entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
SSE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zo/czobpmlyr5atbcpsuque6vcmk7nafmb3smtbzoqilz46drm7zbkm.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6q/c6qyrmvchep2lyeodxjgze7brt2fv4khvsx2os2smplvfajckxaz.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# x_1 => sigmoid
# x_2 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class SSE(nn.Module):
"""SSE : Channel Squeeze and Spatial Excitation block.
Paper : https://arxiv.org/abs/1803.02579
Adapted from
https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
"""
def __init__(self, in_channels):
"""Constructor method for SSE class.
Args:
in_channels(int): The number of input channels in the feature map.
"""
super(SSE, self).__init__()
self.in_channels = in_channels
self.conv = nn.Conv2d(in_channels=self.in_channels, out_channels=1,
kernel_size=1, stride=1)
def forward(self, x) ->torch.Tensor:
"""Forward Method.
Args:
x(torch.Tensor): The input tensor of shape (batch, channels, height, width)
Returns:
Tensor of same shape
"""
x_inp = x
x = self.conv(x)
x = torch.sigmoid(x)
x = torch.mul(x_inp, x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(256)](primals_1, buf1, buf2,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf2, primals_1, primals_2, buf1
class SSENew(nn.Module):
"""SSE : Channel Squeeze and Spatial Excitation block.
Paper : https://arxiv.org/abs/1803.02579
Adapted from
https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178
"""
def __init__(self, in_channels):
"""Constructor method for SSE class.
Args:
in_channels(int): The number of input channels in the feature map.
"""
super(SSENew, self).__init__()
self.in_channels = in_channels
self.conv = nn.Conv2d(in_channels=self.in_channels, out_channels=1,
kernel_size=1, stride=1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Atharva-Phatak/torchflare | SSE | false | 13,333 | [
"Apache-2.0"
]
| 86 | 945f4bee73a855edd8cb19cd646731155499a27f | https://github.com/Atharva-Phatak/torchflare/tree/945f4bee73a855edd8cb19cd646731155499a27f |
ModelNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zv/czvynky4oalmloglgtzknnnppmxomthxuw2oxxbkmpms5mdr6woj.py
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 500
x2 = (xindex // 2000)
x3 = xindex % 2000
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (2016*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (2048*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/w6/cw662frhzlhbtv7e6y3yral7v4ea62wwb2adkoxku3gvogqatytc.py
# Topologically Sorted Source Nodes: [h_1, linear_1], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# h_1 => relu
# linear_1 => view_2
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu, [64, 500]), kwargs = {})
triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = (xindex // 500)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (500*(x1 % 4)) + (2016*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (500, 8), (8, 1))
assert_size_stride(primals_4, (500, ), (1, ))
assert_size_stride(primals_5, (500, 500), (500, 1))
assert_size_stride(primals_6, (500, ), (1, ))
assert_size_stride(primals_7, (4, 500), (500, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf1, primals_4, buf2, buf9, 32000, grid=grid(32000), stream=stream0)
del primals_4
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [h_1, linear_1], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_2.run(buf2, buf3, 32000, grid=grid(32000), stream=stream0)
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (500, 500), (1, 500), 0), out=buf4)
buf5 = buf2; del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_6, buf5, buf8, 32000, grid=grid(32000), stream=stream0)
del primals_6
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [h_2, linear_2], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_2.run(buf5, buf6, 32000, grid=grid(32000), stream=stream0)
del buf5
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf7)
del primals_8
return (reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf3, buf6, primals_7, buf8, primals_5, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((500, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((500, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import kaiming_uniform_
import torch.utils.data
def weight_init(m):
if m.__class__.__name__ == 'Linear':
m.weight.data.copy_(kaiming_uniform_(m.weight.data))
m.bias.data.fill_(0)
class ModelNet(nn.Module):
def __init__(self, observation_space, action_space, h1=500, h2=500):
super(ModelNet, self).__init__()
self.fc1 = nn.Linear(observation_space.shape[0] + action_space.
shape[0], h1)
self.fc2 = nn.Linear(h1, h2)
self.output_layer = nn.Linear(h2, observation_space.shape[0])
self.fc1.apply(weight_init)
self.fc2.apply(weight_init)
self.output_layer.apply(weight_init)
def forward(self, ob, ac):
h = torch.cat([ob, ac], dim=-1)
h = F.relu(self.fc1(h))
h = F.relu(self.fc2(h))
return self.output_layer(h)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'observation_space': torch.rand([4, 4]), 'action_space':
torch.rand([4, 4])}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.nn.init import kaiming_uniform_
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 500
x2 = xindex // 2000
x3 = xindex % 2000
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 2016 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 2048 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = xindex // 500
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 500 * (x1 % 4) + 2016 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (500, 8), (8, 1))
assert_size_stride(primals_4, (500,), (1,))
assert_size_stride(primals_5, (500, 500), (500, 1))
assert_size_stride(primals_6, (500,), (1,))
assert_size_stride(primals_7, (4, 500), (500, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1),
torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf1,
primals_4, buf2, buf9, 32000, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_4
buf3 = buf1
del buf1
triton_poi_fused_relu_view_2[grid(32000)](buf2, buf3, 32000, XBLOCK
=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (500, 500), (
1, 500), 0), out=buf4)
buf5 = buf2
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf4,
primals_6, buf5, buf8, 32000, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_6
buf6 = buf4
del buf4
triton_poi_fused_relu_view_2[grid(32000)](buf5, buf6, 32000, XBLOCK
=256, num_warps=4, num_stages=1)
del buf5
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7,
(500, 4), (1, 500), 0), alpha=1, beta=1, out=buf7)
del primals_8
return reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 8), (8, 1), 0
), buf3, buf6, primals_7, buf8, primals_5, buf9
def weight_init(m):
if m.__class__.__name__ == 'Linear':
m.weight.data.copy_(kaiming_uniform_(m.weight.data))
m.bias.data.fill_(0)
class ModelNetNew(nn.Module):
def __init__(self, observation_space, action_space, h1=500, h2=500):
super(ModelNetNew, self).__init__()
self.fc1 = nn.Linear(observation_space.shape[0] + action_space.
shape[0], h1)
self.fc2 = nn.Linear(h1, h2)
self.output_layer = nn.Linear(h2, observation_space.shape[0])
self.fc1.apply(weight_init)
self.fc2.apply(weight_init)
self.output_layer.apply(weight_init)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.output_layer.weight
primals_8 = self.output_layer.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| AswinRetnakumar/Machina | ModelNet | false | 13,334 | [
"MIT"
]
| 302 | 6519935ca4553192ac99fc1c7c1e7cab9dd72693 | https://github.com/AswinRetnakumar/Machina/tree/6519935ca4553192ac99fc1c7c1e7cab9dd72693 |
TVLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6n/c6nimak5zbthq5qzhy4ixcujhlsgcwwimsxrlof7ud5njaqrhzf7.py
# Topologically Sorted Source Nodes: [sub, pow_1, h_tv, truediv, sub_1, pow_2, w_tv, truediv_1, add, mul, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add, aten.mul]
# Source node to ATen node mapping:
# add => add
# h_tv => sum_1
# mul => mul
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# w_tv => sum_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_7), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 12), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_12, %slice_16), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 12), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4), kwargs = {})
triton_per_fused_add_div_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r0 = rindex % 12
r1 = (rindex // 12)
r2 = rindex % 3
r3 = (rindex // 3)
tmp0 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r0 + (16*r1)), rmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (1 + r2 + (4*r3)), rmask, other=0.0)
tmp9 = tl.load(in_ptr0 + (r2 + (4*r3)), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(rmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = 0.08333333333333333
tmp17 = tmp7 * tmp16
tmp18 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tmp20 = 2.0
tmp21 = tmp19 * tmp20
tmp22 = 0.25
tmp23 = tmp21 * tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, h_tv, truediv, sub_1, pow_2, w_tv, truediv_1, add, mul, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_pow_sub_sum_0.run(buf2, arg0_1, 1, 192, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class TVLoss(nn.Module):
def __init__(self, TVLoss_weight=1):
super(TVLoss, self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = (x.size()[2] - 1) * x.size()[3]
count_w = x.size()[2] * (x.size()[3] - 1)
h_tv = torch.pow(x[:, :, 1:, :] - x[:, :, :h_x - 1, :], 2).sum()
w_tv = torch.pow(x[:, :, :, 1:] - x[:, :, :, :w_x - 1], 2).sum()
return self.TVLoss_weight * 2 * (h_tv / count_h + w_tv / count_w
) / batch_size
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r0 = rindex % 12
r1 = rindex // 12
r2 = rindex % 3
r3 = rindex // 3
tmp0 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), rmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r0 + 16 * r1), rmask, other=0.0)
tmp8 = tl.load(in_ptr0 + (1 + r2 + 4 * r3), rmask, other=0.0)
tmp9 = tl.load(in_ptr0 + (r2 + 4 * r3), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp10
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(rmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = 0.08333333333333333
tmp17 = tmp7 * tmp16
tmp18 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tmp20 = 2.0
tmp21 = tmp19 * tmp20
tmp22 = 0.25
tmp23 = tmp21 * tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_pow_sub_sum_0[grid(1)](buf2, arg0_1, 1,
192, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class TVLossNew(nn.Module):
def __init__(self, TVLoss_weight=1):
super(TVLossNew, self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Axrid/cv_template | TVLoss | false | 13,335 | [
"MIT"
]
| 69 | 5c344692a1fcfb08b75d7104bcc78307b5640ecf | https://github.com/Axrid/cv_template/tree/5c344692a1fcfb08b75d7104bcc78307b5640ecf |
WSDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mz/cmz5p6zca3yecahcbga3tvqgpa5b3g637odbbpvmooy7ns67yt4k.py
# Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow]
# Source node to ATen node mapping:
# g => mul_4
# g_pred => mul_2
# intersection => sum_1
# mul => mul
# mul_1 => mul_1
# mul_3 => mul_3
# mul_5 => mul_5
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# sum_2 => sum_2
# sum_3 => sum_3
# wt => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.15), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, 1), kwargs = {})
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %mul_4), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2.0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_4, 2.0), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [-1]), kwargs = {})
triton_per_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp3 = 0.15
tmp4 = tmp2 + tmp3
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = 1.0
tmp9 = tmp7 - tmp8
tmp10 = tmp4 * tmp9
tmp11 = tmp0 * tmp6
tmp12 = tmp11 - tmp8
tmp13 = tmp4 * tmp12
tmp14 = tmp10 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp10 * tmp10
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.where(xmask, tmp20, 0)
tmp23 = tl.sum(tmp22, 1)[:, None]
tmp24 = tmp13 * tmp13
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp18, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr2 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jo/cjo432xww7vctyrb7ojy7nnu3oefdpgj6fe4hswstyckuyu2qbg4.py
# Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# loss => sub_2
# loss_1 => mean
# mul_6 => mul_6
# truediv => div
# Graph fragment:
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, 100.0), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 100.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_3), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 100.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_pow_sub_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class WSDiceLoss(nn.Module):
def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15):
super().__init__()
self.smooth = smooth
self.power = power
self.v2 = v2
self.v1 = v1
def dice_loss(self, pred, target):
iflat = pred.reshape(pred.shape[0], -1)
tflat = target.reshape(pred.shape[0], -1)
wt = tflat * (self.v2 - self.v1) + self.v1
g_pred = wt * (2 * iflat - 1)
g = wt * (2 * tflat - 1)
intersection = (g_pred * g).sum(-1)
loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self.
power).sum(-1) + (g ** self.power).sum(-1) + self.smooth)
return loss.mean()
def forward(self, pred, target, weight_mask=None):
loss = self.dice_loss(pred, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp3 = 0.15
tmp4 = tmp2 + tmp3
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = 1.0
tmp9 = tmp7 - tmp8
tmp10 = tmp4 * tmp9
tmp11 = tmp0 * tmp6
tmp12 = tmp11 - tmp8
tmp13 = tmp4 * tmp12
tmp14 = tmp10 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp10 * tmp10
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.where(xmask, tmp20, 0)
tmp23 = tl.sum(tmp22, 1)[:, None]
tmp24 = tmp13 * tmp13
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + x0, tmp18, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr2 + x0, tmp28, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 100.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_pow_sub_sum_0[grid(4)](arg1_1, arg0_1,
buf0, buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
class WSDiceLossNew(nn.Module):
def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15):
super().__init__()
self.smooth = smooth
self.power = power
self.v2 = v2
self.v1 = v1
def dice_loss(self, pred, target):
iflat = pred.reshape(pred.shape[0], -1)
tflat = target.reshape(pred.shape[0], -1)
wt = tflat * (self.v2 - self.v1) + self.v1
g_pred = wt * (2 * iflat - 1)
g = wt * (2 * tflat - 1)
intersection = (g_pred * g).sum(-1)
loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self.
power).sum(-1) + (g ** self.power).sum(-1) + self.smooth)
return loss.mean()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Atharva-Peshkar/pytorch_connectomics | WSDiceLoss | false | 13,336 | [
"MIT"
]
| 99 | 8eccd9640a9a454d4df095a3529a030e58f882f5 | https://github.com/Atharva-Peshkar/pytorch_connectomics/tree/8eccd9640a9a454d4df095a3529a030e58f882f5 |
InputInjection | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nw/cnwstmvf4avgqqw5lh4fg5fqhyxv6b637lj7cpurr4it7ajwhzi5.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x3 = (xindex // 2)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x3)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + (2*x1)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x3)), tmp43 & xmask, eviction_policy='evict_last', other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), tmp49 & xmask, eviction_policy='evict_last', other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))
tmp53 = tmp51 / tmp52
tl.store(out_ptr0 + (x4), tmp53, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/a2/ca2ipk6vwg5ykf7uixiwiry7t2tymmzgrfywc7msbxu7kq6ovbsd.py
# Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_1 => avg_pool2d_1
# x_2 => avg_pool2d_2
# x_3 => avg_pool2d_3
# Graph fragment:
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [3, 3], [2, 2], [1, 1]), kwargs = {})
# %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_1, [3, 3], [2, 2], [1, 1]), kwargs = {})
# %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_2, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + ((-3) + (4*x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + ((-2) + (4*x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp12 + tmp7
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp13
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tmp22 + tmp20
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + (4*x0), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp26 = tmp25 + tmp23
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tmp28 + tmp26
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + (4*x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tmp31 + tmp29
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + (4*x0)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + (4*x0)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = tl.full([1], 9, tl.int32)
tmp40 = tmp38 / tmp39
tmp41 = tmp0 < tmp14
tmp42 = tmp2 & tmp41
tmp43 = tmp42 & tmp42
tmp44 = tmp1 < tmp14
tmp45 = tmp8 & tmp44
tmp46 = tmp42 & tmp45
tmp47 = tmp40 + tmp40
tmp48 = tmp14 < tmp14
tmp49 = tmp15 & tmp48
tmp50 = tmp42 & tmp49
tmp51 = tmp40 + tmp47
tmp52 = tmp45 & tmp42
tmp53 = tmp40 + tmp51
tmp54 = tmp45 & tmp45
tmp55 = tmp40 + tmp53
tmp56 = tmp45 & tmp49
tmp57 = tmp40 + tmp55
tmp58 = tmp49 & tmp42
tmp59 = tmp40 + tmp57
tmp60 = tmp49 & tmp45
tmp61 = tmp40 + tmp59
tmp62 = tmp49 & tmp49
tmp63 = tmp40 + tmp61
tmp64 = tmp63 / tmp39
tmp65 = tmp64 + tmp64
tmp66 = tmp64 + tmp65
tmp67 = tmp64 + tmp66
tmp68 = tmp64 + tmp67
tmp69 = tmp64 + tmp68
tmp70 = tmp64 + tmp69
tmp71 = tmp64 + tmp70
tmp72 = tmp64 + tmp71
tmp73 = tmp72 / tmp39
tl.store(in_out_ptr0 + (x0), tmp73, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf2 = buf1; del buf1 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(buf3, buf0, 16, grid=grid(16), stream=stream0)
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class InputInjection(nn.Module):
"""Downsampling module for CGNet."""
def __init__(self, num_downsampling):
super(InputInjection, self).__init__()
self.pool = nn.ModuleList()
for i in range(num_downsampling):
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
def forward(self, x):
for pool in self.pool:
x = pool(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_downsampling': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x3 = xindex // 2
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x3), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x3), tmp30 & xmask,
eviction_policy='evict_last', other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp33 & xmask,
eviction_policy='evict_last', other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp36 & xmask,
eviction_policy='evict_last', other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + 2 * x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x3), tmp43 & xmask,
eviction_policy='evict_last', other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), tmp46 & xmask,
eviction_policy='evict_last', other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), tmp49 & xmask,
eviction_policy='evict_last', other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) *
(2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 *
x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 +
2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)
)
tmp53 = tmp51 / tmp52
tl.store(out_ptr0 + x4, tmp53, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + (-3 + 4 * x0), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + (-2 + 4 * x0), tmp11 & xmask, eviction_policy
='evict_last', other=0.0)
tmp13 = tmp12 + tmp7
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp18 & xmask, eviction_policy
='evict_last', other=0.0)
tmp20 = tmp19 + tmp13
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp21 & xmask, eviction_policy
='evict_last', other=0.0)
tmp23 = tmp22 + tmp20
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + 4 * x0, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp25 + tmp23
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + 4 * x0), tmp27 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp29 = tmp28 + tmp26
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + 4 * x0), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tmp31 + tmp29
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + 4 * x0), tmp33 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + 4 * x0), tmp36 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = tl.full([1], 9, tl.int32)
tmp40 = tmp38 / tmp39
tmp41 = tmp0 < tmp14
tmp42 = tmp2 & tmp41
tmp42 & tmp42
tmp44 = tmp1 < tmp14
tmp45 = tmp8 & tmp44
tmp42 & tmp45
tmp47 = tmp40 + tmp40
tmp48 = tmp14 < tmp14
tmp49 = tmp15 & tmp48
tmp42 & tmp49
tmp51 = tmp40 + tmp47
tmp45 & tmp42
tmp53 = tmp40 + tmp51
tmp45 & tmp45
tmp55 = tmp40 + tmp53
tmp45 & tmp49
tmp57 = tmp40 + tmp55
tmp49 & tmp42
tmp59 = tmp40 + tmp57
tmp49 & tmp45
tmp61 = tmp40 + tmp59
tmp49 & tmp49
tmp63 = tmp40 + tmp61
tmp64 = tmp63 / tmp39
tmp65 = tmp64 + tmp64
tmp66 = tmp64 + tmp65
tmp67 = tmp64 + tmp66
tmp68 = tmp64 + tmp67
tmp69 = tmp64 + tmp68
tmp70 = tmp64 + tmp69
tmp71 = tmp64 + tmp70
tmp72 = tmp64 + tmp71
tmp73 = tmp72 / tmp39
tl.store(in_out_ptr0 + x0, tmp73, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf2 = buf1
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf2
triton_poi_fused_avg_pool2d_1[grid(16)](buf3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf3,
class InputInjectionNew(nn.Module):
"""Downsampling module for CGNet."""
def __init__(self, num_downsampling):
super(InputInjectionNew, self).__init__()
self.pool = nn.ModuleList()
for i in range(num_downsampling):
self.pool.append(nn.AvgPool2d(3, stride=2, padding=1))
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | InputInjection | false | 13,337 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
MSELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3o/c3ojeovop77jtjsbc2sbf6phxmf3ewz3f7gszih7ehz6obviaiu2.py
# Topologically Sorted Source Nodes: [loss, loss_1, loss_2], Original ATen: [aten.mse_loss, aten.mean, aten.mul]
# Source node to ATen node mapping:
# loss => pow_1, sub
# loss_1 => mean
# loss_2 => mul
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_mean_mse_loss_mul_0 = async_compile.triton('triton_per_fused_mean_mse_loss_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1, loss_2], Original ATen: [aten.mse_loss, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mse_loss_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def mse_loss(pred, target):
"""Warpper of mse loss."""
return F.mse_loss(pred, target, reduction='none')
class MSELoss(nn.Module):
"""MSELoss.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None):
"""Forward function of loss.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): Weight of the loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
Returns:
torch.Tensor: The calculated loss
"""
loss = self.loss_weight * mse_loss(pred, target, weight, reduction=
self.reduction, avg_factor=avg_factor)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import functools
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mse_loss_mul_0[grid(1)](buf1, arg0_1, arg1_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def mse_loss(pred, target):
"""Warpper of mse loss."""
return F.mse_loss(pred, target, reduction='none')
class MSELossNew(nn.Module):
"""MSELoss.
Args:
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
"""
def __init__(self, reduction='mean', loss_weight=1.0):
super().__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | MSELoss | false | 13,338 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
ConvEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/o4/co4nsnmwmq6u72ocszlwnicby3irkdzg333bffvczctebolija3z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2l/c2lopujvmnumdt346ycuertt5fmhzvjrvguon2iyn4d4fxs2achu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = (yindex // 16)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wv/cwvgka2tdnkfhotjblshnd7peeqx5dbyqvmgelrsa445t7sdxarg.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/md/cmd6uxoj7vkg4y6dkpwgb74y3dyvezsu6l3bkfbbdav6au736de4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hn/chnpwdoej4gta7prmx4k2xe4eb3rvns4vkblxa54m5eeo3bauolj.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ms/cms2snsaekjbs2o5a7du5miwsk2blg2i4z6ztiic5tg3u4w2hrph.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16) % 32
x2 = (xindex // 512)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32*x1) + (2048*x2)), None)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (32*x1) + (2048*x2)), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + (32*x1) + (2048*x2)), None)
tmp5 = tl.load(in_ptr0 + (1040 + x0 + (32*x1) + (2048*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3l/c3laeflqitli4nlvg62vqus7fk4cylqy4q3h4mdam6sibuo7ta5a.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6e/c6e64uvwope3htne4j3wnrtfgpuq4it6szqyws4rvyp3ig5gax5y.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32) % 16
x2 = (xindex // 512)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (2048*x2)), None)
tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (2048*x2)), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + (64*x1) + (2048*x2)), None)
tmp5 = tl.load(in_ptr0 + (1056 + x0 + (64*x1) + (2048*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/is/cislszvushfyrlagyxjg6baxtplrakvczxw352n2yl5ya2lp4xuq.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_2
# x_7 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ig/cigucyqkcssulkihmdbeutlqdudwm23dmoolk63tjgyb7v6ffn3w.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_8 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = (xindex // 64) % 8
x2 = (xindex // 512)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (2048*x2)), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (2048*x2)), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + (128*x1) + (2048*x2)), None)
tmp5 = tl.load(in_ptr0 + (1088 + x0 + (128*x1) + (2048*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tl/ctlxvr7xz67jmpa6hj57qujjamt7ur6ixuspeyligjrnxdm4jy5g.py
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_10 => relu_3
# x_9 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ev/cevxyh3kryr7minjqzmgvdyen3krrhdenaprhkfa4nqj7rr3exy2.py
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_11 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 4
x2 = (xindex // 512)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (2048*x2)), None)
tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (2048*x2)), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + (256*x1) + (2048*x2)), None)
tmp5 = tl.load(in_ptr0 + (1152 + x0 + (256*x1) + (2048*x2)), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k4/ck46lb2gu3xsigittm756kvkjit7mphtwafja2wmxou7z6lmjsgv.py
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_12 => convolution_4
# x_13 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gn/cgn7j46ycunh7bbqew3eami55g2yemwmukx752xu3c5zgzoqa2bp.py
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_14 => getitem_8, getitem_9
# Graph fragment:
# %getitem_8 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {})
# %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x3 = xindex
y0 = yindex % 2
y4 = (yindex // 2)
y2 = (yindex // 4)
y5 = yindex % 4
y6 = yindex
tmp0 = tl.load(in_ptr0 + (x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (256 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1024 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1280 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1, 1], 1, tl.int8)
tmp9 = tl.full([1, 1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1, 1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1, 1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (y5 + (4*x3) + (1024*y2)), tmp6, xmask & ymask)
tl.store(out_ptr1 + (x3 + (256*y6)), tmp16, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 48, 9, grid=grid(48, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 512, 9, grid=grid(512, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.float32)
buf9 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_7.run(buf7, buf8, buf9, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf11, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.float32)
buf13 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_9.run(buf11, buf12, buf13, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf15, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.float32)
buf17 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.int8)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf15, buf16, buf17, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 128, 8, 8), (8192, 1, 1024, 128))
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf19, primals_9, 32768, grid=grid(32768), stream=stream0)
del primals_9
buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.float32)
buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.int8)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_13.run(buf19, buf20, buf21, 8192, grid=grid(8192), stream=stream0)
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf20, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf23, primals_11, 16384, grid=grid(16384), stream=stream0)
del primals_11
buf24 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.float32)
buf25 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.int8)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_15.run(buf23, buf24, buf25, 16, 256, grid=grid(16, 256), stream=stream0)
return (buf24, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21, buf23, buf25, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConvEncoder(nn.Module):
"""
A simple Convolutional Encoder Model
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1))
self.relu1 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1))
self.relu2 = nn.ReLU(inplace=True)
self.maxpool2 = nn.MaxPool2d((2, 2))
self.conv3 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1))
self.relu3 = nn.ReLU(inplace=True)
self.maxpool3 = nn.MaxPool2d((2, 2))
self.conv4 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1))
self.relu4 = nn.ReLU(inplace=True)
self.maxpool4 = nn.MaxPool2d((2, 2))
self.conv5 = nn.Conv2d(128, 256, (3, 3), padding=(1, 1))
self.relu5 = nn.ReLU(inplace=True)
self.maxpool5 = nn.MaxPool2d((2, 2))
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.maxpool3(x)
x = self.conv4(x)
x = self.relu4(x)
x = self.maxpool4(x)
x = self.conv5(x)
x = self.relu5(x)
x = self.maxpool5(x)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = yindex // 16
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16 % 32
x2 = xindex // 512
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1 + 2048 * x2), None)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 32 * x1 + 2048 * x2), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + 32 * x1 + 2048 * x2), None)
tmp5 = tl.load(in_ptr0 + (1040 + x0 + 32 * x1 + 2048 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32 % 16
x2 = xindex // 512
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 2048 * x2), None)
tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 2048 * x2), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + 64 * x1 + 2048 * x2), None)
tmp5 = tl.load(in_ptr0 + (1056 + x0 + 64 * x1 + 2048 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 64
x1 = xindex // 64 % 8
x2 = xindex // 512
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 2048 * x2), None)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 2048 * x2), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + 128 * x1 + 2048 * x2), None)
tmp5 = tl.load(in_ptr0 + (1088 + x0 + 128 * x1 + 2048 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 4
x2 = xindex // 512
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 2048 * x2), None)
tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 2048 * x2), None)
tmp3 = tl.load(in_ptr0 + (1024 + x0 + 256 * x1 + 2048 * x2), None)
tmp5 = tl.load(in_ptr0 + (1152 + x0 + 256 * x1 + 2048 * x2), None)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x3 = xindex
y0 = yindex % 2
y4 = yindex // 2
y2 = yindex // 4
y5 = yindex % 4
y6 = yindex
tmp0 = tl.load(in_ptr0 + (x3 + 512 * y0 + 2048 * y4), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (256 + x3 + 512 * y0 + 2048 * y4), xmask &
ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1024 + x3 + 512 * y0 + 2048 * y4), xmask &
ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1280 + x3 + 512 * y0 + 2048 * y4), xmask &
ymask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1, 1], 1, tl.int8)
tmp9 = tl.full([1, 1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1, 1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1, 1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (y5 + 4 * x3 + 1024 * y2), tmp6, xmask & ymask)
tl.store(out_ptr1 + (x3 + 256 * y6), tmp16, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(48, 9)](primals_1, buf0, 48, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.
