizer.step() if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def load(self, PATH): torch.save(self, PATH) def save(self, PATH): model = torch.load(PATH) return model def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
RedRyan111/deep-q-learning
act_model
false
11,811
[ "MIT" ]
0
1c032b9d4ee8ace8002d6ac4b6f4c54987ed8fc1
https://github.com/RedRyan111/deep-q-learning/tree/1c032b9d4ee8ace8002d6ac4b6f4c54987ed8fc1
PointWiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/2v/c2vp4wevd4mmk6p3qeilou7zqojjaarvm3pedrgkmrhhjbggkpqu.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/gh/cgh6bfy2bihruxswmk3lelq27ifjcz4y2cqp5igddznjqqf2443f.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s7/cs7zbumkjpjtp2asue2qrb7mzbik5vw3nnnxxz27vafugyjs7fr4.py # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.add, aten.transpose] # Source node to ATen node mapping: # outputs_2 => add, permute_3 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {}) # %permute_3 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%permute_2, [1, 0]), kwargs = {}) triton_poi_fused_add_transpose_2 = async_compile.triton('triton_poi_fused_add_transpose_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_transpose_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_transpose_2(in_ptr0, in_ptr1, in_ptr2, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1 + (4*y0)), xmask & ymask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr1 + (y0 + (4*x1)), tmp4, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 4, 4, grid=grid(4, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf6, 16, grid=grid(16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf5 = reinterpret_tensor(buf0, (4, 4), (1, 4), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.add, aten.transpose] triton_poi_fused_add_transpose_2.run(buf3, primals_5, primals_1, buf5, 4, 4, grid=grid(4, 4), stream=stream0) del buf3 del primals_5 return (buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4), (4, 1, 4), 0), reinterpret_tensor(buf2, (1, 4, 4), (16, 4, 1), 0), buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class PointWiseFeedForward(torch.nn.Module): def __init__(self, hidden_units, dropout_rate): super(PointWiseFeedForward, self).__init__() self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1) self.dropout1 = torch.nn.Dropout(p=dropout_rate) self.relu = torch.nn.ReLU() self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1) self.dropout2 = torch.nn.Dropout(p=dropout_rate) def forward(self, inputs): outputs = self.dropout2(self.conv2(self.relu(self.dropout1(self. conv1(inputs.transpose(-1, -2)))))) outputs = outputs.transpose(-1, -2) outputs += inputs return outputs def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'hidden_units': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_transpose_2(in_ptr0, in_ptr1, in_ptr2, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1 + 4 * y0), xmask & ymask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr1 + (y0 + 4 * x1), tmp4, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(4, 4)](primals_1, buf0, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16)](buf2, primals_3, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(reinterpret_tensor(buf2, (1, 4, 4 ), (0, 4, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 4), (16, 4, 1)) buf5 = reinterpret_tensor(buf0, (4, 4), (1, 4), 0) del buf0 triton_poi_fused_add_transpose_2[grid(4, 4)](buf3, primals_5, primals_1, buf5, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) del buf3 del primals_5 return buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4), (4, 1, 4), 0), reinterpret_tensor(buf2, (1, 4, 4), (16, 4, 1), 0 ), buf6 class PointWiseFeedForwardNew(torch.nn.Module): def __init__(self, hidden_units, dropout_rate): super(PointWiseFeedForwardNew, self).__init__() self.conv1 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1) self.dropout1 = torch.nn.Dropout(p=dropout_rate) self.relu = torch.nn.ReLU() self.conv2 = torch.nn.Conv1d(hidden_units, hidden_units, kernel_size=1) self.dropout2 = torch.nn.Dropout(p=dropout_rate) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RenqinSS/RecSys
PointWiseFeedForward
false
11,812
[ "MIT" ]
0
932d54e47af79576b67e28364ae6e97d99ededf4
https://github.com/RenqinSS/RecSys/tree/932d54e47af79576b67e28364ae6e97d99ededf4
MegatronBertOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/cl/cclwzssgcha5xquex5qki6klim6hfpecfb3mn3wjv6nq7ppewan7.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %view_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_4, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 del primals_4 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class MegatronBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return input_tensor + hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(intermediate_size=4, hidden_size=4, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_4, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class MegatronBertOutputNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Clemens123/transformers
MegatronBertOutput
false
11,813
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
DeiTOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ai/cai32p2ssjvpyulvuzcicdszqe3thbavgxn4jeed6uatjnl7yq2s.py # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.add] # Source node to ATen node mapping: # hidden_states_2 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_2, primals_4, 256, grid=grid(256), stream=stream0) del primals_2 del primals_4 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.checkpoint class DeiTOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(intermediate_size=4, hidden_size=4, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_2, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class DeiTOutputNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Clemens123/transformers
DeiTOutput
false
11,814
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26