float32)
triton_poi_fused_2[grid(512, 9)](primals_4, buf2, 512, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
triton_poi_fused_3[grid(2048, 9)](primals_6, buf3, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_4[grid(8192, 9)](primals_8, buf4, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_6[grid(262144)](buf7, primals_2,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16),
torch.float32)
buf9 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_7[grid(65536)](buf7, buf8,
buf9, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_8[grid(131072)](buf11, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32),
torch.float32)
buf13 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_9[grid(32768)](buf11,
buf12, buf13, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_10[grid(65536)](buf15, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch
.float32)
buf17 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_11[grid(16384)](buf15,
buf16, buf17, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf18 = extern_kernels.convolution(buf16, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 128, 8, 8), (8192, 1, 1024, 128))
buf19 = buf18
del buf18
triton_poi_fused_convolution_relu_12[grid(32768)](buf19, primals_9,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128),
torch.float32)
buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(8192)](buf19,
buf20, buf21, 8192, XBLOCK=256, num_warps=4, num_stages=1)
buf22 = extern_kernels.convolution(buf20, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_14[grid(16384)](buf23, primals_11,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf24 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.
float32)
buf25 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_15[grid(16, 256)](buf23,
buf24, buf25, 16, 256, XBLOCK=256, YBLOCK=1, num_warps=4,
num_stages=1)
return (buf24, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9,
buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21,
buf23, buf25)
class ConvEncoderNew(nn.Module):
"""
A simple Convolutional Encoder Model
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1))
self.relu1 = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d((2, 2))
self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1))
self.relu2 = nn.ReLU(inplace=True)
self.maxpool2 = nn.MaxPool2d((2, 2))
self.conv3 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1))
self.relu3 = nn.ReLU(inplace=True)
self.maxpool3 = nn.MaxPool2d((2, 2))
self.conv4 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1))
self.relu4 = nn.ReLU(inplace=True)
self.maxpool4 = nn.MaxPool2d((2, 2))
self.conv5 = nn.Conv2d(128, 256, (3, 3), padding=(1, 1))
self.relu5 = nn.ReLU(inplace=True)
self.maxpool5 = nn.MaxPool2d((2, 2))
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| Alexander-Minyushkin/image_similarity | ConvEncoder | false | 13,339 | [
"Apache-2.0"
]
| 160 | 99bb68f0ccf226c068c43ad4feb47b76f7a5f180 | https://github.com/Alexander-Minyushkin/image_similarity/tree/99bb68f0ccf226c068c43ad4feb47b76f7a5f180 |
CrossEntropyLoss2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/t2/ct2dbabladhyyceg2gmfqrslgo4edv7x6gs7iscumud7suileuje.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
# Source node to ATen node mapping:
# loss => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div]
triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class CrossEntropyLoss2d(nn.Module):
"""This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class."""
def __init__(self, weight=None, ignore_index=-100):
super().__init__()
self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
def forward(self, output, target):
loss = self.CE(output, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf2, buf0,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class CrossEntropyLoss2dNew(nn.Module):
"""This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class."""
def __init__(self, weight=None, ignore_index=-100):
super().__init__()
self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AtlasGooo2/WoodScape | CrossEntropyLoss2d | false | 13,340 | [
"MIT"
]
| 348 | 597d9dda472c09bafea58ea69853948d63197eca | https://github.com/AtlasGooo2/WoodScape/tree/597d9dda472c09bafea58ea69853948d63197eca |
Hsigmoid | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/al/calq2n2c6yqrixmkhatumobmz5aiem2fkhbma7mrxbgbs6pw5oaq.py
# Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# relu6 => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.2
tmp2 = tmp0 * tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.2
tmp2 = tmp0 * tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HsigmoidNew(nn.Module):
def __init__(self, inplace=True):
super(HsigmoidNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BHD233/PaddleOCR2Pytorch | Hsigmoid | false | 13,341 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
ExampleBackbone | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ft/cftqaeqt35oge5l3bbpv3uhleqvp2lsejqwbjdklod7sy6k66dz2.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 46128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 46128, grid=grid(46128), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class ExampleBackbone(nn.Module):
def __init__(self):
super(ExampleBackbone, self).__init__()
self.conv = nn.Conv2d(3, 3, 3)
def init_weights(self, pretrained=None):
pass
def forward(self, x):
return [self.conv(x)]
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 46128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(46128)](buf1, primals_2, 46128,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class ExampleBackboneNew(nn.Module):
def __init__(self):
super(ExampleBackboneNew, self).__init__()
self.conv = nn.Conv2d(3, 3, 3)
def init_weights(self, pretrained=None):
pass
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Atten4Vis/DemystifyLocalViT | ExampleBackbone | false | 13,342 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
ConvDecoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2u/c2u5qht532os4nfrfov242toaxqk537zy54wskh7uss5oqplxtb3.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (512*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lj/cljchghs7s25kwji6zf5u7xdcrdr6dwh7jy7qlpatd2kmj7xpra3.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (4096*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nt/cntmzt5txgqohevznc4al5y2eih467yszbml2b6xggsk3rxl47zd.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ui/cuifchlkssgxqd3yyhyenilox2sjsvrhxgqhuye3hujd6cbauu5h.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (128*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/62/c622z53iz7qctxidigolkcjhdgv3gi2oj7ew2o5qozsuwxhav6yl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = (yindex // 16)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (16*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zi/czidrsm7uahjflyqrnerg4jkjln2pxwwkil6yvuaz5hlhyelmhga.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lq/clqfi7hlcjymrsi7txui4btym4vbwb3lqkhoqflt5e6zfa3ae3im.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f2/cf2zplou7ifb2ooqu5ctl4wmxdwd7vn2nk6drond7ww5akzlv3cq.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_2 => convolution_1
# x_3 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3l/c3laeflqitli4nlvg62vqus7fk4cylqy4q3h4mdam6sibuo7ta5a.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_4 => convolution_2
# x_5 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/sf/csf3snr7rwsgxjphuecadv2ainpqizqchb7hm3azthfhg6ffmxdg.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_3
# x_7 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4h/c4hscan6vcihpy74mppss5xf67cjabzvo4xyrsfmt342dajek3o6.py
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_8 => convolution_4
# x_9 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16384], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 16384
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (49152*y1)), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (16384*y3)), tmp4, ymask)
tl.store(out_ptr1 + (y0 + (3*x2) + (49152*y1)), tmp6, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_4, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (32, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_9, (16, ), (1, ))
assert_size_stride(primals_10, (16, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_11, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 128, 2, 2), (512, 1, 256, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 32768, 4, grid=grid(32768, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 1024, 16, grid=grid(1024, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 8192, 4, grid=grid(8192, 4), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 2048, 4, grid=grid(2048, 4), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((32, 16, 2, 2), (64, 1, 32, 16), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_8, buf4, 512, 4, grid=grid(512, 4), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((16, 3, 2, 2), (12, 1, 6, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_10, buf5, 48, 4, grid=grid(48, 4), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 8, 8), (8192, 1, 1024, 128))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 32768, grid=grid(32768), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf9, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_8.run(buf11, primals_7, 131072, grid=grid(131072), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf13, primals_9, 262144, grid=grid(262144), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 128, 128), (49152, 1, 384, 3))
buf15 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1), torch.float32)
buf16 = empty_strided_cuda((4, 3, 128, 128), (49152, 1, 384, 3), torch.bool)
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_10.run(buf14, primals_11, buf15, buf16, 12, 16384, grid=grid(12, 16384), stream=stream0)
del buf14
del primals_11
return (buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf16, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 3, 2, 2), (12, 4, 2, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConvDecoder(nn.Module):
"""
A simple Convolutional Decoder Model
"""
def __init__(self):
super().__init__()
self.deconv1 = nn.ConvTranspose2d(256, 128, (2, 2), stride=(2, 2))
self.relu1 = nn.ReLU(inplace=True)
self.deconv2 = nn.ConvTranspose2d(128, 64, (2, 2), stride=(2, 2))
self.relu2 = nn.ReLU(inplace=True)
self.deconv3 = nn.ConvTranspose2d(64, 32, (2, 2), stride=(2, 2))
self.relu3 = nn.ReLU(inplace=True)
self.deconv4 = nn.ConvTranspose2d(32, 16, (2, 2), stride=(2, 2))
self.relu4 = nn.ReLU(inplace=True)
self.deconv5 = nn.ConvTranspose2d(16, 3, (2, 2), stride=(2, 2))
self.relu5 = nn.ReLU(inplace=True)
def forward(self, x):
x = self.deconv1(x)
x = self.relu1(x)
x = self.deconv2(x)
x = self.relu2(x)
x = self.deconv3(x)
x = self.relu3(x)
x = self.deconv4(x)
x = self.relu4(x)
x = self.deconv5(x)
x = self.relu5(x)
return x
def get_inputs():
return [torch.rand([4, 256, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 512 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 256 * x2 + 4096 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 128 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = yindex // 16
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 16 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 49152 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 16384 * y3), tmp4, ymask)
tl.store(out_ptr1 + (y0 + 3 * x2 + 49152 * y1), tmp6, ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 128, 2, 2), (512, 4, 2, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_4, (128, 64, 2, 2), (256, 4, 2, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 32, 2, 2), (128, 4, 2, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 16, 2, 2), (64, 4, 2, 1))
assert_size_stride(primals_9, (16,), (1,))
assert_size_stride(primals_10, (16, 3, 2, 2), (12, 4, 2, 1))
assert_size_stride(primals_11, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 128, 2, 2), (512, 1, 256, 128),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(32768, 4)](primals_1, buf0, 32768, 4,
XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256),
torch.float32)
triton_poi_fused_1[grid(1024, 16)](primals_3, buf1, 1024, 16,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch
.float32)
triton_poi_fused_2[grid(8192, 4)](primals_4, buf2, 8192, 4, XBLOCK=
4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch.
float32)
triton_poi_fused_3[grid(2048, 4)](primals_6, buf3, 2048, 4, XBLOCK=
4, YBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((32, 16, 2, 2), (64, 1, 32, 16), torch.
float32)
triton_poi_fused_4[grid(512, 4)](primals_8, buf4, 512, 4, XBLOCK=4,
YBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((16, 3, 2, 2), (12, 1, 6, 3), torch.float32)
triton_poi_fused_5[grid(48, 4)](primals_10, buf5, 48, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 8, 8), (8192, 1, 1024, 128))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_6[grid(32768)](buf7, primals_2,
32768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_7[grid(65536)](buf9, primals_5,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_8[grid(131072)](buf11, primals_7,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_9[grid(262144)](buf13, primals_9,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 3, 128, 128), (49152, 1, 384, 3))
buf15 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1),
torch.float32)
buf16 = empty_strided_cuda((4, 3, 128, 128), (49152, 1, 384, 3),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_10[grid(12, 16384)
](buf14, primals_11, buf15, buf16, 12, 16384, XBLOCK=256,
YBLOCK=16, num_warps=8, num_stages=1)
del buf14
del primals_11
return (buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11,
buf13, buf16)
class ConvDecoderNew(nn.Module):
"""
A simple Convolutional Decoder Model
"""
def __init__(self):
super().__init__()
self.deconv1 = nn.ConvTranspose2d(256, 128, (2, 2), stride=(2, 2))
self.relu1 = nn.ReLU(inplace=True)
self.deconv2 = nn.ConvTranspose2d(128, 64, (2, 2), stride=(2, 2))
self.relu2 = nn.ReLU(inplace=True)
self.deconv3 = nn.ConvTranspose2d(64, 32, (2, 2), stride=(2, 2))
self.relu3 = nn.ReLU(inplace=True)
self.deconv4 = nn.ConvTranspose2d(32, 16, (2, 2), stride=(2, 2))
self.relu4 = nn.ReLU(inplace=True)
self.deconv5 = nn.ConvTranspose2d(16, 3, (2, 2), stride=(2, 2))
self.relu5 = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.deconv1.weight
primals_2 = self.deconv1.bias
primals_4 = self.deconv2.weight
primals_5 = self.deconv2.bias
primals_6 = self.deconv3.weight
primals_7 = self.deconv3.bias
primals_8 = self.deconv4.weight
primals_9 = self.deconv4.bias
primals_10 = self.deconv5.weight
primals_11 = self.deconv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| Alexander-Minyushkin/image_similarity | ConvDecoder | false | 13,343 | [
"Apache-2.0"
]
| 160 | 99bb68f0ccf226c068c43ad4feb47b76f7a5f180 | https://github.com/Alexander-Minyushkin/image_similarity/tree/99bb68f0ccf226c068c43ad4feb47b76f7a5f180 |
CrossEntropyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/57/c572rujtphach6djeurlg5nv3rt5e37ifechqsganatcxbygg5m5.py
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
# Source node to ATen node mapping:
# loss => exp, log, mul, neg, sub_1, sum_1, sum_2
# loss_1 => mean
# loss_cls => mul_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, buf0, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index):
"""Expand onehot labels to match the size of prediction."""
bin_labels = labels.new_zeros(target_shape)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(valid_mask, as_tuple=True)
if inds[0].numel() > 0:
if labels.dim() == 3:
bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1
else:
bin_labels[inds[0], labels[valid_mask]] = 1
valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.unsqueeze(1).expand(target_shape)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None, class_weight=None, ignore_index=255):
"""Calculate the binary CrossEntropy loss.
Args:
pred (torch.Tensor): The prediction with shape (N, 1).
label (torch.Tensor): The learning label of the prediction.
weight (torch.Tensor, optional): Sample-wise loss weight.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (int | None): The label index to be ignored. Default: 255
Returns:
torch.Tensor: The calculated loss
"""
if pred.dim() != label.dim():
assert pred.dim() == 2 and label.dim() == 1 or pred.dim(
) == 4 and label.dim(
) == 3, 'Only pred shape [N, C], label shape [N] or pred shape [N, C, H, W], label shape [N, H, W] are supported'
label, weight = _expand_onehot_labels(label, weight, pred.shape,
ignore_index)
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(),
pos_weight=class_weight, reduction='none')
loss = weight_reduce_loss(loss, weight, reduction=reduction, avg_factor
=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, class_weight=None, reduction=
'mean', avg_factor=None, ignore_index=-100):
"""The wrapper function for :func:`F.cross_entropy`"""
loss = F.cross_entropy(pred, label, weight=class_weight, reduction=
'none', ignore_index=ignore_index)
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=
None, class_weight=None, ignore_index=None):
"""Calculate the CrossEntropy loss for masks.
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the number
of classes.
target (torch.Tensor): The learning label of the prediction.
label (torch.Tensor): ``label`` indicates the class label of the mask'
corresponding object. This will be used to select the mask in the
of the class which the object belongs to when the mask prediction
if not class-agnostic.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (None): Placeholder, to be consistent with other loss.
Default: None.
Returns:
torch.Tensor: The calculated loss
"""
assert ignore_index is None, 'BCE loss does not support ignore_index'
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, weight=
class_weight, reduction='mean')[None]
class CrossEntropyLoss(nn.Module):
"""CrossEntropyLoss.
Args:
use_sigmoid (bool, optional): Whether the prediction uses sigmoid
of softmax. Defaults to False.
use_mask (bool, optional): Whether to use mask cross entropy loss.
Defaults to False.
reduction (str, optional): . Defaults to 'mean'.
Options are "none", "mean" and "sum".
class_weight (list[float], optional): Weight of each class.
Defaults to None.
loss_weight (float, optional): Weight of the loss. Defaults to 1.0.
"""
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
class_weight=None, loss_weight=1.0):
super(CrossEntropyLoss, self).__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
self.class_weight = class_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, cls_score, label, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
"""Forward function."""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
if self.class_weight is not None:
class_weight = cls_score.new_tensor(self.class_weight)
else:
class_weight = None
loss_cls = self.loss_weight * self.cls_criterion(cls_score, label,
weight, class_weight=class_weight, reduction=reduction,
avg_factor=avg_factor, **kwargs)
return loss_cls
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2,
buf0, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index):
"""Expand onehot labels to match the size of prediction."""
bin_labels = labels.new_zeros(target_shape)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(valid_mask, as_tuple=True)
if inds[0].numel() > 0:
if labels.dim() == 3:
bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1
else:
bin_labels[inds[0], labels[valid_mask]] = 1
valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.unsqueeze(1).expand(target_shape)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None, class_weight=None, ignore_index=255):
"""Calculate the binary CrossEntropy loss.
Args:
pred (torch.Tensor): The prediction with shape (N, 1).
label (torch.Tensor): The learning label of the prediction.
weight (torch.Tensor, optional): Sample-wise loss weight.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (int | None): The label index to be ignored. Default: 255
Returns:
torch.Tensor: The calculated loss
"""
if pred.dim() != label.dim():
assert pred.dim() == 2 and label.dim() == 1 or pred.dim(
) == 4 and label.dim(
) == 3, 'Only pred shape [N, C], label shape [N] or pred shape [N, C, H, W], label shape [N, H, W] are supported'
label, weight = _expand_onehot_labels(label, weight, pred.shape,
ignore_index)
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(),
pos_weight=class_weight, reduction='none')
loss = weight_reduce_loss(loss, weight, reduction=reduction, avg_factor
=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, class_weight=None, reduction=
'mean', avg_factor=None, ignore_index=-100):
"""The wrapper function for :func:`F.cross_entropy`"""
loss = F.cross_entropy(pred, label, weight=class_weight, reduction=
'none', ignore_index=ignore_index)
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=
None, class_weight=None, ignore_index=None):
"""Calculate the CrossEntropy loss for masks.
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the number
of classes.
target (torch.Tensor): The learning label of the prediction.
label (torch.Tensor): ``label`` indicates the class label of the mask'
corresponding object. This will be used to select the mask in the
of the class which the object belongs to when the mask prediction
if not class-agnostic.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (None): Placeholder, to be consistent with other loss.
Default: None.
Returns:
torch.Tensor: The calculated loss
"""
assert ignore_index is None, 'BCE loss does not support ignore_index'
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, weight=
class_weight, reduction='mean')[None]
class CrossEntropyLossNew(nn.Module):
"""CrossEntropyLoss.
Args:
use_sigmoid (bool, optional): Whether the prediction uses sigmoid
of softmax. Defaults to False.
use_mask (bool, optional): Whether to use mask cross entropy loss.
Defaults to False.
reduction (str, optional): . Defaults to 'mean'.
Options are "none", "mean" and "sum".
class_weight (list[float], optional): Weight of each class.
Defaults to None.
loss_weight (float, optional): Weight of the loss. Defaults to 1.0.
"""
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
class_weight=None, loss_weight=1.0):
super(CrossEntropyLossNew, self).__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
self.class_weight = class_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | CrossEntropyLoss | false | 13,344 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
SimpleModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sd/csdfq3pwxme6skykh2xidrwr6t4ujkpebegmshqc4a6ptefksvl7.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
def forward(self, x):
return x * 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleModelNew(nn.Module):
def __init__(self):
super(SimpleModelNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AyushExel/tensorboardX | SimpleModel | false | 13,345 | [
"MIT"
]
| 5,378 | 34552d52d9154013d36772e4c32e9b189a3b9217 | https://github.com/AyushExel/tensorboardX/tree/34552d52d9154013d36772e4c32e9b189a3b9217 |
SpatialGatherModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py
# Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs_1 => div, exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vq/cvqpprnukykv7fb6t2uveui44qrapemorby5j3fnnfeymwpqwe63.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs_1, ocr_context], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3)
del arg1_1
del buf2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del buf3
return (reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class SpatialGatherModule(nn.Module):
"""Aggregate the context features according to the initial predicted
probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, scale):
super(SpatialGatherModule, self).__init__()
self.scale = scale
def forward(self, feats, probs):
"""Forward function."""
batch_size, num_classes, _height, _width = probs.size()
channels = feats.size(1)
probs = probs.view(batch_size, num_classes, -1)
feats = feats.view(batch_size, channels, -1)
feats = feats.permute(0, 2, 1)
probs = F.softmax(self.scale * probs, dim=2)
ocr_context = torch.matmul(probs, feats)
ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3)
return ocr_context
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=
8, num_warps=2, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64,
1, 16), 0), out=buf3)
del arg1_1
del buf2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf3
return reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0),
class SpatialGatherModuleNew(nn.Module):
"""Aggregate the context features according to the initial predicted
probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, scale):
super(SpatialGatherModuleNew, self).__init__()
self.scale = scale
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | SpatialGatherModule | false | 13,346 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
AdaptiveAvgMaxPool2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def pooling_factor(pool_type='avg'):
return 2 if pool_type == 'avgmaxc' else 1
class AdaptiveAvgMaxPool2d(torch.nn.Module):
"""Selectable global pooling layer with dynamic input kernel size
"""
def __init__(self, output_size=1, pool_type='avg'):
super(AdaptiveAvgMaxPool2d, self).__init__()
self.output_size = output_size
self.pool_type = pool_type
if pool_type == 'avgmaxc' or pool_type == 'avgmax':
self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size),
nn.AdaptiveMaxPool2d(output_size)])
elif pool_type == 'max':
self.pool = nn.AdaptiveMaxPool2d(output_size)
else:
if pool_type != 'avg':
None
self.pool = nn.AdaptiveAvgPool2d(output_size)
def forward(self, x):
if self.pool_type == 'avgmaxc':
x = torch.cat([p(x) for p in self.pool], dim=1)
elif self.pool_type == 'avgmax':
x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]), 0
).squeeze(dim=0)
else:
x = self.pool(x)
return x
def factor(self):
return pooling_factor(self.pool_type)
def __repr__(self):
return self.__class__.__name__ + ' (' + 'output_size=' + str(self.
output_size) + ', pool_type=' + self.pool_type + '))'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
def pooling_factor(pool_type='avg'):
return 2 if pool_type == 'avgmaxc' else 1
class AdaptiveAvgMaxPool2dNew(torch.nn.Module):
"""Selectable global pooling layer with dynamic input kernel size
"""
def __init__(self, output_size=1, pool_type='avg'):
super(AdaptiveAvgMaxPool2dNew, self).__init__()
self.output_size = output_size
self.pool_type = pool_type
if pool_type == 'avgmaxc' or pool_type == 'avgmax':
self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size),
nn.AdaptiveMaxPool2d(output_size)])
elif pool_type == 'max':
self.pool = nn.AdaptiveMaxPool2d(output_size)
else:
if pool_type != 'avg':
None
self.pool = nn.AdaptiveAvgPool2d(output_size)
def factor(self):
return pooling_factor(self.pool_type)
def __repr__(self):
return self.__class__.__name__ + ' (' + 'output_size=' + str(self.
output_size) + ', pool_type=' + self.pool_type + '))'
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BCV-Uniandes/DMS | AdaptiveAvgMaxPool2d | false | 13,347 | [
"MIT"
]
| 66 | 9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16 | https://github.com/BCV-Uniandes/DMS/tree/9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16 |
TripletLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zj/czjfayfcarkuoamzfcxjw3kmfgj6fl22etyizczrjgbqk5bwokbq.py
# Topologically Sorted Source Nodes: [x, y], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x => div
# y => div_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand_1), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qz/cqzob3vprd66msbqxksowaomykxxjuerzonuix4auynyweifzuqd.py
# Topologically Sorted Source Nodes: [max_1, min_1], Original ATen: [aten.max, aten.min]
# Source node to ATen node mapping:
# max_1 => getitem
# min_1 => getitem_2
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {})
# %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%min_1, 0), kwargs = {})
triton_poi_fused_max_min_1 = async_compile.triton('triton_poi_fused_max_min_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_min_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_min_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x0), xmask)
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (1))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp19 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp28 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3))
tmp32 = tl.broadcast_to(tmp31, [XBLOCK])
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = tmp1 - tmp2
tmp7 = tmp4 == tmp6
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp3 * tmp8
tmp11 = tmp10 * tmp1
tmp12 = tmp1 - tmp11
tmp15 = tmp4 == tmp14
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp12 * tmp16
tmp18 = triton_helpers.maximum(tmp9, tmp17)
tmp20 = tmp19 * tmp1
tmp21 = tmp1 - tmp20
tmp24 = tmp4 == tmp23
tmp25 = tmp24.to(tl.float32)
tmp26 = tmp21 * tmp25
tmp27 = triton_helpers.maximum(tmp18, tmp26)
tmp29 = tmp28 * tmp1
tmp30 = tmp1 - tmp29
tmp33 = tmp4 == tmp32
tmp34 = tmp33.to(tl.float32)
tmp35 = tmp30 * tmp34
tmp36 = triton_helpers.maximum(tmp27, tmp35)
tmp37 = tmp4 != tmp6
tmp38 = tmp37.to(tl.float32)
tmp39 = tmp3 * tmp38
tmp40 = 99999999.0
tmp41 = tmp8 * tmp40
tmp42 = tmp39 + tmp41
tmp43 = tmp4 != tmp14
tmp44 = tmp43.to(tl.float32)
tmp45 = tmp12 * tmp44
tmp46 = tmp16 * tmp40
tmp47 = tmp45 + tmp46
tmp48 = triton_helpers.minimum(tmp42, tmp47)
tmp49 = tmp4 != tmp23
tmp50 = tmp49.to(tl.float32)
tmp51 = tmp21 * tmp50
tmp52 = tmp25 * tmp40
tmp53 = tmp51 + tmp52
tmp54 = triton_helpers.minimum(tmp48, tmp53)
tmp55 = tmp4 != tmp32
tmp56 = tmp55.to(tl.float32)
tmp57 = tmp30 * tmp56
tmp58 = tmp34 * tmp40
tmp59 = tmp57 + tmp58
tmp60 = triton_helpers.minimum(tmp54, tmp59)
tl.store(out_ptr0 + (x0), tmp36, xmask)
tl.store(out_ptr1 + (x0), tmp60, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, y], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, buf1, 16, grid=grid(16), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, mm], Original ATen: [aten.div, aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf4 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [max_1, min_1], Original ATen: [aten.max, aten.min]
triton_poi_fused_max_min_1.run(buf2, arg1_1, buf3, buf4, 4, grid=grid(4), stream=stream0)
del arg1_1
del buf2
buf5 = empty_strided_cuda((0, ), (1, ), torch.float32)
return (buf5, buf4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
def cosine_dist(x, y):
"""Computes Cosine Distance."""
x = F.normalize(x, dim=1)
y = F.normalize(y, dim=1)
dist = 2 - 2 * torch.mm(x, y.t())
return dist
def euclidean_dist(x, y):
"""Computes Euclidean distance."""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t()
dist = xx + yy - 2 * torch.matmul(x, y.t())
dist = dist.clamp(min=1e-12).sqrt()
return dist
def hard_example_mining(distance_matrix, pos_idxs, neg_idxs):
"""For each anchor, find the hardest positive and negative sample.
Args:
distance_matrix: pair wise distance between samples, shape [N, M]
pos_idxs: positive index with shape [N, M]
neg_idxs: negative index with shape [N, M]
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
p_inds: pytorch LongTensor, with shape [N];
indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1
n_inds: pytorch LongTensor, with shape [N];
indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1
Note:
Only consider the case in which all targets have same num of samples,
thus we can cope with all anchors in parallel.
"""
assert len(distance_matrix.size()) == 2
dist_ap, _ = torch.max(distance_matrix * pos_idxs, dim=1)
dist_an, _ = torch.min(distance_matrix * neg_idxs + pos_idxs *
99999999.0, dim=1)
return dist_ap, dist_an
def softmax_weights(dist, mask):
max_v = torch.max(dist * mask, dim=1, keepdim=True)[0]
difference = dist - max_v
z = torch.sum(torch.exp(difference) * mask, dim=1, keepdim=True) + 1e-06
weights = torch.exp(difference) * mask / z
return weights
def weighted_example_mining(distance_matrix, pos_idxs, neg_idxs):
"""For each anchor, find the weighted positive and negative sample.
Args:
distance_matrix: pytorch Variable, pair wise distance between samples, shape [N, N]
pos_idxs:positive index with shape [N, M]
neg_idxs: negative index with shape [N, M]
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
"""
assert len(distance_matrix.size()) == 2
dist_ap = distance_matrix * pos_idxs
dist_an = distance_matrix * neg_idxs
weights_ap = softmax_weights(dist_ap, pos_idxs)
weights_an = softmax_weights(-dist_an, neg_idxs)
dist_ap = torch.sum(dist_ap * weights_ap, dim=1)
dist_an = torch.sum(dist_an * weights_an, dim=1)
return dist_ap, dist_an
class TripletLoss(nn.Module):
"""Computes Triplet loss.
Args:
normalize_features: Whether to normalize the features. Default = True
margin: The value for margin. Default = None.
hard_mining: Whether to use hard sample mining. Default = True.
"""
def __init__(self, normalize_features: 'bool'=True, margin: 'float'=
None, hard_mining: 'bool'=True):
"""Constructor method for TripletLoss."""
super(TripletLoss, self).__init__()
self.normalize_features = normalize_features
self.margin = margin
self.hard_mining = hard_mining
def forward(self, embedding: 'torch.Tensor', targets: 'torch.Tensor'
) ->torch.Tensor:
"""Forward Method.
Args:
embedding: The output of the network.
targets: The targets.
Returns:
The computed Triplet Loss.
"""
distance_matrix = cosine_dist(embedding, embedding
) if self.normalize_features else euclidean_dist(embedding,
embedding)
n = distance_matrix.size(0)
pos_idxs = targets.view(n, 1).expand(n, n).eq(targets.view(n, 1).
expand(n, n).t()).float()
neg_idxs = targets.view(n, 1).expand(n, n).ne(targets.view(n, 1).
expand(n, n).t()).float()
if self.hard_mining:
dist_ap, dist_an = hard_example_mining(distance_matrix=
distance_matrix, pos_idxs=pos_idxs, neg_idxs=neg_idxs)
else:
dist_ap, dist_an = weighted_example_mining(distance_matrix=
distance_matrix, pos_idxs=pos_idxs, neg_idxs=neg_idxs)
y = dist_an.new().resize_as_(dist_an).fill_(1)
if self.margin is not None and self.margin > 0:
loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=self.
margin)
else:
loss = F.soft_margin_loss(dist_an - dist_ap, y)
if loss == float('Inf'):
loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=0.3)
return loss
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 1])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.functional as F
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_max_min_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x0, xmask)
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr1 + 1)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp19 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + 2)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp28 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + 3)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK])
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = tmp1 - tmp2
tmp7 = tmp4 == tmp6
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp3 * tmp8
tmp11 = tmp10 * tmp1
tmp12 = tmp1 - tmp11
tmp15 = tmp4 == tmp14
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp12 * tmp16
tmp18 = triton_helpers.maximum(tmp9, tmp17)
tmp20 = tmp19 * tmp1
tmp21 = tmp1 - tmp20
tmp24 = tmp4 == tmp23
tmp25 = tmp24.to(tl.float32)
tmp26 = tmp21 * tmp25
tmp27 = triton_helpers.maximum(tmp18, tmp26)
tmp29 = tmp28 * tmp1
tmp30 = tmp1 - tmp29
tmp33 = tmp4 == tmp32
tmp34 = tmp33.to(tl.float32)
tmp35 = tmp30 * tmp34
tmp36 = triton_helpers.maximum(tmp27, tmp35)
tmp37 = tmp4 != tmp6
tmp38 = tmp37.to(tl.float32)
tmp39 = tmp3 * tmp38
tmp40 = 99999999.0
tmp41 = tmp8 * tmp40
tmp42 = tmp39 + tmp41
tmp43 = tmp4 != tmp14
tmp44 = tmp43.to(tl.float32)
tmp45 = tmp12 * tmp44
tmp46 = tmp16 * tmp40
tmp47 = tmp45 + tmp46
tmp48 = triton_helpers.minimum(tmp42, tmp47)
tmp49 = tmp4 != tmp23
tmp50 = tmp49.to(tl.float32)
tmp51 = tmp21 * tmp50
tmp52 = tmp25 * tmp40
tmp53 = tmp51 + tmp52
tmp54 = triton_helpers.minimum(tmp48, tmp53)
tmp55 = tmp4 != tmp32
tmp56 = tmp55.to(tl.float32)
tmp57 = tmp30 * tmp56
tmp58 = tmp34 * tmp40
tmp59 = tmp57 + tmp58
tmp60 = triton_helpers.minimum(tmp54, tmp59)
tl.store(out_ptr0 + x0, tmp36, xmask)
tl.store(out_ptr1 + x0, tmp60, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](arg0_1, buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf4 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_max_min_1[grid(4)](buf2, arg1_1, buf3, buf4, 4,
XBLOCK=4, num_warps=1, num_stages=1)
del arg1_1
del buf2
buf5 = empty_strided_cuda((0,), (1,), torch.float32)
return buf5, buf4, buf3
def cosine_dist(x, y):
"""Computes Cosine Distance."""
x = F.normalize(x, dim=1)
y = F.normalize(y, dim=1)
dist = 2 - 2 * torch.mm(x, y.t())
return dist
def euclidean_dist(x, y):
"""Computes Euclidean distance."""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t()
dist = xx + yy - 2 * torch.matmul(x, y.t())
dist = dist.clamp(min=1e-12).sqrt()
return dist
def hard_example_mining(distance_matrix, pos_idxs, neg_idxs):
"""For each anchor, find the hardest positive and negative sample.
Args:
distance_matrix: pair wise distance between samples, shape [N, M]
pos_idxs: positive index with shape [N, M]
neg_idxs: negative index with shape [N, M]
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
p_inds: pytorch LongTensor, with shape [N];
indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1
n_inds: pytorch LongTensor, with shape [N];
indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1
Note:
Only consider the case in which all targets have same num of samples,
thus we can cope with all anchors in parallel.
"""
assert len(distance_matrix.size()) == 2
dist_ap, _ = torch.max(distance_matrix * pos_idxs, dim=1)
dist_an, _ = torch.min(distance_matrix * neg_idxs + pos_idxs *
99999999.0, dim=1)
return dist_ap, dist_an
def softmax_weights(dist, mask):
max_v = torch.max(dist * mask, dim=1, keepdim=True)[0]
difference = dist - max_v
z = torch.sum(torch.exp(difference) * mask, dim=1, keepdim=True) + 1e-06
weights = torch.exp(difference) * mask / z
return weights
def weighted_example_mining(distance_matrix, pos_idxs, neg_idxs):
"""For each anchor, find the weighted positive and negative sample.
Args:
distance_matrix: pytorch Variable, pair wise distance between samples, shape [N, N]
pos_idxs:positive index with shape [N, M]
neg_idxs: negative index with shape [N, M]
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
"""
assert len(distance_matrix.size()) == 2
dist_ap = distance_matrix * pos_idxs
dist_an = distance_matrix * neg_idxs
weights_ap = softmax_weights(dist_ap, pos_idxs)
weights_an = softmax_weights(-dist_an, neg_idxs)
dist_ap = torch.sum(dist_ap * weights_ap, dim=1)
dist_an = torch.sum(dist_an * weights_an, dim=1)
return dist_ap, dist_an
class TripletLossNew(nn.Module):
"""Computes Triplet loss.
Args:
normalize_features: Whether to normalize the features. Default = True
margin: The value for margin. Default = None.
hard_mining: Whether to use hard sample mining. Default = True.
"""
def __init__(self, normalize_features: 'bool'=True, margin: 'float'=
None, hard_mining: 'bool'=True):
"""Constructor method for TripletLoss."""
super(TripletLossNew, self).__init__()
self.normalize_features = normalize_features
self.margin = margin
self.hard_mining = hard_mining
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Atharva-Phatak/torchflare | TripletLoss | false | 13,348 | [
"Apache-2.0"
]
| 86 | 945f4bee73a855edd8cb19cd646731155499a27f | https://github.com/Atharva-Phatak/torchflare/tree/945f4bee73a855edd8cb19cd646731155499a27f |
AttentionPool2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ct/cctgbe64jgxq3sxjjjqccvq653sunfecfcizp3jcofnl7uiib7wo.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
# Source node to ATen node mapping:
# x_1 => cat
# x_2 => add
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %view], -1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %unsqueeze), kwargs = {})
triton_poi_fused_add_cat_1 = async_compile.triton('triton_poi_fused_add_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = (xindex // 17)
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 17, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr1 + ((16*x3) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + (x5), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rq/crqhbpxwwpvdowuqzuzvjdahxv45tx2y4dpxda2rurvr5kralgbn.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cr/ccrjqh2olqyevqox4t3kpoubo2s2m44cuvtxmf2k3slvdcgmmlcm.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6p/c6p34hneq7lp7a3tjiwk44lxqe2hzbpdjgbgmanamv35xvznwb2j.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (17*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (17*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wf/cwf36kt6t5p6sv4fjknukcyy4vz6ejfamnreogfggthvquklzkf6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 12
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oe/coet3g5rxo652nti4d4ogiwpej2mrpgh4cyidpv6aivegc4mda7s.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (68*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (17*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uk/cuk32wvqx6lzak6biu2zut26pzpqa3ell4xsxs3qv3cpuuon7kkw.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
triton_poi_fused_add_cat_1.run(buf0, primals_1, primals_2, buf1, 272, grid=grid(272), stream=stream0)
del buf0
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf2, primals_4, buf3, 272, grid=grid(272), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf2, primals_4, buf4, 272, grid=grid(272), stream=stream0)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17), 0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_4.run(buf5, buf8, 68, 17, grid=grid(68), stream=stream0)
del buf5
buf9 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf9, primals_4, 816, grid=grid(816), stream=stream0)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204, 1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf10, buf11, 16, 17, grid=grid(16, 17), stream=stream0)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf13, primals_6, 272, grid=grid(272), stream=stream0)
del primals_6
return (reinterpret_tensor(buf13, (4, 4), (68, 17), 0), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204, 17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 17), (17, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch as th
import torch.nn as nn
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
x = x + self.positional_embedding[None, :, :]
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'spacial_dim': 4, 'embed_dim': 4, 'num_heads_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
import torch as th
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = xindex // 17
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 17, tl.int64)
tmp13 = tl.load(in_ptr1 + (16 * x3 + (-1 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + x5, tmp16, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 17 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 17 * x0), tmp11, rmask & xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 12
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 68 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 17 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_add_cat_1[grid(272)](buf0, primals_1, primals_2,
buf1, 272, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_1
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_2[grid(272)](buf2, primals_4, buf3, 272,
XBLOCK=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_3[grid(272)](buf2, primals_4, buf4, 272,
XBLOCK=256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17),
0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
triton_per_fused__softmax_4[grid(68)](buf5, buf8, 68, 17, XBLOCK=8,
num_warps=2, num_stages=1)
del buf5
buf9 = buf2
del buf2
triton_poi_fused_convolution_5[grid(816)](buf9, primals_4, 816,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204,
1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 17)](buf10, buf11, 16, 17,
XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12
del buf12
triton_poi_fused_convolution_7[grid(272)](buf13, primals_6, 272,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
return reinterpret_tensor(buf13, (4, 4), (68, 17), 0
), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4,
4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204,
17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0
)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2dNew(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, input_0):
primals_2 = self.positional_embedding
primals_3 = self.qkv_proj.weight
primals_4 = self.qkv_proj.bias
primals_5 = self.c_proj.weight
primals_6 = self.c_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| AranKomat/Diff-DALLE | AttentionPool2d | false | 13,349 | [
"MIT"
]
| 53 | 9418e98e97b599c5c65f16ee168fedf76a29095f | https://github.com/AranKomat/Diff-DALLE/tree/9418e98e97b599c5c65f16ee168fedf76a29095f |
IoULoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5v/c5vh6nzsevsim32na7jvjcc2rudhxv6uvyusdqz3u53gnn6chxnq.py
# Topologically Sorted Source Nodes: [input_1, mul, intersection, add, mul_1, sub, union, iou, iou_dual, iou_dual_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add => add
# input_1 => sigmoid
# intersection => sum_1
# iou => div
# iou_dual => sub_1
# iou_dual_1 => div_1
# mul => mul
# mul_1 => mul_1
# sub => sub
# union => sum_2
# Graph fragment:
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %div), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, 4), kwargs = {})
triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tmp1 + tmp2
tmp8 = tmp7 - tmp3
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = tmp6 / tmp11
tmp13 = 4.0
tmp14 = tmp13 - tmp12
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [input_1, mul, intersection, add, mul_1, sub, union, iou, iou_dual, iou_dual_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class IoULoss(nn.Module):
"""
Creates a criterion that computes the Intersection over Union (IoU)
between a segmentation mask and its ground truth.
Rahman, M.A. and Wang, Y:
Optimizing Intersection-Over-Union in Deep Neural Networks for
Image Segmentation. International Symposium on Visual Computing (2016)
http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf
"""
def __init__(self, size_average=True):
super().__init__()
self.size_average = size_average
def forward(self, input, target):
input = F.sigmoid(input)
intersection = (input * target).sum()
union = (input + target - input * target).sum()
iou = intersection / union
iou_dual = input.size(0) - iou
if self.size_average:
iou_dual = iou_dual / input.size(0)
return iou_dual
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tmp1 + tmp2
tmp8 = tmp7 - tmp3
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = tmp6 / tmp11
tmp13 = 4.0
tmp14 = tmp13 - tmp12
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class IoULossNew(nn.Module):
"""
Creates a criterion that computes the Intersection over Union (IoU)
between a segmentation mask and its ground truth.
Rahman, M.A. and Wang, Y:
Optimizing Intersection-Over-Union in Deep Neural Networks for
Image Segmentation. International Symposium on Visual Computing (2016)
http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf
"""
def __init__(self, size_average=True):
super().__init__()
self.size_average = size_average
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BCV-Uniandes/DMS | IoULoss | false | 13,350 | [
"MIT"
]
| 66 | 9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16 | https://github.com/BCV-Uniandes/DMS/tree/9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16 |
GHMR | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/oz/cozsertrqgjrqyur62xx2dwoox3tbac6et7fykm33ltnl7jxfmfm.py
# Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt]
# Source node to ATen node mapping:
# sum_1 => sum_1
# valid => gt
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {})
triton_per_fused_gt_sum_0 = async_compile.triton('triton_per_fused_gt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 0.0
tmp5 = tmp0 > tmp4
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp5, None)
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2a/c2ayatl72atxz7llof44xg6xfcod4w34uyxjsxirgoqzc6bhc5er.py
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# add_1 => add_1
# diff => sub
# loss => sub_1
# mul => mul
# mul_1 => mul_1
# sqrt => sqrt
# sqrt_1 => sqrt_1
# truediv => div
# Graph fragment:
# %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.0004), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, 0.02), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 0.0004), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {})
triton_poi_fused_abs_add_div_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_abs_add_div_mul_sqrt_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.0004
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.02
tmp8 = tmp6 - tmp7
tmp9 = tmp2 / tmp6
tmp10 = tl_math.abs(tmp9)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zd/czdhovzy3i75dbb4lrrvs36jdqekoz77qi3q3aloxdafcrzuwdjh.py
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# weights => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_2 = async_compile.triton('triton_poi_fused_zeros_like_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt]
stream0 = get_raw_stream(0)
triton_per_fused_gt_sum_0.run(arg2_1, buf0, buf4, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs]
triton_poi_fused_abs_add_div_mul_sqrt_sub_1.run(arg0_1, arg1_1, buf1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
triton_poi_fused_zeros_like_2.run(buf3, 256, grid=grid(256), stream=stream0)
return (buf0, buf1, buf2, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class GHMR(nn.Module):
"""GHM Regression Loss.
Details of the theorem can be viewed in the paper
`Gradient Harmonized Single-stage Detector
<https://arxiv.org/abs/1811.05181>`_.
Args:
mu (float): The parameter for the Authentic Smooth L1 loss.
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
loss_weight (float): The weight of the total GHM-R loss.
"""
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
super(GHMR, self).__init__()
self.mu = mu
self.bins = bins
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] = 1000.0
self.momentum = momentum
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, avg_factor=None):
"""Calculate the GHM-R loss.
Args:
pred (float tensor of size [batch_num, 4 (* class_num)]):
The prediction of box regression layer. Channel number can be 4
or 4 * class_num depending on whether it is class-agnostic.
target (float tensor of size [batch_num, 4 (* class_num)]):
The target regression values with the same size of pred.
label_weight (float tensor of size [batch_num, 4 (* class_num)]):
The weight of each sample, 0 if ignored.
Returns:
The gradient harmonized loss.
"""
mu = self.mu
edges = self.edges
mmt = self.momentum
diff = pred - target
loss = torch.sqrt(diff * diff + mu * mu) - mu
g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach()
weights = torch.zeros_like(g)
valid = label_weight > 0
tot = max(label_weight.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
n += 1
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
if n > 0:
weights /= n
loss = loss * weights
loss = loss.sum() / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 0.0
tmp5 = tmp0 > tmp4
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp5, None)
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.0004
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.02
tmp8 = tmp6 - tmp7
tmp9 = tmp2 / tmp6
tmp10 = tl_math.abs(tmp9)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_per_fused_gt_sum_0[grid(1)](arg2_1, buf0, buf4, 1, 256,
num_warps=2, num_stages=1)
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_add_div_mul_sqrt_sub_1[grid(256)](arg0_1,
arg1_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_zeros_like_2[grid(256)](buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf0, buf1, buf2, buf3, buf4
class GHMRNew(nn.Module):
"""GHM Regression Loss.
Details of the theorem can be viewed in the paper
`Gradient Harmonized Single-stage Detector
<https://arxiv.org/abs/1811.05181>`_.
Args:
mu (float): The parameter for the Authentic Smooth L1 loss.
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
loss_weight (float): The weight of the total GHM-R loss.
"""
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
super(GHMRNew, self).__init__()
self.mu = mu
self.bins = bins
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] = 1000.0
self.momentum = momentum
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.loss_weight = loss_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | GHMR | false | 13,351 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
RepeatChannel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ft/cft7nruwawwktg3sagd5zukvvrybsovhtkcpuag7fsxmozul63yd.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%arg0_1, [1, 4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 16
x2 = (xindex // 256)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*(x1 % 4)) + (64*x2)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_repeat_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
class RepeatChannel(nn.Module):
def __init__(self, repeat):
super(RepeatChannel, self).__init__()
self.repeat = repeat
def forward(self, img):
return img.repeat(1, self.repeat, 1, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'repeat': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 16
x2 = xindex // 256
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * (x1 % 4) + 64 * x2), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_repeat_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class RepeatChannelNew(nn.Module):
def __init__(self, repeat):
super(RepeatChannelNew, self).__init__()
self.repeat = repeat
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AyushExel/GANSketching | RepeatChannel | false | 13,352 | [
"MIT"
]
| 598 | c72524ac4425de898087af7a4c554b777a4e2218 | https://github.com/AyushExel/GANSketching/tree/c72524ac4425de898087af7a4c554b777a4e2218 |
PixelShuffleICNR | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2d/c2dyd6cxufxiz7t2xxctkapc3g6iacdxmd3isuzgu56z6l2crhd6.py
# Topologically Sorted Source Nodes: [pixel_shuffle], Original ATen: [aten.pixel_shuffle]
# Source node to ATen node mapping:
# pixel_shuffle => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_pixel_shuffle_0 = async_compile.triton('triton_poi_fused_pixel_shuffle_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 2], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pixel_shuffle_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pixel_shuffle_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x4 = xindex
y0 = yindex % 4
y1 = (yindex // 4) % 2
y2 = (yindex // 8) % 4
y3 = (yindex // 32)
y5 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*x4) + (32*y1) + (64*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + (2*y5)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [pixel_shuffle], Original ATen: [aten.pixel_shuffle]
stream0 = get_raw_stream(0)
triton_poi_fused_pixel_shuffle_0.run(buf0, buf1, 128, 2, grid=grid(128, 2), stream=stream0)
del buf0
return (reinterpret_tensor(buf1, (4, 1, 8, 8), (64, 64, 8, 1), 0), primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
class PixelShuffleICNR(nn.Module):
def __init__(self, in_planes, out_planes, scale=2):
super().__init__()
self.conv = conv1x1(in_planes, out_planes)
self.shuffle = nn.PixelShuffle(scale)
kernel = self.ICNR(self.conv.weight, upscale_factor=scale)
self.conv.weight.data.copy_(kernel)
@staticmethod
def ICNR(tensor, upscale_factor=2, inizializer=nn.init.kaiming_normal_):
"""Fills the input Tensor or Variable with values according to the method
described in "Checkerboard artifact free sub-pixel convolution" https://arxiv.org/abs/1707.02937
Andrew Aitken et al. (2017), this inizialization should be used in the
last convolutional layer before a PixelShuffle operation
:param tensor: an n-dimensional torch.Tensor or autograd.Variable
:param upscale_factor: factor to increase spatial resolution by
:param inizializer: inizializer to be used for sub_kernel inizialization
"""
new_shape = [int(tensor.shape[0] / upscale_factor ** 2)] + list(tensor
.shape[1:])
sub_kernel = torch.zeros(new_shape)
sub_kernel = inizializer(sub_kernel)
sub_kernel = sub_kernel.transpose(0, 1)
sub_kernel = sub_kernel.contiguous().view(sub_kernel.shape[0],
sub_kernel.shape[1], -1)
kernel = sub_kernel.repeat(1, 1, upscale_factor ** 2)
transposed_shape = [tensor.shape[1]] + [tensor.shape[0]] + list(tensor
.shape[2:])
kernel = kernel.contiguous().view(transposed_shape)
kernel = kernel.transpose(0, 1)
return kernel
def forward(self, x):
return self.shuffle(self.conv(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4, 'out_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_pixel_shuffle_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x4 = xindex
y0 = yindex % 4
y1 = yindex // 4 % 2
y2 = yindex // 8 % 4
y3 = yindex // 32
y5 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * x4 + 32 * y1 + 64 * y3),
xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4 + 2 * y5), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_pixel_shuffle_0[grid(128, 2)](buf0, buf1, 128, 2,
XBLOCK=2, YBLOCK=64, num_warps=4, num_stages=1)
del buf0
return reinterpret_tensor(buf1, (4, 1, 8, 8), (64, 64, 8, 1), 0
), primals_1, primals_2
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
class PixelShuffleICNRNew(nn.Module):
def __init__(self, in_planes, out_planes, scale=2):
super().__init__()
self.conv = conv1x1(in_planes, out_planes)
self.shuffle = nn.PixelShuffle(scale)
kernel = self.ICNR(self.conv.weight, upscale_factor=scale)
self.conv.weight.data.copy_(kernel)
@staticmethod
def ICNR(tensor, upscale_factor=2, inizializer=nn.init.kaiming_normal_):
"""Fills the input Tensor or Variable with values according to the method
described in "Checkerboard artifact free sub-pixel convolution" https://arxiv.org/abs/1707.02937
Andrew Aitken et al. (2017), this inizialization should be used in the
last convolutional layer before a PixelShuffle operation
:param tensor: an n-dimensional torch.Tensor or autograd.Variable
:param upscale_factor: factor to increase spatial resolution by
:param inizializer: inizializer to be used for sub_kernel inizialization
"""
new_shape = [int(tensor.shape[0] / upscale_factor ** 2)] + list(tensor
.shape[1:])
sub_kernel = torch.zeros(new_shape)
sub_kernel = inizializer(sub_kernel)
sub_kernel = sub_kernel.transpose(0, 1)
sub_kernel = sub_kernel.contiguous().view(sub_kernel.shape[0],
sub_kernel.shape[1], -1)
kernel = sub_kernel.repeat(1, 1, upscale_factor ** 2)
transposed_shape = [tensor.shape[1]] + [tensor.shape[0]] + list(tensor
.shape[2:])
kernel = kernel.contiguous().view(transposed_shape)
kernel = kernel.transpose(0, 1)
return kernel
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| AtlasGooo2/WoodScape | PixelShuffleICNR | false | 13,353 | [
"MIT"
]
| 348 | 597d9dda472c09bafea58ea69853948d63197eca | https://github.com/AtlasGooo2/WoodScape/tree/597d9dda472c09bafea58ea69853948d63197eca |
Mlp | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nh/cnhx37tsffx4r7taj3xi72s7yfpnnccem24fupfbht6b7bzliavu.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# x_1 => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_0[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4
class MlpNew(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Atten4Vis/DemystifyLocalViT | Mlp | false | 13,354 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
MonoLinearHyperNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3v/c3vb5yn3xqc7zzpcdx25of3xswnqdr6bcmykof6kgugznu46p3sa.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/33/c33l2klxrl7oq4sgwznyguv3gcncbnv6c6bqfmrgrx7lzj4sq6tl.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# loss => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%view_1,), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 64.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1), (1, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 1), (1, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
stream0 = get_raw_stream(0)
triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 1, 4, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 1), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(buf5, buf3, 1, 64, grid=grid(1), stream=stream0)
del buf3
return (buf5, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from abc import abstractmethod
from torch import nn
from torch.nn.utils import weight_norm
class HyperNet(nn.Module):
"""This module is responsible for taking the losses from all tasks and return a single loss term.
We can think of this as our learnable loss criterion
"""
def __init__(self, main_task, input_dim):
super().__init__()
self.main_task = main_task
self.input_dim = input_dim
def forward(self, losses, outputs=None, labels=None, data=None):
"""
:param losses: losses form each task. This should be a tensor of size (batch_size, self.input_dim)
:param outputs: Optional. Parameters model output.
:param labels: Optional. Target.
:param data: Optiona. Parameters model input.
:return:
"""
pass
def _init_weights(self):
pass
def get_weights(self):
"""
:return: list of model parameters
"""
return list(self.parameters())
class MonoHyperNet(HyperNet):
"""Monotonic Hypernets
"""
def __init__(self, main_task, input_dim, clamp_bias=False):
super().__init__(main_task=main_task, input_dim=input_dim)
self.clamp_bias = clamp_bias
def get_weights(self):
"""
:return: list of model parameters
"""
return list(self.parameters())
@abstractmethod
def clamp(self):
pass
class MonoLinearHyperNet(MonoHyperNet):
"""Linear weights, e.g. \\sum_j lpha_j * l_j
"""
def __init__(self, main_task, input_dim, skip_connection=False,
clamp_bias=False, init_value=1.0, weight_normalization=True):
super().__init__(main_task=main_task, input_dim=main_task,
clamp_bias=clamp_bias)
self.init_value = init_value
self.skip_connection = skip_connection
self.linear = nn.Linear(input_dim, 1, bias=False)
self._init_weights()
self.weight_normalization = weight_normalization
if self.weight_normalization:
self.linear = weight_norm(self.linear)
def _init_weights(self):
self.linear.weight = nn.init.constant_(self.linear.weight, self.
init_value)
def forward(self, losses, outputs=None, labels=None, data=None):
loss = self.linear(losses).mean()
if self.skip_connection:
loss += losses[:, self.main_task].mean()
return loss
def clamp(self):
"""make sure parameters are non-negative
"""
if self.weight_normalization:
self.linear.weight_v.data.clamp_(0)
self.linear.weight_g.data.clamp_(0)
else:
self.linear.weight.data.clamp_(0)
if self.linear.bias is not None and self.clamp_bias:
self.linear.bias.data.clamp_(0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'main_task': 4, 'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from abc import abstractmethod
from torch import nn
from torch.nn.utils import weight_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
@triton.jit
def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 64.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1), (1, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 1), (1, 1), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__weight_norm_interface_0[grid(1)](buf1, primals_2,
primals_1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf2, (4, 1), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((), (), torch.float32)
buf5 = buf4
del buf4
triton_per_fused_mean_1[grid(1)](buf5, buf3, 1, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del buf3
return buf5, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_3
, (64, 4), (4, 1), 0)
class HyperNet(nn.Module):
"""This module is responsible for taking the losses from all tasks and return a single loss term.
We can think of this as our learnable loss criterion
"""
def __init__(self, main_task, input_dim):
super().__init__()
self.main_task = main_task
self.input_dim = input_dim
def forward(self, losses, outputs=None, labels=None, data=None):
"""
:param losses: losses form each task. This should be a tensor of size (batch_size, self.input_dim)
:param outputs: Optional. Parameters model output.
:param labels: Optional. Target.
:param data: Optiona. Parameters model input.
:return:
"""
pass
def _init_weights(self):
pass
def get_weights(self):
"""
:return: list of model parameters
"""
return list(self.parameters())
class MonoHyperNet(HyperNet):
"""Monotonic Hypernets
"""
def __init__(self, main_task, input_dim, clamp_bias=False):
super().__init__(main_task=main_task, input_dim=input_dim)
self.clamp_bias = clamp_bias
def get_weights(self):
"""
:return: list of model parameters
"""
return list(self.parameters())
@abstractmethod
def clamp(self):
pass
class MonoLinearHyperNetNew(MonoHyperNet):
"""Linear weights, e.g. \\sum_j lpha_j * l_j
"""
def __init__(self, main_task, input_dim, skip_connection=False,
clamp_bias=False, init_value=1.0, weight_normalization=True):
super().__init__(main_task=main_task, input_dim=main_task,
clamp_bias=clamp_bias)
self.init_value = init_value
self.skip_connection = skip_connection
self.linear = nn.Linear(input_dim, 1, bias=False)
self._init_weights()
self.weight_normalization = weight_normalization
if self.weight_normalization:
self.linear = weight_norm(self.linear)
def _init_weights(self):
self.linear.weight = nn.init.constant_(self.linear.weight, self.
init_value)
def clamp(self):
"""make sure parameters are non-negative
"""
if self.weight_normalization:
self.linear.weight_v.data.clamp_(0)
self.linear.weight_g.data.clamp_(0)
else:
self.linear.weight.data.clamp_(0)
if self.linear.bias is not None and self.clamp_bias:
self.linear.bias.data.clamp_(0)
def forward(self, input_0):
primals_1 = self.linear.weight_g
primals_2 = self.linear.weight_v
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AvivNavon/AuxiLearn | MonoLinearHyperNet | false | 13,355 | [
"MIT"
]
| 58 | 2c32f5cb548714ad3efe5c804003a30d6f012e2b | https://github.com/AvivNavon/AuxiLearn/tree/2c32f5cb548714ad3efe5c804003a30d6f012e2b |
L2Norm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/gj/cgj7f4rogjebeuosz3asgun5w2hregxq3ziitg4vtnz4jtcqfmau.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div]
# Source node to ATen node mapping:
# mul => mul
# norm => add
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %primals_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 1e-10
tmp16 = tmp14 + tmp15
tmp17 = tmp2 / tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class L2Norm(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
"""L2 normalization layer.
Args:
n_dims (int): Number of dimensions to be normalized
scale (float, optional): Defaults to 20..
eps (float, optional): Used to avoid division by zero.
Defaults to 1e-10.
"""
super(L2Norm, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, x):
"""Forward function."""
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_dims': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 1e-10
tmp16 = tmp14 + tmp15
tmp17 = tmp2 / tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2,
primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf0, primals_1
class L2NormNew(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
"""L2 normalization layer.
Args:
n_dims (int): Number of dimensions to be normalized
scale (float, optional): Defaults to 20..
eps (float, optional): Used to avoid division by zero.
Defaults to 1e-10.
"""
super(L2NormNew, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| Atten4Vis/DemystifyLocalViT | L2Norm | false | 13,356 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
Hswish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py
# Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# relu6 => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HswishNew(nn.Module):
def __init__(self, inplace=True):
super(HswishNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BHD233/PaddleOCR2Pytorch | Hswish | false | 13,357 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
ClsHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_3 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x_3 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ClsHead(nn.Module):
"""
Class orientation
Args:
params(dict): super parameters for build Class network
"""
def __init__(self, in_channels, class_dim, **kwargs):
super(ClsHead, self).__init__()
self.training = False
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(in_channels, class_dim, bias=True)
def forward(self, x):
x = self.pool(x)
x = torch.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.fc(x)
if not self.training:
x = F.softmax(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'class_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4,
1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf3
return buf4, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf4
class ClsHeadNew(nn.Module):
"""
Class orientation
Args:
params(dict): super parameters for build Class network
"""
def __init__(self, in_channels, class_dim, **kwargs):
super(ClsHeadNew, self).__init__()
self.training = False
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(in_channels, class_dim, bias=True)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BHD233/PaddleOCR2Pytorch | ClsHead | false | 13,358 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
FFN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout]
buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True)
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_5
return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(hidden, p=self.dropout_rate)
out = self.fc2(hidden)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_inner_hid': 4, 'd_model': 4, 'dropout_rate': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True)
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0)
del buf1
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_5
return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_4, buf6
class FFNNew(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFNNew, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BHD233/PaddleOCR2Pytorch | FFN | false | 13,359 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
LinearZeros | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dr/cdrlzpsdnaf5daayrtkicddem5cqnkmtu2cyqg5y26lqg3nvvxrr.py
# Topologically Sorted Source Nodes: [mul, exp, mul_1], Original ATen: [aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %exp), kwargs = {})
triton_poi_fused_exp_mul_0 = async_compile.triton('triton_poi_fused_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = 3.0
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, exp, mul_1], Original ATen: [aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_mul_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LinearZeros(nn.Linear):
def __init__(self, in_channels, out_channels, logscale_factor=3):
super().__init__(in_channels, out_channels)
self.logscale_factor = logscale_factor
self.register_parameter('logs', nn.Parameter(torch.zeros(out_channels))
)
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input):
output = super().forward(input)
return output * torch.exp(self.logs * self.logscale_factor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = 3.0
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp0 * tmp4
tl.store(out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_mul_0[grid(256)](buf0, primals_4, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0
class LinearZerosNew(nn.Linear):
def __init__(self, in_channels, out_channels, logscale_factor=3):
super().__init__(in_channels, out_channels)
self.logscale_factor = logscale_factor
self.register_parameter('logs', nn.Parameter(torch.zeros(out_channels))
)
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_4 = self.logs
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| BQZic/glow-pytorch | LinearZeros | false | 13,360 | [
"MIT"
]
| 479 | 4b43042326bbe644ccfda3c81a138375321808ed | https://github.com/BQZic/glow-pytorch/tree/4b43042326bbe644ccfda3c81a138375321808ed |
Conv2dWithFastWeight | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_2, %primals_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_1, 16, grid=grid(16), stream=stream0)
del primals_1
return (buf1, primals_2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from typing import Tuple
from typing import Union
import torch.nn as nn
import torch.nn.functional as F
class Conv2dWithFastWeight(nn.Conv2d):
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size:
'Union[int, Tuple]', stride: 'Union[int, Tuple]'=1, padding:
'Union[int, Tuple, str]'=0, bias: 'bool'=True) ->None:
super().__init__(in_channels, out_channels, kernel_size, stride=
stride, padding=padding, bias=bias)
self.weight.fast = None
if self.bias is not None:
self.bias.fast = None
def forward(self, x: 'Tensor') ->Tensor:
if self.bias is None:
if self.weight.fast is not None:
out = F.conv2d(x, self.weight.fast, None, stride=self.
stride, padding=self.padding)
else:
out = super().forward(x)
elif self.weight.fast is not None and self.bias.fast is not None:
out = F.conv2d(x, self.weight.fast, self.bias.fast, stride=self
.stride, padding=self.padding)
else:
out = super().forward(x)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from typing import Tuple
from typing import Union
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
return buf1, primals_2, primals_3
class Conv2dWithFastWeightNew(nn.Conv2d):
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size:
'Union[int, Tuple]', stride: 'Union[int, Tuple]'=1, padding:
'Union[int, Tuple, str]'=0, bias: 'bool'=True) ->None:
super().__init__(in_channels, out_channels, kernel_size, stride=
stride, padding=padding, bias=bias)
self.weight.fast = None
if self.bias is not None:
self.bias.fast = None
def forward(self, input_0):
primals_2 = self.weight
primals_1 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BIGWangYuDong/mmfewshot | Conv2dWithFastWeight | false | 13,361 | [
"Apache-2.0"
]
| 376 | dac097afc92df176bc2de76b7c90968584865197 | https://github.com/BIGWangYuDong/mmfewshot/tree/dac097afc92df176bc2de76b7c90968584865197 |
WShift | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/uz/cuzdojeecdnp6sj6qer5und3uv6oxkzgk2365i55gch5mqyktk3i.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
class WShift(nn.Module):
def __init__(self, style_dim):
super().__init__()
self.w_shift = nn.Parameter(torch.zeros(1, style_dim))
def forward(self, input):
out = input + self.w_shift
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'style_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0,
class WShiftNew(nn.Module):
def __init__(self, style_dim):
super().__init__()
self.w_shift = nn.Parameter(torch.zeros(1, style_dim))
def forward(self, input_0):
primals_1 = self.w_shift
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| AyushExel/GANSketching | WShift | false | 13,362 | [
"MIT"
]
| 598 | c72524ac4425de898087af7a4c554b777a4e2218 | https://github.com/AyushExel/GANSketching/tree/c72524ac4425de898087af7a4c554b777a4e2218 |
CTCHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ai/caiy5z5nrpk27bcwdhmejk63orle3ulxiwsuoewsfbsdh5jaa66y.py
# Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# predicts_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 424000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6625
x3 = (xindex // 6625)
x2 = (xindex // 26500)
tmp0 = tl.load(in_ptr0 + (x0 + (6656*x3)), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (6656 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (13312 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (19968 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x0 + (6656*x3)), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4s/c4syvx6g4zy3bk4mn2ylv7tfly6d6e26bto63qn4lzuqsjyk7gyh.py
# Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# predicts_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 424000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6625
x3 = (xindex // 6625)
x2 = (xindex // 26500)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (6656*x3)), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (6656 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (13312 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (19968 + x0 + (26624*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (6625, 4), (4, 1))
assert_size_stride(primals_2, (6625, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 6625), (6656, 1), torch.float32)
# Topologically Sorted Source Nodes: [predicts], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6625), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 6625), (106496, 26624, 6656, 1), torch.float32)
# Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 424000, grid=grid(424000), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 6625), (106000, 26500, 6625, 1), torch.float32)
# Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 424000, grid=grid(424000), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6625, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6625, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CTCHead(nn.Module):
def __init__(self, in_channels, out_channels=6625, fc_decay=0.0004,
mid_channels=None, **kwargs):
super(CTCHead, self).__init__()
if mid_channels is None:
self.fc = nn.Linear(in_channels, out_channels, bias=True)
else:
self.fc1 = nn.Linear(in_channels, mid_channels, bias=True)
self.fc2 = nn.Linear(mid_channels, out_channels, bias=True)
self.out_channels = out_channels
self.mid_channels = mid_channels
def forward(self, x, labels=None):
if self.mid_channels is None:
predicts = self.fc(x)
else:
predicts = self.fc1(x)
predicts = self.fc2(predicts)
if not self.training:
predicts = F.softmax(predicts, dim=2)
return predicts
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 424000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6625
x3 = xindex // 6625
x2 = xindex // 26500
tmp0 = tl.load(in_ptr0 + (x0 + 6656 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 26624 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (6656 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (13312 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (19968 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x0 + 6656 * x3), tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 424000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6625
x3 = xindex // 6625
x2 = xindex // 26500
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 6656 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 26624 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (6656 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (13312 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (19968 + x0 + 26624 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (6625, 4), (4, 1))
assert_size_stride(primals_2, (6625,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 6625), (6656, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6625), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 6625), (106496, 26624, 6656, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(424000)](buf0, buf1, 424000,
XBLOCK=512, num_warps=8, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 6625), (106000, 26500, 6625, 1),
torch.float32)
triton_poi_fused__softmax_1[grid(424000)](buf1, buf2, 424000,
XBLOCK=512, num_warps=8, num_stages=1)
del buf1
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2
class CTCHeadNew(nn.Module):
def __init__(self, in_channels, out_channels=6625, fc_decay=0.0004,
mid_channels=None, **kwargs):
super(CTCHeadNew, self).__init__()
if mid_channels is None:
self.fc = nn.Linear(in_channels, out_channels, bias=True)
else:
self.fc1 = nn.Linear(in_channels, mid_channels, bias=True)
self.fc2 = nn.Linear(mid_channels, out_channels, bias=True)
self.out_channels = out_channels
self.mid_channels = mid_channels
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BHD233/PaddleOCR2Pytorch | CTCHead | false | 13,363 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bt/cbtukfelygvwruykgqxvoito6trim7hi4gocn4mpohjjmw63qewu.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul
# product_2 => add
# weights => amax, exp, sub, sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_mul_0 = async_compile.triton('triton_poi_fused__softmax_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zz/czzjxm5452x7hgytt4wj5g5gsmoluemkcheo5nyv5rfsehlnlt6g.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul
# product_2 => add
# weights => amax, div, exp, sub
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_mul_1 = async_compile.triton('triton_poi_fused__softmax_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 16
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_add_mul_0.run(buf3, primals_7, buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_mul_1.run(buf6, primals_7, buf4, buf5, 64, grid=grid(64), stream=stream0)
del buf4
del buf5
del primals_7
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf8)
return (reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), primals_8, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
product = torch.matmul(q, k.transpose(2, 3))
product = product * self.d_model ** -0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product, dim=-1)
if self.dropout_rate:
weights = F.dropout(weights, p=self.dropout_rate)
out = torch.matmul(weights, v)
out = out.permute(0, 2, 1, 3)
out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape
[2] * out.shape[3]])
out = self.proj_fc(out)
return out
def get_inputs():
return [torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4]), torch.rand(
[4, 4, 1, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_key': 4, 'd_value': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_add_mul_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 16
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_add_mul_0[grid(16)](buf3, primals_7, buf4,
buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0)
del buf3
triton_poi_fused__softmax_add_mul_1[grid(64)](buf6, primals_7, buf4,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf4
del buf5
del primals_7
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf8)
return reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), buf6, reinterpret_tensor(buf7, (16, 4), (4, 1), 0
), primals_8, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
class MultiHeadAttentionNew(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttentionNew, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, input_0, input_1, input_2, input_3):
primals_3 = self.q_fc.weight
primals_5 = self.k_fc.weight
primals_6 = self.v_fc.weight
primals_7 = self.proj_fc.weight
primals_1 = input_0
primals_2 = input_1
primals_4 = input_2
primals_8 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| BHD233/PaddleOCR2Pytorch | MultiHeadAttention | false | 13,364 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
Encoding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yx/cyx5u6kg47bcb2a4mvrlkw5ynd42h4mj76hk2j6tveptehbkmic4.py
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, scaled_l2_norm], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul]
# Source node to ATen node mapping:
# pow_1 => pow_1
# scaled_l2_norm => mul
# sub => sub
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %view_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sum_1), kwargs = {})
triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 16
x2 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (32 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (48 + x1 + (64*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp4 = tmp3 * tmp3
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp4 + tmp8
tmp12 = tmp10 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp9 + tmp13
tmp17 = tmp15 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tmp0 * tmp19
tl.store(out_ptr0 + (x4), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# assigment_weights => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [2], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# assigment_weights => div, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/36/c36bunrpokrzs5svt4e6kwmfyyitmjh7nivu5rc6sidx55znumrf.py
# Topologically Sorted Source Nodes: [sub, mul_1, encoded_feat], Original ATen: [aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# encoded_feat => sum_3
# mul_1 => mul_1
# sub => sub
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %view_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %sub), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
triton_per_fused_mul_sub_sum_3 = async_compile.triton('triton_per_fused_mul_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x0 = xindex % 4
x4 = xindex % 16
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + (4*r3) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r3 + (16*x0) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp4 = tmp0 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tl.store(out_ptr0 + (x5), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, scaled_l2_norm], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, mul_1, encoded_feat], Original ATen: [aten.sub, aten.mul, aten.sum]
triton_per_fused_mul_sub_sum_3.run(buf2, primals_1, primals_2, buf3, 64, 16, grid=grid(64), stream=stream0)
del buf2
return (buf3, primals_1, primals_2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class Encoding(nn.Module):
"""Encoding Layer: a learnable residual encoder.
Input is of shape (batch_size, channels, height, width).
Output is of shape (batch_size, num_codes, channels).
Args:
channels: dimension of the features or feature channels
num_codes: number of code words
"""
def __init__(self, channels, num_codes):
super(Encoding, self).__init__()
self.channels, self.num_codes = channels, num_codes
std = 1.0 / (num_codes * channels) ** 0.5
self.codewords = nn.Parameter(torch.empty(num_codes, channels,
dtype=torch.float).uniform_(-std, std), requires_grad=True)
self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float)
.uniform_(-1, 0), requires_grad=True)
@staticmethod
def scaled_l2(x, codewords, scale):
num_codes, channels = codewords.size()
batch_size = x.size(0)
reshaped_scale = scale.view((1, 1, num_codes))
expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1),
num_codes, channels))
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords
).pow(2).sum(dim=3)
return scaled_l2_norm
@staticmethod
def aggregate(assigment_weights, x, codewords):
num_codes, channels = codewords.size()
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
batch_size = x.size(0)
expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1),
num_codes, channels))
encoded_feat = (assigment_weights.unsqueeze(3) * (expanded_x -
reshaped_codewords)).sum(dim=1)
return encoded_feat
def forward(self, x):
assert x.dim() == 4 and x.size(1) == self.channels
batch_size = x.size(0)
x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous()
assigment_weights = F.softmax(self.scaled_l2(x, self.codewords,
self.scale), dim=2)
encoded_feat = self.aggregate(assigment_weights, x, self.codewords)
return encoded_feat
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (
f'(Nx{self.channels}xHxW =>Nx{self.num_codes}x{self.channels})')
return repr_str
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'num_codes': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 16
x2 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (32 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr1 + (48 + x1 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tmp1 - tmp2
tmp4 = tmp3 * tmp3
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tmp4 + tmp8
tmp12 = tmp10 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp9 + tmp13
tmp17 = tmp15 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = tmp0 * tmp19
tl.store(out_ptr0 + x4, tmp20, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r3 = rindex
x1 = xindex // 4 % 4
x2 = xindex // 16
x0 = xindex % 4
x4 = xindex % 16
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x1 + 4 * r3 + 64 * x2), xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r3 + 16 * x0 + 64 * x2), xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp4 = tmp0 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tl.store(out_ptr0 + x5, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0[grid(256)](primals_3, primals_1,
primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_2[grid(256)](buf1, buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_per_fused_mul_sub_sum_3[grid(64)](buf2, primals_1, primals_2,
buf3, 64, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf2
return buf3, primals_1, primals_2, primals_3
class EncodingNew(nn.Module):
"""Encoding Layer: a learnable residual encoder.
Input is of shape (batch_size, channels, height, width).
Output is of shape (batch_size, num_codes, channels).
Args:
channels: dimension of the features or feature channels
num_codes: number of code words
"""
def __init__(self, channels, num_codes):
super(EncodingNew, self).__init__()
self.channels, self.num_codes = channels, num_codes
std = 1.0 / (num_codes * channels) ** 0.5
self.codewords = nn.Parameter(torch.empty(num_codes, channels,
dtype=torch.float).uniform_(-std, std), requires_grad=True)
self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float)
.uniform_(-1, 0), requires_grad=True)
@staticmethod
def scaled_l2(x, codewords, scale):
num_codes, channels = codewords.size()
batch_size = x.size(0)
reshaped_scale = scale.view((1, 1, num_codes))
expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1),
num_codes, channels))
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords
).pow(2).sum(dim=3)
return scaled_l2_norm
@staticmethod
def aggregate(assigment_weights, x, codewords):
num_codes, channels = codewords.size()
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
batch_size = x.size(0)
expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1),
num_codes, channels))
encoded_feat = (assigment_weights.unsqueeze(3) * (expanded_x -
reshaped_codewords)).sum(dim=1)
return encoded_feat
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (
f'(Nx{self.channels}xHxW =>Nx{self.num_codes}x{self.channels})')
return repr_str
def forward(self, input_0):
primals_2 = self.codewords
primals_3 = self.scale
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Atten4Vis/DemystifyLocalViT | Encoding | false | 13,365 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
BertLayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dg/cdgw6x7nju4bzp2wyuwgeanbco7zcjis6yiusovvnpz6zw3yjd3l.py
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# sub => sub
# u => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k3/ck3awyjmlyoxvkizg2opx6vtglv26uioox7nr33aabc2cmbcxgpr.py
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# pow_1 => pow_1
# s => mean_1
# sqrt => sqrt
# x => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
del primals_3
return (buf1, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x2, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2,
buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_3
return buf1, primals_1
class BertLayerNormNew(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNormNew, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BIT-ENGD/eeqa | BertLayerNorm | false | 13,366 | [
"MIT"
]
| 142 | 2995abbaff1fb47131246a247ee7ed62aa94f4c3 | https://github.com/BIT-ENGD/eeqa/tree/2995abbaff1fb47131246a247ee7ed62aa94f4c3 |
RelationCrossing | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/te/ctez6v53ld4k45ykiwq5ndlpz3jrny2atstdxadog7gcnit65abw.py
# Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# dsttype_node_relation_attention => sum_1
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %arg1_1), kwargs = {})
# %sum_1 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {})
triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2i/c2ir37xoljdhwkg75h2sbixyvepyluu4socgnd4wiw7oq57nugu4.py
# Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax]
# Source node to ATen node mapping:
# dsttype_node_relation_attention_1 => amax, exp, sub
# leaky_relu => gt, mul_1, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %mul_1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_leaky_relu_1 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp7 = tmp6 > tmp1
tmp8 = tmp6 * tmp3
tmp9 = tl.where(tmp7, tmp6, tmp8)
tmp11 = tmp10 > tmp1
tmp12 = tmp10 * tmp3
tmp13 = tl.where(tmp11, tmp10, tmp12)
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 > tmp1
tmp17 = tmp15 * tmp3
tmp18 = tl.where(tmp16, tmp15, tmp17)
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp21 = tmp20 > tmp1
tmp22 = tmp20 * tmp3
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = triton_helpers.maximum(tmp19, tmp23)
tmp25 = tmp5 - tmp24
tmp26 = tl_math.exp(tmp25)
tl.store(out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f5/cf5347orlkm5ylmh4iouw6qvowwebewwg66dnqrhzt7tg7a4irp5.py
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# dsttype_node_relation_attention_1 => div, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/af/cafnizcuehobeophh3e6mmdetxkitfomc7vxb4m5zc4zqmm42u5i.py
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum]
# Source node to ATen node mapping:
# dsttype_node_features_1 => sum_3
# dsttype_node_relation_attention_1 => div, sum_2
# mul_1 => mul_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [0]), kwargs = {})
triton_poi_fused__softmax_mul_sum_3 = async_compile.triton('triton_poi_fused__softmax_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x2), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x2), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x2), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax]
triton_poi_fused__softmax_leaky_relu_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum]
triton_poi_fused__softmax_mul_sum_3.run(arg0_1, buf2, buf3, 64, grid=grid(64), stream=stream0)
del arg0_1
del buf2
return (reinterpret_tensor(buf3, (4, 16), (16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class RelationCrossing(nn.Module):
def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int',
dropout: 'float'=0.0, negative_slope: 'float'=0.2):
"""
Description
----------
Relation crossing layer
Parameters
----------
in_feats : pair of ints
input feature size
out_feats : int
output feature size
num_heads : int
number of heads in Multi-Head Attention
dropout : float
optional, dropout rate, defaults: 0.0
negative_slope : float
optional, negative slope rate, defaults: 0.2
"""
super(RelationCrossing, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.leaky_relu = nn.LeakyReLU(negative_slope)
def forward(self, dsttype_node_features: 'torch.Tensor',
relations_crossing_attention_weight: 'nn.Parameter'):
"""
Parameters
----------
dsttype_node_features:
a tensor of (dsttype_node_relations_num, num_dst_nodes, n_heads * hidden_dim)
relations_crossing_attention_weight:
Parameter the shape is (n_heads, hidden_dim)
Returns:
----------
output_features: Tensor
"""
if len(dsttype_node_features) == 1:
dsttype_node_features = dsttype_node_features.squeeze(dim=0)
else:
dsttype_node_features = dsttype_node_features.reshape(
dsttype_node_features.shape[0], -1, self._num_heads, self.
_out_feats)
dsttype_node_relation_attention = (dsttype_node_features *
relations_crossing_attention_weight).sum(dim=-1, keepdim=True)
dsttype_node_relation_attention = F.softmax(self.leaky_relu(
dsttype_node_relation_attention), dim=0)
dsttype_node_features = (dsttype_node_features *
dsttype_node_relation_attention).sum(dim=0)
dsttype_node_features = self.dropout(dsttype_node_features)
dsttype_node_features = dsttype_node_features.reshape(-1, self.
_num_heads * self._out_feats)
return dsttype_node_features
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_feats': 4, 'out_feats': 4, 'num_heads': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp7 = tmp6 > tmp1
tmp8 = tmp6 * tmp3
tmp9 = tl.where(tmp7, tmp6, tmp8)
tmp11 = tmp10 > tmp1
tmp12 = tmp10 * tmp3
tmp13 = tl.where(tmp11, tmp10, tmp12)
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 > tmp1
tmp17 = tmp15 * tmp3
tmp18 = tl.where(tmp16, tmp15, tmp17)
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp21 = tmp20 > tmp1
tmp22 = tmp20 * tmp3
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = triton_helpers.maximum(tmp19, tmp23)
tmp25 = tmp5 - tmp24
tmp26 = tl_math.exp(tmp25)
tl.store(out_ptr0 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x2), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x2), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x2), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sum_0[grid(64)](arg0_1, arg1_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_leaky_relu_1[grid(64)](buf0, buf1, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_2[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_mul_sum_3[grid(64)](arg0_1, buf2, buf3,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del buf2
return reinterpret_tensor(buf3, (4, 16), (16, 1), 0),
class RelationCrossingNew(nn.Module):
def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int',
dropout: 'float'=0.0, negative_slope: 'float'=0.2):
"""
Description
----------
Relation crossing layer
Parameters
----------
in_feats : pair of ints
input feature size
out_feats : int
output feature size
num_heads : int
number of heads in Multi-Head Attention
dropout : float
optional, dropout rate, defaults: 0.0
negative_slope : float
optional, negative slope rate, defaults: 0.2
"""
super(RelationCrossingNew, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.leaky_relu = nn.LeakyReLU(negative_slope)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BUPT-GAMMA/OpenHGNN | RelationCrossing | false | 13,367 | [
"Apache-2.0"
]
| 235 | 5f218dad4ed1415aa6d842bc20785c61e74e5405 | https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405 |
GHMC | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/eu/ceuv7b3vtgnm54c77ljfgp5gdzt44um3527nmb7duufsy6ufr57k.py
# Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum]
# Source node to ATen node mapping:
# float_3 => convert_element_type
# sum_1 => sum_1
# valid => gt
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
triton_per_fused__to_copy_gt_sum_0 = async_compile.triton('triton_per_fused__to_copy_gt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp2, None)
tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yx/cyx33b4cuc5wetqcfqkvlznxkkeck5wuib3zqzten6pdyhb3nib2.py
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# weights => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_1 = async_compile.triton('triton_poi_fused_zeros_like_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o3/co3ohsiccha2jedxkbuuzgpfkttvcqovi7edh443hag7dzlqgnfb.py
# Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs]
# Source node to ATen node mapping:
# g => abs_1
# sigmoid => sigmoid
# sub => sub
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
triton_poi_fused_abs_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_abs_sigmoid_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_gt_sum_0.run(arg2_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
triton_poi_fused_zeros_like_1.run(buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs]
triton_poi_fused_abs_sigmoid_sub_2.run(arg0_1, arg1_1, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, arg1_1, buf2, buf3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index):
"""Expand onehot labels to match the size of prediction."""
bin_labels = labels.new_zeros(target_shape)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(valid_mask, as_tuple=True)
if inds[0].numel() > 0:
if labels.dim() == 3:
bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1
else:
bin_labels[inds[0], labels[valid_mask]] = 1
valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.unsqueeze(1).expand(target_shape)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights
class GHMC(nn.Module):
"""GHM Classification Loss.
Details of the theorem can be viewed in the paper
`Gradient Harmonized Single-stage Detector
<https://arxiv.org/abs/1811.05181>`_.
Args:
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
use_sigmoid (bool): Can only be true for BCE based loss now.
loss_weight (float): The weight of the total GHM-C loss.
"""
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
super(GHMC, self).__init__()
self.bins = bins
self.momentum = momentum
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] += 1e-06
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.use_sigmoid = use_sigmoid
if not self.use_sigmoid:
raise NotImplementedError
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, *args, **kwargs):
"""Calculate the GHM-C loss.
Args:
pred (float tensor of size [batch_num, class_num]):
The direct prediction of classification fc layer.
target (float tensor of size [batch_num, class_num]):
Binary class target for each sample.
label_weight (float tensor of size [batch_num, class_num]):
the value is 1 if the sample is valid and 0 if ignored.
Returns:
The gradient harmonized loss.
"""
if pred.dim() != target.dim():
target, label_weight = _expand_onehot_labels(target,
label_weight, pred.size(-1))
target, label_weight = target.float(), label_weight.float()
edges = self.edges
mmt = self.momentum
weights = torch.zeros_like(pred)
g = torch.abs(pred.sigmoid().detach() - target)
valid = label_weight > 0
tot = max(valid.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
n += 1
if n > 0:
weights = weights / n
loss = F.binary_cross_entropy_with_logits(pred, target, weights,
reduction='sum') / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp2, None)
tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp6, None)
@triton.jit
def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused__to_copy_gt_sum_0[grid(1)](arg2_1, buf0, buf1, 1,
256, num_warps=2, num_stages=1)
del arg2_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_zeros_like_1[grid(256)](buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_sigmoid_sub_2[grid(256)](arg0_1, arg1_1, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1, arg1_1, buf2, buf3, buf0
def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index):
"""Expand onehot labels to match the size of prediction."""
bin_labels = labels.new_zeros(target_shape)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(valid_mask, as_tuple=True)
if inds[0].numel() > 0:
if labels.dim() == 3:
bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1
else:
bin_labels[inds[0], labels[valid_mask]] = 1
valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.unsqueeze(1).expand(target_shape)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights
class GHMCNew(nn.Module):
"""GHM Classification Loss.
Details of the theorem can be viewed in the paper
`Gradient Harmonized Single-stage Detector
<https://arxiv.org/abs/1811.05181>`_.
Args:
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
use_sigmoid (bool): Can only be true for BCE based loss now.
loss_weight (float): The weight of the total GHM-C loss.
"""
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
super(GHMCNew, self).__init__()
self.bins = bins
self.momentum = momentum
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] += 1e-06
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.use_sigmoid = use_sigmoid
if not self.use_sigmoid:
raise NotImplementedError
self.loss_weight = loss_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | GHMC | false | 13,368 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
AvgReadout | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2c/c2caasuan6xkydnq2bvliamlyid6cl5fcz5kcz2mnyns45wtxqbs.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AvgReadout(nn.Module):
"""
Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices
.. math::
\\begin{equation}
\\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)}
\\end{equation}
"""
def __init__(self):
super(AvgReadout, self).__init__()
def forward(self, seq):
return torch.mean(seq, 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AvgReadoutNew(nn.Module):
"""
Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices
.. math::
\\begin{equation}
\\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)}
\\end{equation}
"""
def __init__(self):
super(AvgReadoutNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BUPT-GAMMA/OpenHGNN | AvgReadout | false | 13,369 | [
"Apache-2.0"
]
| 235 | 5f218dad4ed1415aa6d842bc20785c61e74e5405 | https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405 |
GDL | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/my/cmy3ptjdxy4kr3n5om5yjayav3eie3vcmckqm4vaoj4x2xupeiqs.py
# Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub]
# Source node to ATen node mapping:
# fn => mul_2
# fp => mul_1
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# tn => mul_3
# tp => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sub_3), kwargs = {})
triton_poi_fused_mul_rsub_0 = async_compile.triton('triton_poi_fused_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp1
tmp5 = tmp0 * tmp4
tmp6 = tmp3 - tmp0
tmp7 = tmp6 * tmp1
tmp8 = tmp6 * tmp4
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
tl.store(out_ptr2 + (x0), tmp7, xmask)
tl.store(out_ptr3 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_rsub_0.run(arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, buf2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False):
"""
net_output must be (b, c, x, y(, z)))
gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z))
if mask is provided it must have shape (b, 1, x, y(, z)))
:param net_output:
:param gt:
:param axes: can be (, ) = no summation
:param mask: mask must be 1 for valid pixels and 0 for invalid pixels
:param square: if True then fp, tp and fn will be squared before summation
:return:
"""
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
tn = (1 - net_output) * (1 - y_onehot)
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp,
dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp,
dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn,
dim=1)), dim=1)
tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn,
dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tn = tn ** 2
if len(axes) > 0:
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
tn = sum_tensor(tn, axes, keepdim=False)
return tp, fp, fn, tn
class GDL(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0, square=False, square_volumes=False):
"""
square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition)
"""
super(GDL, self).__init__()
self.square_volumes = square_volumes
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
gt = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
if not self.do_bg:
x = x[:, 1:]
y_onehot = y_onehot[:, 1:]
tp, fp, fn, _ = get_tp_fp_fn_tn(x, y_onehot, axes, loss_mask, self.
square)
volumes = sum_tensor(y_onehot, axes) + 1e-06
if self.square_volumes:
volumes = volumes ** 2
tp = tp / volumes
fp = fp / volumes
fn = fn / volumes
if self.batch_dice:
axis = 0
else:
axis = 1
tp = tp.sum(axis, keepdim=False)
fp = fp.sum(axis, keepdim=False)
fn = fn.sum(axis, keepdim=False)
dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth)
dc = dc.mean()
return -dc
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp1
tmp5 = tmp0 * tmp4
tmp6 = tmp3 - tmp0
tmp7 = tmp6 * tmp1
tmp8 = tmp6 * tmp4
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
tl.store(out_ptr2 + x0, tmp7, xmask)
tl.store(out_ptr3 + x0, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_rsub_0[grid(256)](arg0_1, arg1_1, buf0, buf1,
buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1, buf2, buf3
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False):
"""
net_output must be (b, c, x, y(, z)))
gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z))
if mask is provided it must have shape (b, 1, x, y(, z)))
:param net_output:
:param gt:
:param axes: can be (, ) = no summation
:param mask: mask must be 1 for valid pixels and 0 for invalid pixels
:param square: if True then fp, tp and fn will be squared before summation
:return:
"""
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
tn = (1 - net_output) * (1 - y_onehot)
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp,
dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp,
dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn,
dim=1)), dim=1)
tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn,
dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tn = tn ** 2
if len(axes) > 0:
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
tn = sum_tensor(tn, axes, keepdim=False)
return tp, fp, fn, tn
class GDLNew(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0, square=False, square_volumes=False):
"""
square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition)
"""
super(GDLNew, self).__init__()
self.square_volumes = square_volumes
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque | GDL | false | 13,370 | [
"MIT"
]
| 770 | b5329035d9e32c8a27151cf2396eaf209396a334 | https://github.com/BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque/tree/b5329035d9e32c8a27151cf2396eaf209396a334 |
FocalLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logp => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jw/cjwpmepxdrhjkf3qqr4e6qwmehd4cbfk26molvzkvgaoyj3su3bt.py
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# logp => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# loss => mul_1
# mean => mean
# neg => neg_1
# p => exp_1
# pow_1 => pow_1
# sub => sub_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = 1.0
tmp25 = tmp24 - tmp23
tmp26 = tmp24 * tmp21
tmp27 = tmp26 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean]
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FocalLoss(nn.Module):
def __init__(self, gamma=0, eps=1e-07):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input, target):
logp = self.ce(input, target)
p = torch.exp(-logp)
loss = (1 - p) ** self.gamma * logp
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = 1.0
tmp24 - tmp23
tmp26 = tmp24 * tmp21
tmp27 = tmp26 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1[grid
(1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class FocalLossNew(nn.Module):
def __init__(self, gamma=0, eps=1e-07):
super(FocalLossNew, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BaoLocPham/hum2song | FocalLoss | false | 13,371 | [
"MIT"
]
| 108 | 706b7fdf838944e2aabe0ae331c0867cb67f6fbc | https://github.com/BaoLocPham/hum2song/tree/706b7fdf838944e2aabe0ae331c0867cb67f6fbc |
Scale | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/s3/cs3xfcsbv3q363t3gue76e5b2o6wfhbslxcdj5vsrheb24anhw4c.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Scale(nn.Module):
"""
A learnable scale parameter
"""
def __init__(self, scale=1.0):
super(Scale, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, x):
return x * self.scale
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class ScaleNew(nn.Module):
"""
A learnable scale parameter
"""
def __init__(self, scale=1.0):
super(ScaleNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| BUPT-PRIV/BalancedGroupSoftmax | Scale | false | 13,372 | [
"Apache-2.0"
]
| 333 | 90e04fd8ccecd2bc61bbe6053a741ae708da2794 | https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794 |
BalancedL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/u6/cu6ipcdjut3ad56lbzon6ze3sumzrsa4berzrqmooidtonkrrxbp.py
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# diff => abs_1
# log => log
# loss => where
# loss_1 => mean
# loss_bbox => mul_6
# lt => lt
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=5] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.02619784824562798), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 1.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 1.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 0.07859354473688394), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %sub_1, %sub_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 19.085536923187664
tmp7 = tmp3 * tmp6
tmp8 = tmp7 + tmp4
tmp9 = 0.02619784824562798
tmp10 = tmp8 * tmp9
tmp11 = tmp7 * tmp4
tmp12 = tmp11 + tmp4
tmp13 = tl_math.log(tmp12)
tmp14 = tmp10 * tmp13
tmp15 = 0.5
tmp16 = tmp3 * tmp15
tmp17 = tmp14 - tmp16
tmp18 = 1.5
tmp19 = tmp3 * tmp18
tmp20 = 0.07859354473688394
tmp21 = tmp19 + tmp20
tmp22 = tmp21 - tmp15
tmp23 = tl.where(tmp5, tmp17, tmp22)
tmp24 = tl.broadcast_to(tmp23, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp26 / tmp27
tmp29 = tmp28 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5,
reduction='mean'):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
b = np.e ** (gamma / alpha) - 1
loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log(
b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b -
alpha * beta)
return loss
class BalancedL1Loss(nn.Module):
"""Balanced L1 Loss
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
"""
def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean',
loss_weight=1.0):
super(BalancedL1Loss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * balanced_l1_loss(pred, target,
weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta,
reduction=reduction, avg_factor=avg_factor, **kwargs)
return loss_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 19.085536923187664
tmp7 = tmp3 * tmp6
tmp8 = tmp7 + tmp4
tmp9 = 0.02619784824562798
tmp10 = tmp8 * tmp9
tmp11 = tmp7 * tmp4
tmp12 = tmp11 + tmp4
tmp13 = tl_math.log(tmp12)
tmp14 = tmp10 * tmp13
tmp15 = 0.5
tmp16 = tmp3 * tmp15
tmp17 = tmp14 - tmp16
tmp18 = 1.5
tmp19 = tmp3 * tmp18
tmp20 = 0.07859354473688394
tmp21 = tmp19 + tmp20
tmp22 = tmp21 - tmp15
tmp23 = tl.where(tmp5, tmp17, tmp22)
tmp24 = tl.broadcast_to(tmp23, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp26 / tmp27
tmp29 = tmp28 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5,
reduction='mean'):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
b = np.e ** (gamma / alpha) - 1
loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log(
b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b -
alpha * beta)
return loss
class BalancedL1LossNew(nn.Module):
"""Balanced L1 Loss
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
"""
def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean',
loss_weight=1.0):
super(BalancedL1LossNew, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BUPT-PRIV/BalancedGroupSoftmax | BalancedL1Loss | false | 13,373 | [
"Apache-2.0"
]
| 333 | 90e04fd8ccecd2bc61bbe6053a741ae708da2794 | https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794 |
SmoothL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/t7/ct7n4vk2rjfplrvzzjcijiow2tdczppexhay5gcikb3dfjajcdzu.py
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
# Source node to ATen node mapping:
# diff => abs_1
# loss => where
# loss_1 => mean
# loss_bbox => mul_2
# lt => lt
# mul => mul
# mul_1 => mul_1
# sub => sub
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=4] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %abs_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_div_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class SmoothL1Loss(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1Loss, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * smooth_l1_loss(pred, target, weight,
beta=self.beta, reduction=reduction, avg_factor=avg_factor, **
kwargs)
return loss_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class SmoothL1LossNew(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1LossNew, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BUPT-PRIV/BalancedGroupSoftmax | SmoothL1Loss | false | 13,374 | [
"Apache-2.0"
]
| 333 | 90e04fd8ccecd2bc61bbe6053a741ae708da2794 | https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794 |
SoftDiceLossSquared | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/we/cwegurhvuxmzu2fllhgfcphsnfz7i27goz3qz7lybzkuuk7lvt47.py
# Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add]
# Source node to ATen node mapping:
# denominator => add
# intersect => mul
# pow_1 => pow_1
# pow_2 => pow_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
triton_poi_fused_add_mul_pow_0 = async_compile.triton('triton_poi_fused_add_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp1 * tmp1
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_0.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
class SoftDiceLossSquared(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0):
"""
squares the terms in the denominator as proposed by Milletari et al.
"""
super(SoftDiceLossSquared, self).__init__()
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
with torch.no_grad():
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
y = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, y, 1).float()
intersect = x * y_onehot
denominator = x ** 2 + y_onehot ** 2
intersect = sum_tensor(intersect, axes, False) + self.smooth
denominator = sum_tensor(denominator, axes, False) + self.smooth
dc = 2 * intersect / denominator
if not self.do_bg:
if self.batch_dice:
dc = dc[1:]
else:
dc = dc[:, 1:]
dc = dc.mean()
return -dc
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp1 * tmp1
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_0[grid(256)](arg0_1, arg1_1, buf0,
buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
class SoftDiceLossSquaredNew(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0):
"""
squares the terms in the denominator as proposed by Milletari et al.
"""
super(SoftDiceLossSquaredNew, self).__init__()
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque | SoftDiceLossSquared | false | 13,375 | [
"MIT"
]
| 770 | b5329035d9e32c8a27151cf2396eaf209396a334 | https://github.com/BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque/tree/b5329035d9e32c8a27151cf2396eaf209396a334 |
PPMConcat | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cr/ccrgimd5zqak747hzrbdpprnae5dbx4vetggrn46afu3ejbaeqzr.py
# Topologically Sorted Source Nodes: [ppm_out, concat_outs], Original ATen: [aten.mean, aten.cat]
# Source node to ATen node mapping:
# concat_outs => cat
# ppm_out => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {})
triton_per_fused_cat_mean_0 = async_compile.triton('triton_per_fused_cat_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + (110*x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/b7/cb7webixgun5kq7klyyw3pye6ybqszrjc476b25fx2hkpqtlyz4c.py
# Topologically Sorted Source Nodes: [ppm_out_1, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
# Source node to ATen node mapping:
# concat_outs => cat
# ppm_out_1 => _adaptive_avg_pool2d
# Graph fragment:
# %_adaptive_avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [3, 3]), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {})
triton_poi_fused__adaptive_avg_pool2d_cat_1 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_1(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x5 = xindex
x3 = xindex % 9
tmp0 = ((4*x1) // 3)
tmp1 = 2 + ((4*x1) // 3)
tmp2 = tmp0 < tmp1
tmp3 = ((4*x0) // 3)
tmp4 = 2 + ((4*x0) // 3)
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + ((4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp6 & xmask, other=0.0)
tmp8 = 1 + ((4*x0) // 3)
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp10 & xmask, other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + ((4*x1) // 3)
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp15 & xmask, other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp18 & xmask, other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wp/cwp4azliwtvpgqegpgjubymmobqvhael5uz7meise5e3joe5bqu2.py
# Topologically Sorted Source Nodes: [ppm_out_2, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
# Source node to ATen node mapping:
# concat_outs => cat
# ppm_out_2 => _adaptive_avg_pool2d_1
# Graph fragment:
# %_adaptive_avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [6, 6]), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {})
triton_poi_fused__adaptive_avg_pool2d_cat_2 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_2(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x5 = xindex
x3 = xindex % 36
tmp0 = ((2*x1) // 3)
tmp1 = ((9 + (4*x1)) // 6)
tmp2 = tmp0 < tmp1
tmp3 = ((2*x0) // 3)
tmp4 = ((9 + (4*x0)) // 6)
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + ((4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + ((2*x0) // 3)
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + ((2*x1) // 3)
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nd/cnd5jniex5euxalox74lnevxasjts2znoosbfhhqne7m2q47peko.py
# Topologically Sorted Source Nodes: [ppm_out_3, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
# Source node to ATen node mapping:
# concat_outs => cat
# ppm_out_3 => _adaptive_avg_pool2d_2
# Graph fragment:
# %_adaptive_avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [8, 8]), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {})
triton_poi_fused__adaptive_avg_pool2d_cat_3 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_3(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x5 = xindex
x3 = xindex % 64
tmp0 = (x1 // 2)
tmp1 = ((11 + (4*x1)) // 8)
tmp2 = tmp0 < tmp1
tmp3 = (x0 // 2)
tmp4 = ((11 + (4*x0)) // 8)
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + ((4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + (x0 // 2)
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + (x1 // 2)
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 4, 110), (440, 110, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 4, 1), (440, 110, 1), 0) # alias
# Topologically Sorted Source Nodes: [ppm_out, concat_outs], Original ATen: [aten.mean, aten.cat]
stream0 = get_raw_stream(0)
triton_per_fused_cat_mean_0.run(arg0_1, buf4, 16, 16, grid=grid(16), stream=stream0)
buf5 = reinterpret_tensor(buf8, (4, 4, 9), (440, 110, 1), 1) # alias
# Topologically Sorted Source Nodes: [ppm_out_1, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
triton_poi_fused__adaptive_avg_pool2d_cat_1.run(arg0_1, buf5, 144, grid=grid(144), stream=stream0)
buf6 = reinterpret_tensor(buf8, (4, 4, 36), (440, 110, 1), 10) # alias
# Topologically Sorted Source Nodes: [ppm_out_2, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
triton_poi_fused__adaptive_avg_pool2d_cat_2.run(arg0_1, buf6, 576, grid=grid(576), stream=stream0)
buf7 = reinterpret_tensor(buf8, (4, 4, 64), (440, 110, 1), 46) # alias
# Topologically Sorted Source Nodes: [ppm_out_3, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat]
triton_poi_fused__adaptive_avg_pool2d_cat_3.run(arg0_1, buf7, 1024, grid=grid(1024), stream=stream0)
del arg0_1
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class PPMConcat(nn.ModuleList):
"""Pyramid Pooling Module that only concat the features of each layer.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
"""
def __init__(self, pool_scales=(1, 3, 6, 8)):
super(PPMConcat, self).__init__([nn.AdaptiveAvgPool2d(pool_scale) for
pool_scale in pool_scales])
def forward(self, feats):
"""Forward function."""
ppm_outs = []
for ppm in self:
ppm_out = ppm(feats)
ppm_outs.append(ppm_out.view(*feats.shape[:2], -1))
concat_outs = torch.cat(ppm_outs, dim=2)
return concat_outs
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_cat_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + 110 * x0, tmp6, xmask)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_1(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x3 = xindex % 9
tmp0 = 4 * x1 // 3
tmp1 = 2 + 4 * x1 // 3
tmp2 = tmp0 < tmp1
tmp3 = 4 * x0 // 3
tmp4 = 2 + 4 * x0 // 3
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 // 3),
tmp6 & xmask, other=0.0)
tmp8 = 1 + 4 * x0 // 3
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 //
3), tmp10 & xmask, other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + 4 * x1 // 3
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 //
3), tmp15 & xmask, other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 //
3), tmp18 & xmask, other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_2(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x3 = xindex % 36
tmp0 = 2 * x1 // 3
tmp1 = (9 + 4 * x1) // 6
tmp2 = tmp0 < tmp1
tmp3 = 2 * x0 // 3
tmp4 = (9 + 4 * x0) // 6
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 // 3),
tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + 2 * x0 // 3
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 //
3), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + 2 * x1 // 3
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 //
3), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 //
3), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_cat_3(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x3 = xindex % 64
tmp0 = x1 // 2
tmp1 = (11 + 4 * x1) // 8
tmp2 = tmp0 < tmp1
tmp3 = x0 // 2
tmp4 = (11 + 4 * x0) // 8
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (4 * (x1 // 2) + 16 * x2 + x0 // 2), tmp6 &
xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + x0 // 2
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + 4 * (x1 // 2) + 16 * x2 + x0 // 2),
tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + x1 // 2
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + 4 * (x1 // 2) + 16 * x2 + x0 // 2),
tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + 4 * (x1 // 2) + 16 * x2 + x0 // 2),
tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf8 = empty_strided_cuda((4, 4, 110), (440, 110, 1), torch.float32)
buf4 = reinterpret_tensor(buf8, (4, 4, 1), (440, 110, 1), 0)
get_raw_stream(0)
triton_per_fused_cat_mean_0[grid(16)](arg0_1, buf4, 16, 16, XBLOCK=
1, num_warps=2, num_stages=1)
buf5 = reinterpret_tensor(buf8, (4, 4, 9), (440, 110, 1), 1)
triton_poi_fused__adaptive_avg_pool2d_cat_1[grid(144)](arg0_1, buf5,
144, XBLOCK=128, num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf8, (4, 4, 36), (440, 110, 1), 10)
triton_poi_fused__adaptive_avg_pool2d_cat_2[grid(576)](arg0_1, buf6,
576, XBLOCK=128, num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf8, (4, 4, 64), (440, 110, 1), 46)
triton_poi_fused__adaptive_avg_pool2d_cat_3[grid(1024)](arg0_1,
buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf8,
class PPMConcatNew(nn.ModuleList):
"""Pyramid Pooling Module that only concat the features of each layer.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
"""
def __init__(self, pool_scales=(1, 3, 6, 8)):
super(PPMConcatNew, self).__init__([nn.AdaptiveAvgPool2d(pool_scale
) for pool_scale in pool_scales])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Atten4Vis/DemystifyLocalViT | PPMConcat | false | 13,376 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3h43fi4m7oq2vwlktxfhxi3dzck4gnc765fyme47rufsuxazkg.py
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# product => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2s/c2s3zo6qtbodb6bdwv46ozxj4nxxymp76igm7emvdafvrj3673sn.py
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# product => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yw/cyw3ff4nmszw3dpfuipofodyezjcpjoru35h7fhkaosfnlrctm2g.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul_2
# product_2 => add_2
# weights => amax, exp, sub_1, sum_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_mul_4 = async_compile.triton('triton_poi_fused__softmax_add_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4j/c4js4wnrmajokobx5l4yjjeu36aktrpkep2mzo6qtwttwlqodwbm.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul_2
# product_2 => add_2
# weights => amax, div, exp, sub_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_mul_5 = async_compile.triton('triton_poi_fused__softmax_add_mul_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zi/czic6s5idip57syewxigjtom43flziklldd4ea2qpsxjorxgbunq.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_3
# Graph fragment:
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %primals_3), kwargs = {})
triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf4, buf7, 64, 4, grid=grid(64, 4), stream=stream0)
buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_mul_4.run(buf8, primals_7, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_mul_5.run(buf11, primals_7, buf9, buf10, 256, grid=grid(256), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.native_dropout]
buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True)
buf13 = buf12[0]
buf14 = buf12[1]
del buf12
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf5, buf15, 256, grid=grid(256), stream=stream0)
buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf16, buf17, 256, grid=grid(256), stream=stream0)
del buf16
buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout]
buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf20 = buf19[0]
buf21 = buf19[1]
del buf19
buf22 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf22, primals_3, 64, grid=grid(64), stream=stream0)
buf23 = buf1; del buf1 # reuse
buf24 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(buf22, buf23, buf24, 16, grid=grid(16), stream=stream0)
buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf22, buf23, buf24, primals_9, primals_10, buf25, 64, grid=grid(64), stream=stream0)
del primals_10
buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26)
buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse
buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_7.run(buf27, primals_12, buf39, 64, grid=grid(64), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout]
buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True)
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0); del buf27 # reuse
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31)
del primals_14
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.native_dropout]
buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf33 = buf32[0]
buf34 = buf32[1]
del buf32
buf35 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf35, buf22, 64, grid=grid(64), stream=stream0)
buf36 = buf24; del buf24 # reuse
buf37 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(buf35, buf36, buf37, 16, grid=grid(16), stream=stream0)
buf38 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0); del buf31 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf35, buf36, buf37, primals_15, primals_16, buf38, 64, grid=grid(64), stream=stream0)
del buf36
del buf37
del primals_16
return (buf38, primals_3, primals_9, primals_15, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), buf34, buf35, primals_13, buf39, primals_11, primals_8, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6, primals_5, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Lambda(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(hidden, p=self.dropout_rate)
out = self.fc2(hidden)
return out
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
product = torch.matmul(q, k.transpose(2, 3))
product = product * self.d_model ** -0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product, dim=-1)
if self.dropout_rate:
weights = F.dropout(weights, p=self.dropout_rate)
out = torch.matmul(weights, v)
out = out.permute(0, 2, 1, 3)
out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape
[2] * out.shape[3]])
out = self.proj_fc(out)
return out
class LambdaXY(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x, y):
return self.func(x, y)
class PrePostProcessLayer(nn.Module):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = nn.ModuleList()
cur_a_len = 0
cur_n_len = 0
cur_d_len = 0
for cmd in self.process_cmd:
if cmd == 'a':
self.functors.add_module('add_res_connect_{}'.format(
cur_a_len), LambdaXY(lambda x, y: x + y if y is not
None else x))
cur_a_len += 1
elif cmd == 'n':
layerNorm = torch.nn.LayerNorm(normalized_shape=d_model,
elementwise_affine=True, eps=1e-05)
self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm
)
cur_n_len += 1
elif cmd == 'd':
self.functors.add_module('add_drop_{}'.format(cur_d_len),
Lambda(lambda x: F.dropout(x, p=dropout_rate) if
dropout_rate else x))
cur_d_len += 1
def forward(self, x, residual=None):
for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors)
):
if cmd == 'a':
x = functor(x, residual)
else:
x = functor(x)
return x
class EncoderLayer(nn.Module):
"""
EncoderLayer
"""
def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd='n', postprocess_cmd='da'):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(self.preprocesser1(enc_input), None,
None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
class Encoder(nn.Module):
"""
encoder
"""
def __init__(self, n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd='n', postprocess_cmd='da'):
super(Encoder, self).__init__()
self.encoder_layers = nn.ModuleList()
for i in range(n_layer):
encoderLayer = EncoderLayer(n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd, postprocess_cmd)
self.encoder_layers.add_module('layer_%d' % i, encoderLayer)
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
for encoder_layer in self.encoder_layers:
enc_output = encoder_layer(enc_input, attn_bias)
enc_input = enc_output
enc_output = self.processer(enc_output)
return enc_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_layer': 1, 'n_head': 4, 'd_key': 4, 'd_value': 4,
'd_model': 4, 'd_inner_hid': 4, 'prepostprocess_dropout': 0.5,
'attention_dropout': 0.5, 'relu_dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf3, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_clone_3[grid(64, 4)](buf4, buf7, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_mul_4[grid(64)](buf8, primals_7, buf9,
buf10, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf8
triton_poi_fused__softmax_add_mul_5[grid(256)](buf11, primals_7,
buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True)
buf13 = buf12[0]
buf14 = buf12[1]
del buf12
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf5, buf15, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16
)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf16, buf17, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf16
buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18)
buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf20 = buf19[0]
buf21 = buf19[1]
del buf19
buf22 = buf20
del buf20
triton_poi_fused_add_6[grid(64)](buf22, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf23 = buf1
del buf1
buf24 = buf0
del buf0
triton_poi_fused_native_layer_norm_0[grid(16)](buf22, buf23, buf24,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0)
del buf18
triton_poi_fused_native_layer_norm_1[grid(64)](buf22, buf23, buf24,
primals_9, primals_10, buf25, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_10
buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26)
buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0)
del buf26
buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_7[grid(64)](buf27,
primals_12, buf39, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_12
buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True)
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0)
del buf27
extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf31)
del primals_14
buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf33 = buf32[0]
buf34 = buf32[1]
del buf32
buf35 = buf33
del buf33
triton_poi_fused_add_6[grid(64)](buf35, buf22, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf36 = buf24
del buf24
buf37 = buf23
del buf23
triton_poi_fused_native_layer_norm_0[grid(16)](buf35, buf36, buf37,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf38 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0)
del buf31
triton_poi_fused_native_layer_norm_1[grid(64)](buf35, buf36, buf37,
primals_15, primals_16, buf38, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf36
del buf37
del primals_16
return (buf38, primals_3, primals_9, primals_15, reinterpret_tensor(
buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17,
(16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16,
4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0
), buf34, buf35, primals_13, buf39, primals_11, primals_8,
reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6,
primals_5, primals_4)
class Lambda(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(hidden, p=self.dropout_rate)
out = self.fc2(hidden)
return out
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
product = torch.matmul(q, k.transpose(2, 3))
product = product * self.d_model ** -0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product, dim=-1)
if self.dropout_rate:
weights = F.dropout(weights, p=self.dropout_rate)
out = torch.matmul(weights, v)
out = out.permute(0, 2, 1, 3)
out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape
[2] * out.shape[3]])
out = self.proj_fc(out)
return out
class LambdaXY(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x, y):
return self.func(x, y)
class PrePostProcessLayer(nn.Module):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = nn.ModuleList()
cur_a_len = 0
cur_n_len = 0
cur_d_len = 0
for cmd in self.process_cmd:
if cmd == 'a':
self.functors.add_module('add_res_connect_{}'.format(
cur_a_len), LambdaXY(lambda x, y: x + y if y is not
None else x))
cur_a_len += 1
elif cmd == 'n':
layerNorm = torch.nn.LayerNorm(normalized_shape=d_model,
elementwise_affine=True, eps=1e-05)
self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm
)
cur_n_len += 1
elif cmd == 'd':
self.functors.add_module('add_drop_{}'.format(cur_d_len),
Lambda(lambda x: F.dropout(x, p=dropout_rate) if
dropout_rate else x))
cur_d_len += 1
def forward(self, x, residual=None):
for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors)
):
if cmd == 'a':
x = functor(x, residual)
else:
x = functor(x)
return x
class EncoderLayer(nn.Module):
"""
EncoderLayer
"""
def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd='n', postprocess_cmd='da'):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(self.preprocesser1(enc_input), None,
None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
class EncoderNew(nn.Module):
"""
encoder
"""
def __init__(self, n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd='n', postprocess_cmd='da'):
super(EncoderNew, self).__init__()
self.encoder_layers = nn.ModuleList()
for i in range(n_layer):
encoderLayer = EncoderLayer(n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout,
relu_dropout, preprocess_cmd, postprocess_cmd)
self.encoder_layers.add_module('layer_%d' % i, encoderLayer)
self.processer = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, input_0, input_1):
primals_1 = (self.encoder_layers.layer_0.preprocesser1.functors.
layer_norm_0.weight)
primals_2 = (self.encoder_layers.layer_0.preprocesser1.functors.
layer_norm_0.bias)
primals_4 = self.encoder_layers.layer_0.self_attn.q_fc.weight
primals_5 = self.encoder_layers.layer_0.self_attn.k_fc.weight
primals_6 = self.encoder_layers.layer_0.self_attn.v_fc.weight
primals_8 = self.encoder_layers.layer_0.self_attn.proj_fc.weight
primals_9 = (self.encoder_layers.layer_0.preprocesser2.functors.
layer_norm_0.weight)
primals_10 = (self.encoder_layers.layer_0.preprocesser2.functors.
layer_norm_0.bias)
primals_11 = self.encoder_layers.layer_0.ffn.fc1.weight
primals_12 = self.encoder_layers.layer_0.ffn.fc1.bias
primals_13 = self.encoder_layers.layer_0.ffn.fc2.weight
primals_14 = self.encoder_layers.layer_0.ffn.fc2.bias
primals_15 = self.processer.functors.layer_norm_0.weight
primals_16 = self.processer.functors.layer_norm_0.bias
primals_3 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16])
return output[0]
| BHD233/PaddleOCR2Pytorch | Encoder | false | 13,377 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
SEModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# outputs => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py
# Topologically Sorted Source Nodes: [outputs_1, outputs_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# outputs_1 => convolution
# outputs_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hc/chcuw27vv75itefu6xswbdhopf2pq6oaj4bww4whelczhqtkghqr.py
# Topologically Sorted Source Nodes: [outputs_3, add, relu6, outputs_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# outputs_3 => convolution_1
# outputs_4 => div
# relu6 => clamp_max, clamp_min
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {})
triton_poi_fused_add_convolution_div_hardtanh_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 16)
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rh/crhdgkbcu2rbqzaxws3536qfrpjhmp6d6zhyebzqejxvceodywdi.py
# Topologically Sorted Source Nodes: [outputs_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
# Source node to ATen node mapping:
# add => add
# outputs_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {})
triton_poi_fused_add_convolution_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [outputs_1, outputs_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [outputs_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [outputs_3, add, relu6, outputs_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
triton_poi_fused_add_convolution_div_hardtanh_mul_2.run(primals_1, buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [outputs_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
triton_poi_fused_add_convolution_hardtanh_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0)
del buf4
del primals_5
return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def hardsigmoid(x):
return F.relu6(x + 3.0, inplace=True) / 6.0
class SEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel //
reduction, kernel_size=1, stride=1, padding=0, bias=True)
self.conv2 = nn.Conv2d(in_channels=channel // reduction,
out_channels=channel, kernel_size=1, stride=1, padding=0, bias=True
)
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = hardsigmoid(outputs)
return torch.mul(inputs, outputs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4,
XBLOCK=4, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_convolution_div_hardtanh_mul_2[grid(256)](
primals_1, buf4, primals_5, buf5, 256, XBLOCK=256, num_warps=4,
num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
triton_poi_fused_add_convolution_hardtanh_backward_3[grid(16)](buf4,
primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf4
del primals_5
return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6
def hardsigmoid(x):
return F.relu6(x + 3.0, inplace=True) / 6.0
class SEModuleNew(nn.Module):
def __init__(self, channel, reduction=4):
super(SEModuleNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel //
reduction, kernel_size=1, stride=1, padding=0, bias=True)
self.conv2 = nn.Conv2d(in_channels=channel // reduction,
out_channels=channel, kernel_size=1, stride=1, padding=0, bias=True
)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BHD233/PaddleOCR2Pytorch | SEModule | false | 13,378 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5z/c5zy7julai2lhuinuwjgyl62nx7cyws6ni5poe5jzp7qn532rcgh.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_4.run(buf10, primals_1, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
class MultiheadAttention(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super(MultiheadAttention, self).__init__()
assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, x, key=None, value=None, residual=None, query_pos=
None, key_pos=None, attn_mask=None, key_padding_mask=None):
"""Forward function for `MultiheadAttention`.
Args:
x (Tensor): The input query with shape [num_query, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
key (Tensor): The key tensor with shape [num_key, bs,
embed_dims]. Same in `nn.MultiheadAttention.forward`.
Default None. If None, the `query` will be used.
value (Tensor): The value tensor with same shape as `key`.
Same in `nn.MultiheadAttention.forward`. Default None.
If None, the `key` will be used.
residual (Tensor): The tensor used for addition, with the
same shape as `x`. Default None. If None, `x` will be used.
query_pos (Tensor): The positional encoding for query, with
the same shape as `x`. Default None. If not None, it will
be added to `x` before forward function.
key_pos (Tensor): The positional encoding for `key`, with the
same shape as `key`. Default None. If not None, it will
be added to `key` before forward function. If None, and
`query_pos` has the same shape as `key`, then `query_pos`
will be used for `key_pos`.
attn_mask (Tensor): ByteTensor mask with shape [num_query,
num_key]. Same in `nn.MultiheadAttention.forward`.
Default None.
key_padding_mask (Tensor): ByteTensor with shape [bs, num_key].
Same in `nn.MultiheadAttention.forward`. Default None.
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
query = x
if key is None:
key = query
if value is None:
value = key
if residual is None:
residual = x
if key_pos is None:
if query_pos is not None and key is not None:
if query_pos.shape == key.shape:
key_pos = query_pos
if query_pos is not None:
query = query + query_pos
if key_pos is not None:
key = key + key_pos
out = self.attn(query, key, value=value, attn_mask=attn_mask,
key_padding_mask=key_padding_mask)[0]
return residual + self.dropout(out)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embed_dims': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._C
import torch.serialization
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16),
alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8),
primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32),
alpha=1, beta=1, out=buf2)
del primals_2
buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4,
1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0)
del buf7
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_add_4[grid(16)](buf10, primals_1, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
return buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0
), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0)
class MultiheadAttentionNew(nn.Module):
"""A warpper for torch.nn.MultiheadAttention.
This module implements MultiheadAttention with residual connection,
and positional encoding used in DETR is also passed as input.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads. Same as
`nn.MultiheadAttention`.
dropout (float): A Dropout layer on attn_output_weights. Default 0.0.
"""
def __init__(self, embed_dims, num_heads, dropout=0.0):
super(MultiheadAttentionNew, self).__init__()
assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.'
self.embed_dims = embed_dims
self.num_heads = num_heads
self.dropout = dropout
self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout)
self.dropout = nn.Dropout(dropout)
def __repr__(self):
"""str: a string that describes the module"""
repr_str = self.__class__.__name__
repr_str += f'(embed_dims={self.embed_dims}, '
repr_str += f'num_heads={self.num_heads}, '
repr_str += f'dropout={self.dropout})'
return repr_str
def forward(self, input_0):
primals_2 = self.attn.in_proj_weight
primals_3 = self.attn.in_proj_bias
primals_1 = self.attn.out_proj.weight
primals_5 = self.attn.out_proj.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Atten4Vis/DemystifyLocalViT | MultiheadAttention | false | 13,379 | [
"MIT"
]
| 64 | 2e2327caec6d56ae2c8aa861b32bb62f3cdb786e | https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e |
MetricCalcLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/pz/cpz6a7zfdl7vz4ybgvsjbp7xvkg4dgyjzkkmvmfagirjg5cukeeh.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MetricCalcLayer(nn.Module):
"""
Description
-----------
Calculate metric in equation 3 of paper.
Parameters
----------
nhid : int
The dimension of mapped features in the graph generating procedure.
"""
def __init__(self, nhid):
super().__init__()
self.weight = nn.Parameter(torch.FloatTensor(1, nhid))
nn.init.xavier_uniform_(self.weight)
def forward(self, h):
"""
Parameters
----------
h : tensor
The result of the Hadamard product in equation 3 of paper.
"""
return h * self.weight
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nhid': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class MetricCalcLayerNew(nn.Module):
"""
Description
-----------
Calculate metric in equation 3 of paper.
Parameters
----------
nhid : int
The dimension of mapped features in the graph generating procedure.
"""
def __init__(self, nhid):
super().__init__()
self.weight = nn.Parameter(torch.FloatTensor(1, nhid))
nn.init.xavier_uniform_(self.weight)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| BUPT-GAMMA/OpenHGNN | MetricCalcLayer | false | 13,380 | [
"Apache-2.0"
]
| 235 | 5f218dad4ed1415aa6d842bc20785c61e74e5405 | https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405 |
GCN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
# Source node to ATen node mapping:
# add => add
# x => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4)
del buf3
del primals_6
return (buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
class GraphConvolution(nn.Module):
"""
Description
-----------
The downstream GCN layer.
"""
def __init__(self, in_features, out_features, bias=True):
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
reset_parameters(self)
def forward(self, inputs, adj):
"""
Parameters
----------
inputs : tensor
The feature matrix.
adj : tensor
The adjacent matrix.
"""
support = torch.mm(inputs, self.weight)
output = torch.mm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
class GCN(nn.Module):
"""
Description
-----------
The downstream GCN model.
"""
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
"""
Parameters
----------
x : tensor
The feature matrix.
adj : tensor
The adjacent matrix.
"""
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1,
out=buf4)
del buf3
del primals_6
return buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)
class GraphConvolution(nn.Module):
"""
Description
-----------
The downstream GCN layer.
"""
def __init__(self, in_features, out_features, bias=True):
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
reset_parameters(self)
def forward(self, inputs, adj):
"""
Parameters
----------
inputs : tensor
The feature matrix.
adj : tensor
The adjacent matrix.
"""
support = torch.mm(inputs, self.weight)
output = torch.mm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
class GCNNew(nn.Module):
"""
Description
-----------
The downstream GCN model.
"""
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_2 = self.gc2.weight
primals_6 = self.gc2.bias
primals_3 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| BUPT-GAMMA/OpenHGNN | GCN | false | 13,381 | [
"Apache-2.0"
]
| 235 | 5f218dad4ed1415aa6d842bc20785c61e74e5405 | https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405 |
ScoreCap | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/za/czaizrxepsjwum46f5wjjnkukgwbslz6g3hqdk3kbhdi3m42uypn.py
# Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clip => clamp_max
# Graph fragment:
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
import torch.optim
class ScoreCap(nn.Module):
def __init__(self, cap: 'float'):
super().__init__()
self.cap = cap
def forward(self, input):
return torch.clip(input, max=self.cap)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'cap': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ScoreCapNew(nn.Module):
def __init__(self, cap: 'float'):
super().__init__()
self.cap = cap
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BerenLuthien/ReAgent | ScoreCap | false | 13,382 | [
"BSD-3-Clause"
]
| 1,156 | 52f666670a7fa03206812ef48949f6b934d400f7 | https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7 |
Conv2dZeros | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zv/czvhqogqibwnm23q44xn6gzvpm2ac5f4wseb2e7zgfnmpvynwgoy.py
# Topologically Sorted Source Nodes: [output, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# output => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {})
triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class _ActNorm(nn.Module):
"""
Activation Normalization
Initialize the bias and scale with a given minibatch,
so that the output per-channel have zero mean and unit variance for that.
After initialization, `bias` and `logs` will be trained as parameters.
"""
def __init__(self, num_features, scale=1.0):
super().__init__()
size = [1, num_features, 1, 1]
self.register_parameter('bias', nn.Parameter(torch.zeros(*size)))
self.register_parameter('logs', nn.Parameter(torch.zeros(*size)))
self.num_features = num_features
self.scale = float(scale)
self.inited = False
def _check_input_dim(self, input):
return NotImplemented
def initialize_parameters(self, input):
self._check_input_dim(input)
if not self.training:
return
assert input.device == self.bias.device
with torch.no_grad():
bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True
) * -1.0
vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3],
keepdim=True)
logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-06))
self.bias.data.copy_(bias.data)
self.logs.data.copy_(logs.data)
self.inited = True
def _center(self, input, reverse=False):
if not reverse:
return input + self.bias
else:
return input - self.bias
def _scale(self, input, logdet=None, reverse=False):
logs = self.logs
if not reverse:
input = input * torch.exp(logs)
else:
input = input * torch.exp(-logs)
if logdet is not None:
"""
logs is log_std of `mean of channels`
so we need to multiply pixels
"""
dlogdet = thops.sum(logs) * thops.pixels(input)
if reverse:
dlogdet *= -1
logdet = logdet + dlogdet
return input, logdet
def forward(self, input, logdet=None, reverse=False):
if not self.inited:
self.initialize_parameters(input)
self._check_input_dim(input)
if not reverse:
input = self._center(input, reverse)
input, logdet = self._scale(input, logdet, reverse)
else:
input, logdet = self._scale(input, logdet, reverse)
input = self._center(input, reverse)
return input, logdet
class ActNorm2d(_ActNorm):
def __init__(self, num_features, scale=1.0):
super().__init__(num_features, scale)
def _check_input_dim(self, input):
assert len(input.size()) == 4
assert input.size(1
) == self.num_features, '[ActNorm]: input should be in shape as `BCHW`, channels should be {} rather than {}'.format(
self.num_features, input.size())
class Conv2d(nn.Conv2d):
pad_dict = {'same': lambda kernel, stride: [(((k - 1) * s + 1) // 2) for
k, s in zip(kernel, stride)], 'valid': lambda kernel, stride: [(0) for
_ in kernel]}
@staticmethod
def get_padding(padding, kernel_size, stride):
if isinstance(padding, str):
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
if isinstance(stride, int):
stride = [stride, stride]
padding = padding.lower()
try:
padding = Conv2d.pad_dict[padding](kernel_size, stride)
except KeyError:
raise ValueError('{} is not supported'.format(padding))
return padding
def __init__(self, in_channels, out_channels, kernel_size=[3, 3],
stride=[1, 1], padding='same', do_actnorm=True, weight_std=0.05):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride,
padding, bias=not do_actnorm)
self.weight.data.normal_(mean=0.0, std=weight_std)
if not do_actnorm:
self.bias.data.zero_()
else:
self.actnorm = ActNorm2d(out_channels)
self.do_actnorm = do_actnorm
def forward(self, input):
x = super().forward(input)
if self.do_actnorm:
x, _ = self.actnorm(x)
return x
class Conv2dZeros(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size=[3, 3],
stride=[1, 1], padding='same', logscale_factor=3):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride,
padding)
self.logscale_factor = logscale_factor
self.register_parameter('logs', nn.Parameter(torch.zeros(
out_channels, 1, 1)))
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input):
output = super().forward(input)
return output * torch.exp(self.logs * self.logscale_factor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0[grid(256)](buf1, primals_2,
primals_4, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, primals_4, buf1
class _ActNorm(nn.Module):
"""
Activation Normalization
Initialize the bias and scale with a given minibatch,
so that the output per-channel have zero mean and unit variance for that.
After initialization, `bias` and `logs` will be trained as parameters.
"""
def __init__(self, num_features, scale=1.0):
super().__init__()
size = [1, num_features, 1, 1]
self.register_parameter('bias', nn.Parameter(torch.zeros(*size)))
self.register_parameter('logs', nn.Parameter(torch.zeros(*size)))
self.num_features = num_features
self.scale = float(scale)
self.inited = False
def _check_input_dim(self, input):
return NotImplemented
def initialize_parameters(self, input):
self._check_input_dim(input)
if not self.training:
return
assert input.device == self.bias.device
with torch.no_grad():
bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True
) * -1.0
vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3],
keepdim=True)
logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-06))
self.bias.data.copy_(bias.data)
self.logs.data.copy_(logs.data)
self.inited = True
def _center(self, input, reverse=False):
if not reverse:
return input + self.bias
else:
return input - self.bias
def _scale(self, input, logdet=None, reverse=False):
logs = self.logs
if not reverse:
input = input * torch.exp(logs)
else:
input = input * torch.exp(-logs)
if logdet is not None:
"""
logs is log_std of `mean of channels`
so we need to multiply pixels
"""
dlogdet = thops.sum(logs) * thops.pixels(input)
if reverse:
dlogdet *= -1
logdet = logdet + dlogdet
return input, logdet
def forward(self, input, logdet=None, reverse=False):
if not self.inited:
self.initialize_parameters(input)
self._check_input_dim(input)
if not reverse:
input = self._center(input, reverse)
input, logdet = self._scale(input, logdet, reverse)
else:
input, logdet = self._scale(input, logdet, reverse)
input = self._center(input, reverse)
return input, logdet
class ActNorm2d(_ActNorm):
def __init__(self, num_features, scale=1.0):
super().__init__(num_features, scale)
def _check_input_dim(self, input):
assert len(input.size()) == 4
assert input.size(1
) == self.num_features, '[ActNorm]: input should be in shape as `BCHW`, channels should be {} rather than {}'.format(
self.num_features, input.size())
class Conv2d(nn.Conv2d):
pad_dict = {'same': lambda kernel, stride: [(((k - 1) * s + 1) // 2) for
k, s in zip(kernel, stride)], 'valid': lambda kernel, stride: [(0) for
_ in kernel]}
@staticmethod
def get_padding(padding, kernel_size, stride):
if isinstance(padding, str):
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
if isinstance(stride, int):
stride = [stride, stride]
padding = padding.lower()
try:
padding = Conv2d.pad_dict[padding](kernel_size, stride)
except KeyError:
raise ValueError('{} is not supported'.format(padding))
return padding
def __init__(self, in_channels, out_channels, kernel_size=[3, 3],
stride=[1, 1], padding='same', do_actnorm=True, weight_std=0.05):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride,
padding, bias=not do_actnorm)
self.weight.data.normal_(mean=0.0, std=weight_std)
if not do_actnorm:
self.bias.data.zero_()
else:
self.actnorm = ActNorm2d(out_channels)
self.do_actnorm = do_actnorm
def forward(self, input):
x = super().forward(input)
if self.do_actnorm:
x, _ = self.actnorm(x)
return x
class Conv2dZerosNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size=[3, 3],
stride=[1, 1], padding='same', logscale_factor=3):
padding = Conv2d.get_padding(padding, kernel_size, stride)
super().__init__(in_channels, out_channels, kernel_size, stride,
padding)
self.logscale_factor = logscale_factor
self.register_parameter('logs', nn.Parameter(torch.zeros(
out_channels, 1, 1)))
self.weight.data.zero_()
self.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_4 = self.logs
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| BQZic/glow-pytorch | Conv2dZeros | false | 13,383 | [
"MIT"
]
| 479 | 4b43042326bbe644ccfda3c81a138375321808ed | https://github.com/BQZic/glow-pytorch/tree/4b43042326bbe644ccfda3c81a138375321808ed |
Embedder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xz/cxz7i3qbiizfbbzvas22bbwy5nxzvmtfdg5vhhiye56dk4hdonst.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# output => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
import torch.nn
import torch.optim
class Embedder(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.linear = nn.Linear(self.dim_in, self.dim_out)
def forward(self, x):
output = self.linear(x) * math.sqrt(self.dim_out)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 2.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](buf1, primals_2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class EmbedderNew(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.linear = nn.Linear(self.dim_in, self.dim_out)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BerenLuthien/ReAgent | Embedder | false | 13,384 | [
"BSD-3-Clause"
]
| 1,156 | 52f666670a7fa03206812ef48949f6b934d400f7 | https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7 |
ConvWS2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ww/cwww2apcubf5chosrvnjwezswzhrp5km6tznagvysldlndvyv5qa.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => sqrt, var
# sub => sub
# weight => div
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, 1e-05), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
triton_per_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp0 - tmp20
tmp25 = 1e-05
tmp26 = tmp23 + tmp25
tmp27 = tmp24 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0.run(buf1, buf5, primals_1, buf6, 4, 64, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf8, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf8, primals_1, primals_3, buf1, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1, eps=1e-05):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
class ConvWS2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-05):
super(ConvWS2d, self).__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.eps = eps
def forward(self, x):
return conv_ws_2d(x, self.weight, self.bias, self.stride, self.
padding, self.dilation, self.groups, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp0 - tmp20
tmp25 = 1e-05
tmp26 = tmp23 + tmp25
tmp27 = tmp24 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp27, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0)
del buf0
buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0[grid(4)](buf1, buf5,
primals_1, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_1[grid(16)](buf8, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf8, primals_1, primals_3, buf1, buf5, buf6
def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1, eps=1e-05):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
class ConvWS2dNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-05):
super(ConvWS2dNew, self).__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.eps = eps
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BUPT-PRIV/BalancedGroupSoftmax | ConvWS2d | false | 13,385 | [
"Apache-2.0"
]
| 333 | 90e04fd8ccecd2bc61bbe6053a741ae708da2794 | https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794 |
GeLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6s/c6shmuvjmq6zc4ifvdsynorwri47ra63qxa7jg3e7p6lw6xlqj5q.py
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add => add
# erf => erf
# mul => mul
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.4142135623730951), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class GeLU(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, x):
return gelu(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class GeLUNew(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BigRedT/gpv-1 | GeLU | false | 13,386 | [
"Apache-2.0"
]
| 45 | 6a0c2173b44961cb492d00f94864c461aa77641d | https://github.com/BigRedT/gpv-1/tree/6a0c2173b44961cb492d00f94864c461aa77641d |
ModuloMapIDList | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ln/clnui2qdwrmy7ay6oc5iefngkbx5t3jxibzv5sg3njmui3ca5mfb.py
# Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder]
# Source node to ATen node mapping:
# remainder => remainder
# Graph fragment:
# %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = tmp0 % tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 != tmp3
tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0
tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0
tmp7 = tmp5 != tmp6
tmp8 = tmp4 & tmp7
tmp9 = tmp2 + tmp1
tmp10 = tl.where(tmp8, tmp9, tmp2)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder]
stream0 = get_raw_stream(0)
triton_poi_fused_remainder_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import abc
import torch
import torch.nn
import torch.optim
class MapIDList(torch.nn.Module):
@abc.abstractmethod
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
pass
class ModuloMapIDList(MapIDList):
def __init__(self, modulo: 'int'):
super().__init__()
self.modulo = modulo
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
return torch.remainder(raw_values, self.modulo)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'modulo': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import abc
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = tmp0 % tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = tmp2 != tmp3
tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0
tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0
tmp7 = tmp5 != tmp6
tmp8 = tmp4 & tmp7
tmp9 = tmp2 + tmp1
tmp10 = tl.where(tmp8, tmp9, tmp2)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_remainder_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MapIDList(torch.nn.Module):
@abc.abstractmethod
def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor:
pass
class ModuloMapIDListNew(MapIDList):
def __init__(self, modulo: 'int'):
super().__init__()
self.modulo = modulo
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BerenLuthien/ReAgent | ModuloMapIDList | false | 13,387 | [
"BSD-3-Clause"
]
| 1,156 | 52f666670a7fa03206812ef48949f6b934d400f7 | https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7 |
Discriminator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del buf2
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.utils.data
def uniform(size, tensor):
stdv = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-stdv, stdv)
class Discriminator(nn.Module):
def __init__(self, hidden_dim):
super(Discriminator, self).__init__()
self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
self.reset_parameters()
def reset_parameters(self):
size = self.weight.size(0)
uniform(size, self.weight)
def forward(self, x, summary):
x = torch.matmul(x, torch.matmul(self.weight, summary))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0),
out=buf3)
del buf2
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(
primals_3, (16, 4, 4), (16, 1, 4), 0)
def uniform(size, tensor):
stdv = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-stdv, stdv)
class DiscriminatorNew(nn.Module):
def __init__(self, hidden_dim):
super(DiscriminatorNew, self).__init__()
self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
self.reset_parameters()
def reset_parameters(self):
size = self.weight.size(0)
uniform(size, self.weight)
def forward(self, input_0, input_1):
primals_1 = self.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| Bawaw/pytorch_geometric | Discriminator | false | 13,388 | [
"MIT"
]
| 62 | 868548d4396fc66e39b08e2ff19091a367ddac13 | https://github.com/Bawaw/pytorch_geometric/tree/868548d4396fc66e39b08e2ff19091a367ddac13 |
Concat | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, arg1_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
import torch.optim
class Concat(nn.Module):
def forward(self, state: 'torch.Tensor', action: 'torch.Tensor'):
return torch.cat((state, action), dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, arg1_1, buf0, 512, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class ConcatNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BerenLuthien/ReAgent | Concat | false | 13,389 | [
"BSD-3-Clause"
]
| 1,156 | 52f666670a7fa03206812ef48949f6b934d400f7 | https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7 |
MsgNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dv/cdvohkptuslet5o4k7ir3iwxhauwqpaue5iwojpfdtbzbkod67k6.py
# Topologically Sorted Source Nodes: [msg, x_norm, mul, msg_1], Original ATen: [aten.div, aten.linalg_vector_norm, aten.mul]
# Source node to ATen node mapping:
# msg => div
# msg_1 => mul_1
# mul => mul
# x_norm => pow_3, pow_4, sum_2
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg2_1), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (0))
tmp30 = tl.broadcast_to(tmp29, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp16
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp25 = tmp24 * tmp24
tmp26 = tmp23 + tmp25
tmp27 = libdevice.sqrt(tmp26)
tmp28 = tmp15 * tmp27
tmp31 = tmp28 * tmp30
tl.store(in_out_ptr0 + (x3), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [msg, x_norm, mul, msg_1], Original ATen: [aten.div, aten.linalg_vector_norm, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_0.run(buf1, arg0_1, arg1_1, arg2_1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class MsgNorm(torch.nn.Module):
def __init__(self, learn_msg_scale=False):
super(MsgNorm, self).__init__()
self.msg_scale = torch.nn.Parameter(torch.Tensor([1.0]),
requires_grad=learn_msg_scale)
def forward(self, x, msg, p=2):
msg = F.normalize(msg, p=p, dim=1)
x_norm = x.norm(p=p, dim=1, keepdim=True)
msg = msg * x_norm * self.msg_scale
return msg
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr2 + 0)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK])
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp16
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp25 = tmp24 * tmp24
tmp26 = tmp23 + tmp25
tmp27 = libdevice.sqrt(tmp26)
tmp28 = tmp15 * tmp27
tmp31 = tmp28 * tmp30
tl.store(in_out_ptr0 + x3, tmp31, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_0[grid(256)](buf1,
arg0_1, arg1_1, arg2_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf1,
class MsgNormNew(torch.nn.Module):
def __init__(self, learn_msg_scale=False):
super(MsgNormNew, self).__init__()
self.msg_scale = torch.nn.Parameter(torch.Tensor([1.0]),
requires_grad=learn_msg_scale)
def forward(self, input_0, input_1):
arg2_1 = self.msg_scale
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| Basvanstein/nasbench301 | MsgNorm | false | 13,390 | [
"Apache-2.0"
]
| 55 | 2984dec45c760d47762f50efe39b71e9d1ac22e0 | https://github.com/Basvanstein/nasbench301/tree/2984dec45c760d47762f50efe39b71e9d1ac22e0 |
DepthWiseSeperableConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DepthWiseSeperableConv(nn.Module):
def __init__(self, in_dim, out_dim, *args, **kwargs):
super().__init__()
if 'groups' in kwargs:
del kwargs['groups']
self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **
kwargs)
self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(16)](buf3, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class DepthWiseSeperableConvNew(nn.Module):
def __init__(self, in_dim, out_dim, *args, **kwargs):
super().__init__()
if 'groups' in kwargs:
del kwargs['groups']
self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **
kwargs)
self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(self, input_0):
primals_1 = self.depthwise.weight
primals_2 = self.depthwise.bias
primals_4 = self.pointwise.weight
primals_5 = self.pointwise.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BishmoyPaul/lama | DepthWiseSeperableConv | false | 13,391 | [
"Apache-2.0"
]
| 2,133 | c7f5af9c167a15e2b0b741b1419237de52c4af05 | https://github.com/BishmoyPaul/lama/tree/c7f5af9c167a15e2b0b741b1419237de52c4af05 |
Zero | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zi/cziatn4srpsymxab7n67k7jt34egxdol3kpyktgeck2cxwbklbyh.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Zero(nn.Module):
def __init__(self):
super(Zero, self).__init__()
def forward(self, x):
return x * 0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ZeroNew(nn.Module):
def __init__(self):
super(ZeroNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BayesWatch/pytorch-prunes | Zero | false | 13,392 | [
"MIT"
]
| 143 | bc85a5c52865a2daf515ad4d3c26dcab88e3d941 | https://github.com/BayesWatch/pytorch-prunes/tree/bc85a5c52865a2daf515ad4d3c26dcab88e3d941 |
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3h43fi4m7oq2vwlktxfhxi3dzck4gnc765fyme47rufsuxazkg.py
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# product => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2s/c2s3zo6qtbodb6bdwv46ozxj4nxxymp76igm7emvdafvrj3673sn.py
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# product => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yw/cyw3ff4nmszw3dpfuipofodyezjcpjoru35h7fhkaosfnlrctm2g.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul_2
# product_2 => add_2
# weights => amax, exp, sub_1, sum_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_mul_4 = async_compile.triton('triton_poi_fused__softmax_add_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4j/c4js4wnrmajokobx5l4yjjeu36aktrpkep2mzo6qtwttwlqodwbm.py
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# product_1 => mul_2
# product_2 => add_2
# weights => amax, div, exp, sub_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_mul_5 = async_compile.triton('triton_poi_fused__softmax_add_mul_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zi/czic6s5idip57syewxigjtom43flziklldd4ea2qpsxjorxgbunq.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_3
# Graph fragment:
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %primals_3), kwargs = {})
triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf4, buf7, 64, 4, grid=grid(64, 4), stream=stream0)
buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_mul_4.run(buf8, primals_7, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_mul_5.run(buf11, primals_7, buf9, buf10, 256, grid=grid(256), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.native_dropout]
buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True)
buf13 = buf12[0]
buf14 = buf12[1]
del buf12
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf5, buf15, 256, grid=grid(256), stream=stream0)
buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf16, buf17, 256, grid=grid(256), stream=stream0)
del buf16
buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout]
buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf20 = buf19[0]
buf21 = buf19[1]
del buf19
buf22 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf22, primals_3, 64, grid=grid(64), stream=stream0)
buf23 = buf1; del buf1 # reuse
buf24 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_0.run(buf22, buf23, buf24, 16, grid=grid(16), stream=stream0)
buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf22, buf23, buf24, primals_9, primals_10, buf25, 64, grid=grid(64), stream=stream0)
del buf23
del buf24
del primals_10
buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26)
buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse
buf36 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_7.run(buf27, primals_12, buf36, 64, grid=grid(64), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout]
buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True)
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0); del buf27 # reuse
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31)
del primals_14
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.native_dropout]
buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
del buf31
buf33 = buf32[0]
buf34 = buf32[1]
del buf32
buf35 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf35, buf22, 64, grid=grid(64), stream=stream0)
return (buf35, primals_3, primals_9, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), buf34, primals_13, buf36, primals_11, primals_8, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6, primals_5, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Lambda(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(hidden, p=self.dropout_rate)
out = self.fc2(hidden)
return out
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
product = torch.matmul(q, k.transpose(2, 3))
product = product * self.d_model ** -0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product, dim=-1)
if self.dropout_rate:
weights = F.dropout(weights, p=self.dropout_rate)
out = torch.matmul(weights, v)
out = out.permute(0, 2, 1, 3)
out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape
[2] * out.shape[3]])
out = self.proj_fc(out)
return out
class LambdaXY(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x, y):
return self.func(x, y)
class PrePostProcessLayer(nn.Module):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = nn.ModuleList()
cur_a_len = 0
cur_n_len = 0
cur_d_len = 0
for cmd in self.process_cmd:
if cmd == 'a':
self.functors.add_module('add_res_connect_{}'.format(
cur_a_len), LambdaXY(lambda x, y: x + y if y is not
None else x))
cur_a_len += 1
elif cmd == 'n':
layerNorm = torch.nn.LayerNorm(normalized_shape=d_model,
elementwise_affine=True, eps=1e-05)
self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm
)
cur_n_len += 1
elif cmd == 'd':
self.functors.add_module('add_drop_{}'.format(cur_d_len),
Lambda(lambda x: F.dropout(x, p=dropout_rate) if
dropout_rate else x))
cur_d_len += 1
def forward(self, x, residual=None):
for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors)
):
if cmd == 'a':
x = functor(x, residual)
else:
x = functor(x)
return x
class EncoderLayer(nn.Module):
"""
EncoderLayer
"""
def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd='n', postprocess_cmd='da'):
super(EncoderLayer, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, enc_input, attn_bias):
attn_output = self.self_attn(self.preprocesser1(enc_input), None,
None, attn_bias)
attn_output = self.postprocesser1(attn_output, enc_input)
ffn_output = self.ffn(self.preprocesser2(attn_output))
ffn_output = self.postprocesser2(ffn_output, attn_output)
return ffn_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_head': 4, 'd_key': 4, 'd_value': 4, 'd_model': 4,
'd_inner_hid': 4, 'prepostprocess_dropout': 0.5,
'attention_dropout': 0.5, 'relu_dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0,
buf1, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_1
del primals_2
buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf3, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_clone_3[grid(64, 4)](buf4, buf7, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_mul_4[grid(64)](buf8, primals_7, buf9,
buf10, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf8
triton_poi_fused__softmax_add_mul_5[grid(256)](buf11, primals_7,
buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True)
buf13 = buf12[0]
buf14 = buf12[1]
del buf12
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf5, buf15, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16
)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_2[grid(256)](buf16, buf17, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf16
buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18)
buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf20 = buf19[0]
buf21 = buf19[1]
del buf19
buf22 = buf20
del buf20
triton_poi_fused_add_6[grid(64)](buf22, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf23 = buf1
del buf1
buf24 = buf0
del buf0
triton_poi_fused_native_layer_norm_0[grid(16)](buf22, buf23, buf24,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0)
del buf18
triton_poi_fused_native_layer_norm_1[grid(64)](buf22, buf23, buf24,
primals_9, primals_10, buf25, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf23
del buf24
del primals_10
buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26)
buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0)
del buf26
buf36 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_7[grid(64)](buf27,
primals_12, buf36, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_12
buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True)
buf29 = buf28[0]
buf30 = buf28[1]
del buf28
buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0)
del buf27
extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf31)
del primals_14
buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
del buf31
buf33 = buf32[0]
buf34 = buf32[1]
del buf32
buf35 = buf33
del buf33
triton_poi_fused_add_6[grid(64)](buf35, buf22, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf35, primals_3, primals_9, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0
), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0
), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0
), buf34, primals_13, buf36, primals_11, primals_8, reinterpret_tensor(
buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4,
4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0
), primals_6, primals_5, primals_4
class Lambda(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x):
return self.func(x)
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(self, d_inner_hid, d_model, dropout_rate):
super(FFN, self).__init__()
self.dropout_rate = dropout_rate
self.fc1 = torch.nn.Linear(in_features=d_model, out_features=
d_inner_hid)
self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=
d_model)
def forward(self, x):
hidden = self.fc1(x)
hidden = F.relu(hidden)
if self.dropout_rate:
hidden = F.dropout(hidden, p=self.dropout_rate)
out = self.fc2(hidden)
return out
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention
"""
def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_key = d_key
self.d_value = d_value
self.d_model = d_model
self.dropout_rate = dropout_rate
self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key *
n_head, bias=False)
self.v_fc = torch.nn.Linear(in_features=d_model, out_features=
d_value * n_head, bias=False)
self.proj_fc = torch.nn.Linear(in_features=d_value * n_head,
out_features=d_model, bias=False)
def _prepare_qkv(self, queries, keys, values, cache=None):
if keys is None:
keys, values = queries, queries
static_kv = False
else:
static_kv = True
q = self.q_fc(queries)
q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self
.d_key])
q = q.permute(0, 2, 1, 3)
if cache is not None and static_kv and 'static_k' in cache:
k = cache['static_k']
v = cache['static_v']
else:
k = self.k_fc(keys)
v = self.v_fc(values)
k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head,
self.d_key])
k = k.permute(0, 2, 1, 3)
v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head,
self.d_value])
v = v.permute(0, 2, 1, 3)
if cache is not None:
if static_kv and 'static_k' not in cache:
cache['static_k'], cache['static_v'] = k, v
elif not static_kv:
cache_k, cache_v = cache['k'], cache['v']
k = torch.cat([cache_k, k], dim=2)
v = torch.cat([cache_v, v], dim=2)
cache['k'], cache['v'] = k, v
return q, k, v
def forward(self, queries, keys, values, attn_bias, cache=None):
keys = queries if keys is None else keys
values = keys if values is None else values
q, k, v = self._prepare_qkv(queries, keys, values, cache)
product = torch.matmul(q, k.transpose(2, 3))
product = product * self.d_model ** -0.5
if attn_bias is not None:
product += attn_bias
weights = F.softmax(product, dim=-1)
if self.dropout_rate:
weights = F.dropout(weights, p=self.dropout_rate)
out = torch.matmul(weights, v)
out = out.permute(0, 2, 1, 3)
out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape
[2] * out.shape[3]])
out = self.proj_fc(out)
return out
class LambdaXY(nn.Module):
"""An easy way to create a pytorch layer for a simple `func`."""
def __init__(self, func):
"""create a layer that simply calls `func` with `x`"""
super().__init__()
self.func = func
def forward(self, x, y):
return self.func(x, y)
class PrePostProcessLayer(nn.Module):
"""
PrePostProcessLayer
"""
def __init__(self, process_cmd, d_model, dropout_rate):
super(PrePostProcessLayer, self).__init__()
self.process_cmd = process_cmd
self.functors = nn.ModuleList()
cur_a_len = 0
cur_n_len = 0
cur_d_len = 0
for cmd in self.process_cmd:
if cmd == 'a':
self.functors.add_module('add_res_connect_{}'.format(
cur_a_len), LambdaXY(lambda x, y: x + y if y is not
None else x))
cur_a_len += 1
elif cmd == 'n':
layerNorm = torch.nn.LayerNorm(normalized_shape=d_model,
elementwise_affine=True, eps=1e-05)
self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm
)
cur_n_len += 1
elif cmd == 'd':
self.functors.add_module('add_drop_{}'.format(cur_d_len),
Lambda(lambda x: F.dropout(x, p=dropout_rate) if
dropout_rate else x))
cur_d_len += 1
def forward(self, x, residual=None):
for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors)
):
if cmd == 'a':
x = functor(x, residual)
else:
x = functor(x)
return x
class EncoderLayerNew(nn.Module):
"""
EncoderLayer
"""
def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid,
prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd='n', postprocess_cmd='da'):
super(EncoderLayerNew, self).__init__()
self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head,
attention_dropout)
self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model,
prepostprocess_dropout)
self.ffn = FFN(d_inner_hid, d_model, relu_dropout)
self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model,
prepostprocess_dropout)
def forward(self, input_0, input_1):
primals_1 = self.preprocesser1.functors.layer_norm_0.weight
primals_2 = self.preprocesser1.functors.layer_norm_0.bias
primals_4 = self.self_attn.q_fc.weight
primals_5 = self.self_attn.k_fc.weight
primals_6 = self.self_attn.v_fc.weight
primals_8 = self.self_attn.proj_fc.weight
primals_9 = self.preprocesser2.functors.layer_norm_0.weight
primals_10 = self.preprocesser2.functors.layer_norm_0.bias
primals_11 = self.ffn.fc1.weight
primals_12 = self.ffn.fc1.bias
primals_13 = self.ffn.fc2.weight
primals_14 = self.ffn.fc2.bias
primals_3 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0]
| BHD233/PaddleOCR2Pytorch | EncoderLayer | false | 13,393 | [
"Apache-2.0"
]
| 364 | f114069b3e2669c6adf0adf9596756205f184c9c | https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c |
Normalize | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dz/cdzlfn35yag6jtz5ni2o3wxs6zz4qa5ljfjpsrkhqfmlbh3qhae3.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, out], Original ATen: [aten.pow, aten.sum, aten.div]
# Source node to ATen node mapping:
# norm => pow_2
# out => div
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {})
triton_poi_fused_div_pow_sum_0 = async_compile.triton('triton_poi_fused_div_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, out], Original ATen: [aten.pow, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_pow_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_pow_sum_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormalizeNew(nn.Module):
def __init__(self, power=2):
super(NormalizeNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Bhaskers-Blu-Org2/metric-transfer.pytorch | Normalize | false | 13,394 | [
"MIT"
]
| 51 | b0ae8ed6e6f62357100d799defbb61a78c831a87 | https://github.com/Bhaskers-Blu-Org2/metric-transfer.pytorch/tree/b0ae8ed6e6f62357100d799defbb61a78c831a87 |
AvgPoolPad | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/pr/cprzlfpjjqlj6tudvbc455jxno35xlnta4wgmkbc6uo5zmcxii4s.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
# Source node to ATen node mapping:
# x => constant_pad_nd
# x_1 => avg_pool2d
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], False, False), kwargs = {})
triton_poi_fused_avg_pool2d_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = (-2) + (2*x1)
tmp12 = tmp11 >= tmp1
tmp13 = (-2) + (2*x0)
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2*x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = tmp29 + tmp19
tmp31 = 1 + (2*x0)
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp40 + tmp30
tmp42 = 2*x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = tmp51 + tmp41
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp58 + tmp52
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = tmp65 + tmp59
tmp67 = 1 + (2*x1)
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = tmp76 + tmp66
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = tmp83 + tmp77
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = tmp90 + tmp84
tmp92 = (((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))))
tmp93 = tmp91 / tmp92
tl.store(out_ptr0 + (x4), tmp93, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch import optim as optim
class AvgPoolPad(nn.Module):
def __init__(self, stride=2, padding=1):
super(AvgPoolPad, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.AvgPool2d(3, stride=stride, padding=padding,
count_include_pad=False)
def forward(self, x):
x = self.pad(x)
x = self.pool(x)
x = x[:, :, 1:, 1:]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = -2 + 2 * x1
tmp12 = tmp11 >= tmp1
tmp13 = -2 + 2 * x0
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2 * x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 &
xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = tmp29 + tmp19
tmp31 = 1 + 2 * x0
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 &
xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp40 + tmp30
tmp42 = 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 &
xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = tmp51 + tmp41
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 &
xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp58 + tmp52
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 &
xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = tmp65 + tmp59
tmp67 = 1 + 2 * x1
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 &
xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = tmp76 + tmp66
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 &
xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = tmp83 + tmp77
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = tmp90 + tmp84
tmp92 = (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (
0 * (0 >= -1 + 2 * x1) + (-1 + 2 * x1) * (-1 + 2 * x1 > 0)) + (5 *
(5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 +
2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 *
x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (5 * (5 <= 2 + 2 * x1) +
(2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x1) + (
-1 + 2 * x1) * (-1 + 2 * x1 > 0)) * (5 * (5 <= 2 + 2 * x0) + (2 + 2 *
x0) * (2 + 2 * x0 < 5))
tmp93 = tmp91 / tmp92
tl.store(out_ptr0 + x4, tmp93, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0[grid(144)](arg0_1,
buf0, 144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4),
class AvgPoolPadNew(nn.Module):
def __init__(self, stride=2, padding=1):
super(AvgPoolPadNew, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.AvgPool2d(3, stride=stride, padding=padding,
count_include_pad=False)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BarneyQiao/CondenseNetV2 | AvgPoolPad | false | 13,395 | [
"MIT"
]
| 80 | c771957cb8fe466d0ecbafe9060e4c342a33fc4d | https://github.com/BarneyQiao/CondenseNetV2/tree/c771957cb8fe466d0ecbafe9060e4c342a33fc4d |
HighwayLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py
# Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# gate_output => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ln/clnagoyz3cauqnx3uxib3ikp6vd4zabtsvlhtc24rayt3qg4yaom.py
# Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add]
# Source node to ATen node mapping:
# add => add
# carry_part => mul_1
# gate_output => div, sum_1
# sub => sub_1
# transform_output => relu
# transformation_part => mul
# type_as => full_default
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %div), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1 = async_compile.triton('triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x3), xmask)
tmp15 = tl.load(in_ptr2 + (x3), xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 * tmp8
tmp13 = 1.0
tmp14 = tmp13 - tmp8
tmp16 = tmp14 * tmp15
tmp17 = tmp12 + tmp16
tl.store(in_out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add]
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1.run(buf4, buf2, buf0, primals_3, 256, grid=grid(256), stream=stream0)
del buf2
return (buf4, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
class HighwayLayer(nn.Module):
def __init__(self, input_dim, transform_activation=F.relu,
gate_activation=F.softmax, gate_bias=-2):
super().__init__()
self.highway_transform_activation = transform_activation
self.highway_gate_activation = gate_activation
self.highway_transform = nn.Linear(input_dim, input_dim)
self.highway_gate = nn.Linear(input_dim, input_dim)
self.highway_gate.bias.data.fill_(gate_bias)
def forward(self, x):
transform_output = self.highway_transform_activation(self.
highway_transform(x))
gate_output = self.highway_gate_activation(self.highway_gate(x))
transformation_part = torch.mul(transform_output, gate_output)
carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output
) - gate_output, x)
return torch.add(transformation_part, carry_part)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + x3, xmask)
tmp15 = tl.load(in_ptr2 + x3, xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 * tmp8
tmp13 = 1.0
tmp14 = tmp13 - tmp8
tmp16 = tmp14 * tmp15
tmp17 = tmp12 + tmp16
tl.store(in_out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3
del buf3
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1[grid(256)](buf4,
buf2, buf0, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
return buf4, primals_3, buf0, buf1
class HighwayLayerNew(nn.Module):
def __init__(self, input_dim, transform_activation=F.relu,
gate_activation=F.softmax, gate_bias=-2):
super().__init__()
self.highway_transform_activation = transform_activation
self.highway_gate_activation = gate_activation
self.highway_transform = nn.Linear(input_dim, input_dim)
self.highway_gate = nn.Linear(input_dim, input_dim)
self.highway_gate.bias.data.fill_(gate_bias)
def forward(self, input_0):
primals_1 = self.highway_transform.weight
primals_2 = self.highway_transform.bias
primals_4 = self.highway_gate.weight
primals_5 = self.highway_gate.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Ayansam1152/translate | HighwayLayer | false | 13,396 | [
"BSD-3-Clause"
]
| 748 | 33d397fc25fb1072abd2975c77c602a2d031c6c4 | https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4 |
GeLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3v/c3vxe4labx22axljvqnpfvh4p4urhfykzepqmzyxdeaf6uj4elja.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %arg0_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.044715
tmp4 = tmp0 * tmp3
tmp5 = tmp4 * tmp0
tmp6 = tmp5 * tmp0
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GeLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + F.tanh(0.7978845608 * (x + 0.044715 * x * x * x))
)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.044715
tmp4 = tmp0 * tmp3
tmp5 = tmp4 * tmp0
tmp6 = tmp5 * tmp0
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GeLUNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Blind-Aid/sentiment-discovery | GeLU | false | 13,397 | [
"BSD-3-Clause"
]
| 1,093 | 081c7c855e00864b52e97cac0b0e097cc86d9731 | https://github.com/Blind-Aid/sentiment-discovery/tree/081c7c855e00864b52e97cac0b0e097cc86d9731 |
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11)
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
def combine_heads(X):
"""
Combine heads (the inverse of split heads):
1) Transpose X from (batch size, nheads, sequence length, d_head) to
(batch size, sequence length, nheads, d_head)
2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model)
Inputs:
X : [batch size * nheads, sequence length, d_head]
nheads : integer
d_head : integer
Outputs:
[batch_size, seq_len, d_model]
"""
X = X.transpose(1, 2)
nheads, d_head = X.shape[-2:]
return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head])
def create_src_lengths_mask(batch_size, src_lengths):
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
return (src_indices < src_lengths).int().detach()
def apply_masks(scores, batch_size, unseen_mask, src_lengths):
seq_len = scores.shape[-1]
sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int()
if unseen_mask:
sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0
).unsqueeze(0).int()
if src_lengths is not None:
src_lengths_mask = create_src_lengths_mask(batch_size=batch_size,
src_lengths=src_lengths).unsqueeze(-2)
sequence_mask = sequence_mask & src_lengths_mask
sequence_mask = sequence_mask.unsqueeze(1)
scores = scores.masked_fill(sequence_mask == 0, -np.inf)
return scores
def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None
):
"""
Scaled Dot Product Attention
Implements equation:
Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V
Inputs:
query : [batch size, nheads, sequence length, d_k]
key : [batch size, nheads, sequence length, d_k]
value : [batch size, nheads, sequence length, d_v]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Outputs:
attn: [batch size, sequence length, d_v]
Note that in this implementation d_q = d_k = d_v = dim
"""
d_k = query.shape[-1]
scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k)
if unseen_mask or src_lengths is not None:
scores = apply_masks(scores=scores, batch_size=query.shape[0],
unseen_mask=unseen_mask, src_lengths=src_lengths)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, value), p_attn
def split_heads(X, nheads):
"""
Split heads:
1) Split (reshape) last dimension (size d_model) into nheads, d_head
2) Transpose X from (batch size, sequence length, nheads, d_head) to
(batch size, nheads, sequence length, d_head)
Inputs:
X : [batch size, sequence length, nheads * d_head]
nheads : integer
Outputs:
[batch size, nheads, sequence length, d_head]
"""
last_dim = X.shape[-1]
assert last_dim % nheads == 0
X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads]
)
return X_last_dim_split.transpose(1, 2)
class MultiheadAttention(nn.Module):
"""
Multiheaded Scaled Dot Product Attention
Implements equation:
MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O
where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
Similarly to the above, d_k = d_v = d_model / h
Inputs
init:
nheads : integer # of attention heads
d_model : model dimensionality
d_head : dimensionality of a single head
forward:
query : [batch size, sequence length, d_model]
key: [batch size, sequence length, d_model]
value: [batch size, sequence length, d_model]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Output
result : [batch_size, sequence length, d_model]
"""
def __init__(self, nheads, d_model):
"""Take in model size and number of heads."""
super(MultiheadAttention, self).__init__()
assert d_model % nheads == 0
self.d_head = d_model // nheads
self.nheads = nheads
self.Q_fc = nn.Linear(d_model, d_model, bias=False)
self.K_fc = nn.Linear(d_model, d_model, bias=False)
self.V_fc = nn.Linear(d_model, d_model, bias=False)
self.output_fc = nn.Linear(d_model, d_model, bias=False)
self.attn = None
def forward(self, query, key, value, unseen_mask=False, src_lengths=None):
query = split_heads(self.Q_fc(query), self.nheads)
key = split_heads(self.K_fc(key), self.nheads)
value = split_heads(self.V_fc(value), self.nheads)
x, self.attn = scaled_dot_prod_attn(query=query, key=key, value=
value, unseen_mask=unseen_mask, src_lengths=src_lengths)
x = combine_heads(x)
return self.output_fc(x)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'nheads': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11)
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
def combine_heads(X):
"""
Combine heads (the inverse of split heads):
1) Transpose X from (batch size, nheads, sequence length, d_head) to
(batch size, sequence length, nheads, d_head)
2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model)
Inputs:
X : [batch size * nheads, sequence length, d_head]
nheads : integer
d_head : integer
Outputs:
[batch_size, seq_len, d_model]
"""
X = X.transpose(1, 2)
nheads, d_head = X.shape[-2:]
return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head])
def create_src_lengths_mask(batch_size, src_lengths):
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
return (src_indices < src_lengths).int().detach()
def apply_masks(scores, batch_size, unseen_mask, src_lengths):
seq_len = scores.shape[-1]
sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int()
if unseen_mask:
sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0
).unsqueeze(0).int()
if src_lengths is not None:
src_lengths_mask = create_src_lengths_mask(batch_size=batch_size,
src_lengths=src_lengths).unsqueeze(-2)
sequence_mask = sequence_mask & src_lengths_mask
sequence_mask = sequence_mask.unsqueeze(1)
scores = scores.masked_fill(sequence_mask == 0, -np.inf)
return scores
def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None
):
"""
Scaled Dot Product Attention
Implements equation:
Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V
Inputs:
query : [batch size, nheads, sequence length, d_k]
key : [batch size, nheads, sequence length, d_k]
value : [batch size, nheads, sequence length, d_v]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Outputs:
attn: [batch size, sequence length, d_v]
Note that in this implementation d_q = d_k = d_v = dim
"""
d_k = query.shape[-1]
scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k)
if unseen_mask or src_lengths is not None:
scores = apply_masks(scores=scores, batch_size=query.shape[0],
unseen_mask=unseen_mask, src_lengths=src_lengths)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, value), p_attn
def split_heads(X, nheads):
"""
Split heads:
1) Split (reshape) last dimension (size d_model) into nheads, d_head
2) Transpose X from (batch size, sequence length, nheads, d_head) to
(batch size, nheads, sequence length, d_head)
Inputs:
X : [batch size, sequence length, nheads * d_head]
nheads : integer
Outputs:
[batch size, nheads, sequence length, d_head]
"""
last_dim = X.shape[-1]
assert last_dim % nheads == 0
X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads]
)
return X_last_dim_split.transpose(1, 2)
class MultiheadAttentionNew(nn.Module):
"""
Multiheaded Scaled Dot Product Attention
Implements equation:
MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O
where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
Similarly to the above, d_k = d_v = d_model / h
Inputs
init:
nheads : integer # of attention heads
d_model : model dimensionality
d_head : dimensionality of a single head
forward:
query : [batch size, sequence length, d_model]
key: [batch size, sequence length, d_model]
value: [batch size, sequence length, d_model]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Output
result : [batch_size, sequence length, d_model]
"""
def __init__(self, nheads, d_model):
"""Take in model size and number of heads."""
super(MultiheadAttentionNew, self).__init__()
assert d_model % nheads == 0
self.d_head = d_model // nheads
self.nheads = nheads
self.Q_fc = nn.Linear(d_model, d_model, bias=False)
self.K_fc = nn.Linear(d_model, d_model, bias=False)
self.V_fc = nn.Linear(d_model, d_model, bias=False)
self.output_fc = nn.Linear(d_model, d_model, bias=False)
self.attn = None
def forward(self, input_0, input_1, input_2):
primals_1 = self.Q_fc.weight
primals_3 = self.K_fc.weight
primals_5 = self.V_fc.weight
primals_7 = self.output_fc.weight
primals_2 = input_0
primals_4 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Ayansam1152/translate | MultiheadAttention | false | 13,398 | [
"BSD-3-Clause"
]
| 748 | 33d397fc25fb1072abd2975c77c602a2d031c6c4 | https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4 |
SmoothL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/se/csenie6vr4xcnsc7ooahfyond2cbphy2ravggs4ys5dlllmstgur.py
# Topologically Sorted Source Nodes: [sub, n, cond, pow_1, mul, truediv, sub_1, loss, mean], Original ATen: [aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div, aten.where, aten.mean]
# Source node to ATen node mapping:
# cond => lt
# loss => where
# mean => mean
# mul => mul
# n => abs_1
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.1111111111111111), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.1111111111111111), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.05555555555555555), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.1111111111111111
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = 9.0
tmp10 = tmp8 * tmp9
tmp11 = 0.05555555555555555
tmp12 = tmp3 - tmp11
tmp13 = tl.where(tmp5, tmp10, tmp12)
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = 256.0
tmp18 = tmp16 / tmp17
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, n, cond, pow_1, mul, truediv, sub_1, loss, mean], Original ATen: [aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
def smooth_l1_loss(input, target, beta=1.0 / 9, size_average=True):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter
"""
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if size_average:
return loss.mean()
return loss.sum()
class SmoothL1Loss(torch.nn.Module):
def __init__(self, beta=1.0 / 9):
super(SmoothL1Loss, self).__init__()
self.beta = beta
def forward(self, input, target, size_average=True):
return smooth_l1_loss(input, target, self.beta, size_average)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.1111111111111111
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = 9.0
tmp10 = tmp8 * tmp9
tmp11 = 0.05555555555555555
tmp12 = tmp3 - tmp11
tmp13 = tl.where(tmp5, tmp10, tmp12)
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = 256.0
tmp18 = tmp16 / tmp17
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def smooth_l1_loss(input, target, beta=1.0 / 9, size_average=True):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter
"""
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if size_average:
return loss.mean()
return loss.sum()
class SmoothL1LossNew(torch.nn.Module):
def __init__(self, beta=1.0 / 9):
super(SmoothL1LossNew, self).__init__()
self.beta = beta
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BorisLestsov/retinamask | SmoothL1Loss | false | 13,399 | [
"MIT"
]
| 706 | 265a65f018c64220bcea946d306fc7b07a692b16 | https://github.com/BorisLestsov/retinamask/tree/265a65f018c64220bcea946d306fc7b07a692b16 |
WordPredictor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dp/cdpfrqskwwuqnfeupok3qgc45wzitvxhdnpcf5uabibiblorlnoa.py
# Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add]
# Source node to ATen node mapping:
# add => add
# hidden => relu
# max_1 => max_1
# mean_hidden => mean
# Graph fragment:
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu, [0]), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%relu, 0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %getitem), kwargs = {})
triton_poi_fused_add_max_mean_relu_0 = async_compile.triton('triton_poi_fused_add_max_mean_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_mean_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x2), xmask)
tmp23 = tl.load(in_ptr0 + (32 + x2), xmask)
tmp40 = tl.load(in_ptr0 + (48 + x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp8 = tmp4 > tmp7
tmp9 = tmp4 == tmp7
tmp10 = tmp4 != tmp4
tmp11 = tmp7 != tmp7
tmp12 = tmp10 > tmp11
tmp13 = tmp8 | tmp12
tmp14 = tmp10 & tmp11
tmp15 = tmp9 | tmp14
tmp16 = tl.full([1], 0, tl.int64)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 < tmp17
tmp19 = tmp15 & tmp18
tmp20 = tmp13 | tmp19
tmp21 = tl.where(tmp20, tmp4, tmp7)
tmp22 = tl.where(tmp20, tmp16, tmp17)
tmp24 = tmp23 + tmp1
tmp25 = triton_helpers.maximum(tmp3, tmp24)
tmp26 = tmp21 > tmp25
tmp27 = tmp21 == tmp25
tmp28 = tmp21 != tmp21
tmp29 = tmp25 != tmp25
tmp30 = tmp28 > tmp29
tmp31 = tmp26 | tmp30
tmp32 = tmp28 & tmp29
tmp33 = tmp27 | tmp32
tmp34 = tl.full([1], 2, tl.int64)
tmp35 = tmp22 < tmp34
tmp36 = tmp33 & tmp35
tmp37 = tmp31 | tmp36
tmp38 = tl.where(tmp37, tmp21, tmp25)
tmp39 = tl.where(tmp37, tmp22, tmp34)
tmp41 = tmp40 + tmp1
tmp42 = triton_helpers.maximum(tmp3, tmp41)
tmp43 = tmp38 > tmp42
tmp44 = tmp38 == tmp42
tmp45 = tmp38 != tmp38
tmp46 = tmp42 != tmp42
tmp47 = tmp45 > tmp46
tmp48 = tmp43 | tmp47
tmp49 = tmp45 & tmp46
tmp50 = tmp44 | tmp49
tmp51 = tl.full([1], 3, tl.int64)
tmp52 = tmp39 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tmp48 | tmp53
tmp55 = tl.where(tmp54, tmp38, tmp42)
tmp56 = tl.where(tmp54, tmp39, tmp51)
tmp57 = tmp4 + tmp7
tmp58 = tmp57 + tmp25
tmp59 = tmp58 + tmp42
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tmp62 = triton_helpers.maximum(tmp4, tmp7)
tmp63 = triton_helpers.maximum(tmp62, tmp25)
tmp64 = triton_helpers.maximum(tmp63, tmp42)
tmp65 = tmp61 + tmp64
tl.store(out_ptr0 + (x2), tmp56, xmask)
tl.store(out_ptr1 + (x2), tmp65, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/i3/ci32bshm7vv6yycmhvqgk6df7gy4rk2dkcyol7iwwj7ttakuvnhx.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# Graph fragment:
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_max_mean_relu_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del primals_3
return (buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
class WordPredictor(nn.Module):
def __init__(self, encoder_output_dim, hidden_dim, output_dim,
topk_labels_per_source_token=None, use_self_attention=False):
super().__init__()
self.encoder_output_dim = encoder_output_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.topk_labels_per_source_token = topk_labels_per_source_token
self.use_self_attention = use_self_attention
if self.use_self_attention:
self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim)
self.attn_layer = nn.Linear(2 * encoder_output_dim, 1)
self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
else:
self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, encoder_output):
encoder_hiddens, *_ = encoder_output
assert encoder_hiddens.dim()
if self.use_self_attention:
init_state = self._get_init_state(encoder_hiddens)
attn_scores = self._attention(encoder_hiddens, init_state)
attned_state = (encoder_hiddens * attn_scores).sum(0)
pred_input = torch.cat([init_state, attned_state], 1)
pred_hidden = F.relu(self.hidden_layer(pred_input))
logits = self.output_layer(pred_hidden)
else:
hidden = F.relu(self.hidden_layer(encoder_hiddens))
mean_hidden = torch.mean(hidden, 0)
max_hidden = torch.max(hidden, 0)[0]
logits = self.output_layer(mean_hidden + max_hidden)
return logits
def _get_init_state(self, encoder_hiddens):
x = torch.mean(encoder_hiddens, 0)
x = F.relu(self.init_layer(x))
return x
def _attention(self, encoder_hiddens, init_state):
init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens)
attn_input = torch.cat([init_state, encoder_hiddens], 2)
attn_scores = F.relu(self.attn_layer(attn_input))
attn_scores = F.softmax(attn_scores, 0)
return attn_scores
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output
if log_probs:
return F.log_softmax(logits, dim=1)
else:
return F.softmax(logits, dim=1)
def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs:
'bool'):
"""
Get self.topk_labels_per_source_token top predicted words for vocab
reduction (per source token).
"""
assert isinstance(self.topk_labels_per_source_token, int
) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None'
k = src_tokens.size(1) * self.topk_labels_per_source_token
probs = self.get_normalized_probs(net_output, log_probs)
_, topk_indices = torch.topk(probs, k, dim=1)
return topk_indices
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'encoder_output_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.jit.quantized
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x2), xmask)
tmp23 = tl.load(in_ptr0 + (32 + x2), xmask)
tmp40 = tl.load(in_ptr0 + (48 + x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp8 = tmp4 > tmp7
tmp9 = tmp4 == tmp7
tmp10 = tmp4 != tmp4
tmp11 = tmp7 != tmp7
tmp12 = tmp10 > tmp11
tmp13 = tmp8 | tmp12
tmp14 = tmp10 & tmp11
tmp15 = tmp9 | tmp14
tmp16 = tl.full([1], 0, tl.int64)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 < tmp17
tmp19 = tmp15 & tmp18
tmp20 = tmp13 | tmp19
tmp21 = tl.where(tmp20, tmp4, tmp7)
tmp22 = tl.where(tmp20, tmp16, tmp17)
tmp24 = tmp23 + tmp1
tmp25 = triton_helpers.maximum(tmp3, tmp24)
tmp26 = tmp21 > tmp25
tmp27 = tmp21 == tmp25
tmp28 = tmp21 != tmp21
tmp29 = tmp25 != tmp25
tmp30 = tmp28 > tmp29
tmp31 = tmp26 | tmp30
tmp32 = tmp28 & tmp29
tmp33 = tmp27 | tmp32
tmp34 = tl.full([1], 2, tl.int64)
tmp35 = tmp22 < tmp34
tmp36 = tmp33 & tmp35
tmp37 = tmp31 | tmp36
tmp38 = tl.where(tmp37, tmp21, tmp25)
tmp39 = tl.where(tmp37, tmp22, tmp34)
tmp41 = tmp40 + tmp1
tmp42 = triton_helpers.maximum(tmp3, tmp41)
tmp43 = tmp38 > tmp42
tmp44 = tmp38 == tmp42
tmp45 = tmp38 != tmp38
tmp46 = tmp42 != tmp42
tmp47 = tmp45 > tmp46
tmp48 = tmp43 | tmp47
tmp49 = tmp45 & tmp46
tmp50 = tmp44 | tmp49
tmp51 = tl.full([1], 3, tl.int64)
tmp52 = tmp39 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tmp48 | tmp53
tl.where(tmp54, tmp38, tmp42)
tmp56 = tl.where(tmp54, tmp39, tmp51)
tmp57 = tmp4 + tmp7
tmp58 = tmp57 + tmp25
tmp59 = tmp58 + tmp42
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tmp62 = triton_helpers.maximum(tmp4, tmp7)
tmp63 = triton_helpers.maximum(tmp62, tmp25)
tmp64 = triton_helpers.maximum(tmp63, tmp42)
tmp65 = tmp61 + tmp64
tl.store(out_ptr0 + x2, tmp56, xmask)
tl.store(out_ptr1 + x2, tmp65, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_max_mean_relu_0[grid(16)](buf0, primals_3,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(64)](buf0,
primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_3
return buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0
), buf4
class WordPredictorNew(nn.Module):
def __init__(self, encoder_output_dim, hidden_dim, output_dim,
topk_labels_per_source_token=None, use_self_attention=False):
super().__init__()
self.encoder_output_dim = encoder_output_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.topk_labels_per_source_token = topk_labels_per_source_token
self.use_self_attention = use_self_attention
if self.use_self_attention:
self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim)
self.attn_layer = nn.Linear(2 * encoder_output_dim, 1)
self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
else:
self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def _get_init_state(self, encoder_hiddens):
x = torch.mean(encoder_hiddens, 0)
x = F.relu(self.init_layer(x))
return x
def _attention(self, encoder_hiddens, init_state):
init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens)
attn_input = torch.cat([init_state, encoder_hiddens], 2)
attn_scores = F.relu(self.attn_layer(attn_input))
attn_scores = F.softmax(attn_scores, 0)
return attn_scores
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output
if log_probs:
return F.log_softmax(logits, dim=1)
else:
return F.softmax(logits, dim=1)
def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs:
'bool'):
"""
Get self.topk_labels_per_source_token top predicted words for vocab
reduction (per source token).
"""
assert isinstance(self.topk_labels_per_source_token, int
) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None'
k = src_tokens.size(1) * self.topk_labels_per_source_token
probs = self.get_normalized_probs(net_output, log_probs)
_, topk_indices = torch.topk(probs, k, dim=1)
return topk_indices
def forward(self, input_0):
primals_2 = self.hidden_layer.weight
primals_3 = self.hidden_layer.bias
primals_4 = self.output_layer.weight
primals_5 = self.output_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Ayansam1152/translate | WordPredictor | false | 13,400 | [
"BSD-3-Clause"
]
| 748 | 33d397fc25fb1072abd2975c77c602a2d031c6c4 | https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4 |
ReconstructionLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ns/cnsfro2m3yop7hctt3gzvfo72pqdjpjyciiysmo6j2eroh6wibzp.py
# Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum]
# Source node to ATen node mapping:
# L => pow_1
# L_1 => sum_1
# L_2 => sum_2
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [-1]), kwargs = {})
triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (16*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr1 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr1 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr1 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr1 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp53 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr1 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp63 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp69 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp73 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp19 - tmp20
tmp22 = tmp21 * tmp21
tmp25 = tmp23 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tmp22 + tmp26
tmp30 = tmp28 - tmp29
tmp31 = tmp30 * tmp30
tmp32 = tmp27 + tmp31
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tmp32 + tmp36
tmp38 = tmp18 + tmp37
tmp41 = tmp39 - tmp40
tmp42 = tmp41 * tmp41
tmp45 = tmp43 - tmp44
tmp46 = tmp45 * tmp45
tmp47 = tmp42 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp50
tmp52 = tmp47 + tmp51
tmp55 = tmp53 - tmp54
tmp56 = tmp55 * tmp55
tmp57 = tmp52 + tmp56
tmp58 = tmp38 + tmp57
tmp61 = tmp59 - tmp60
tmp62 = tmp61 * tmp61
tmp65 = tmp63 - tmp64
tmp66 = tmp65 * tmp65
tmp67 = tmp62 + tmp66
tmp70 = tmp68 - tmp69
tmp71 = tmp70 * tmp70
tmp72 = tmp67 + tmp71
tmp75 = tmp73 - tmp74
tmp76 = tmp75 * tmp75
tmp77 = tmp72 + tmp76
tmp78 = tmp58 + tmp77
tl.store(out_ptr0 + (x0), tmp78, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ek/cekiz6m3gkht2yp3ztmcbsd3p5puikacrotgfo47gez257wxla3s.py
# Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean]
# Source node to ATen node mapping:
# L_3 => sum_3
# mean => mean
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_2, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {})
triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_sub_sum_0.run(arg0_1, arg1_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean]
triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 4, grid=grid(1), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from functools import reduce
import torch.nn as nn
class BaseModule(nn.Module):
"""
Implements the basic module.
All other modules inherit from this one
"""
def load_w(self, checkpoint_path):
"""
Loads a checkpoint into the state_dict.
:param checkpoint_path: the checkpoint file to be loaded.
"""
self.load_state_dict(torch.load(checkpoint_path))
def __repr__(self):
"""
String representation
"""
good_old = super(BaseModule, self).__repr__()
addition = 'Total number of parameters: {:,}'.format(self.n_parameters)
return good_old + '\n' + addition
def __call__(self, *args, **kwargs):
return super(BaseModule, self).__call__(*args, **kwargs)
@property
def n_parameters(self):
"""
Number of parameters of the model.
"""
n_parameters = 0
for p in self.parameters():
if hasattr(p, 'mask'):
n_parameters += torch.sum(p.mask).item()
else:
n_parameters += reduce(mul, p.shape)
return int(n_parameters)
class ReconstructionLoss(BaseModule):
"""
Implements the reconstruction loss.
"""
def __init__(self):
"""
Class constructor.
"""
super(ReconstructionLoss, self).__init__()
def forward(self, x, x_r):
"""
Forward propagation.
:param x: the batch of input samples.
:param x_r: the batch of reconstructions.
:return: the mean reconstruction loss (averaged along the batch axis).
"""
L = torch.pow(x - x_r, 2)
while L.dim() > 1:
L = torch.sum(L, dim=-1)
return torch.mean(L)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from functools import reduce
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 16 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr1 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr1 + (2 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr1 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr1 + (4 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr1 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr1 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp33 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp34 = tl.load(in_ptr1 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp39 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp40 = tl.load(in_ptr1 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp43 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp44 = tl.load(in_ptr1 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp48 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp49 = tl.load(in_ptr1 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp53 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp54 = tl.load(in_ptr1 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp59 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp60 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp63 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp64 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp68 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp69 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp73 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp74 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp19 - tmp20
tmp22 = tmp21 * tmp21
tmp25 = tmp23 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tmp22 + tmp26
tmp30 = tmp28 - tmp29
tmp31 = tmp30 * tmp30
tmp32 = tmp27 + tmp31
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tmp32 + tmp36
tmp38 = tmp18 + tmp37
tmp41 = tmp39 - tmp40
tmp42 = tmp41 * tmp41
tmp45 = tmp43 - tmp44
tmp46 = tmp45 * tmp45
tmp47 = tmp42 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp50
tmp52 = tmp47 + tmp51
tmp55 = tmp53 - tmp54
tmp56 = tmp55 * tmp55
tmp57 = tmp52 + tmp56
tmp58 = tmp38 + tmp57
tmp61 = tmp59 - tmp60
tmp62 = tmp61 * tmp61
tmp65 = tmp63 - tmp64
tmp66 = tmp65 * tmp65
tmp67 = tmp62 + tmp66
tmp70 = tmp68 - tmp69
tmp71 = tmp70 * tmp70
tmp72 = tmp67 + tmp71
tmp75 = tmp73 - tmp74
tmp76 = tmp75 * tmp75
tmp77 = tmp72 + tmp76
tmp78 = tmp58 + tmp77
tl.store(out_ptr0 + x0, tmp78, xmask)
@triton.jit
def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = 4.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_sub_sum_0[grid(16)](arg0_1, arg1_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf0
return buf2,
class BaseModule(nn.Module):
"""
Implements the basic module.
All other modules inherit from this one
"""
def load_w(self, checkpoint_path):
"""
Loads a checkpoint into the state_dict.
:param checkpoint_path: the checkpoint file to be loaded.
"""
self.load_state_dict(torch.load(checkpoint_path))
def __repr__(self):
"""
String representation
"""
good_old = super(BaseModule, self).__repr__()
addition = 'Total number of parameters: {:,}'.format(self.n_parameters)
return good_old + '\n' + addition
def __call__(self, *args, **kwargs):
return super(BaseModule, self).__call__(*args, **kwargs)
@property
def n_parameters(self):
"""
Number of parameters of the model.
"""
n_parameters = 0
for p in self.parameters():
if hasattr(p, 'mask'):
n_parameters += torch.sum(p.mask).item()
else:
n_parameters += reduce(mul, p.shape)
return int(n_parameters)
class ReconstructionLossNew(BaseModule):
"""
Implements the reconstruction loss.
"""
def __init__(self):
"""
Class constructor.
"""
super(ReconstructionLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BotanAtomic/anomaly-detection | ReconstructionLoss | false | 13,401 | [
"MIT"
]
| 179 | 6617880f19a4955d70a34a3bbee83f157eb087f8 | https://github.com/BotanAtomic/anomaly-detection/tree/6617880f19a4955d70a34a3bbee83f157eb087f8 |
FixedNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/z5/cz5zglsuqu64oprbcsbv6je4qz5apmadf2sjhicjw4ja6k6tsae4.py
# Topologically Sorted Source Nodes: [norm_x, mul, add, x_normed], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# norm_x => pow_1, pow_2, sum_1
# x_normed => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-12), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_x, mul, add, x_normed], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FixedNorm(nn.Module):
def __init__(self, d):
super().__init__()
self.dd = d ** (-1.0 / 2)
def forward(self, x):
norm_x = x.norm(2, dim=-1, keepdim=True)
x_normed = x / (norm_x * self.dd + 1e-12)
return x_normed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-12
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + x2, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class FixedNormNew(nn.Module):
def __init__(self, d):
super().__init__()
self.dd = d ** (-1.0 / 2)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BlinkDL/RWKV-LM | FixedNorm | false | 13,402 | [
"BSD-2-Clause"
]
| 102 | b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab | https://github.com/BlinkDL/RWKV-LM/tree/b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab |
SelfAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/53/c534yhxg3gcpe74fxg5vgh2zmrismhpnspaukp2nr5jcyadmosai.py
# Topologically Sorted Source Nodes: [tanh, sp], Original ATen: [aten.tanh, aten.mean]
# Source node to ATen node mapping:
# sp => mean
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%tanh, [0]), kwargs = {})
triton_poi_fused_mean_tanh_0 = async_compile.triton('triton_poi_fused_mean_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = libdevice.tanh(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = 4.0
tmp12 = tmp10 / tmp11
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/d4/cd4rvrh74ex7ol3xa56xcbrgzovkiqoqca3q4phmsmzkxgygw3ef.py
# Topologically Sorted Source Nodes: [beta_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# beta_1 => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view_8, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_8, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dj/cdjsz44cxzios7lyxeig4rn47kawm5xlpu2hpajyli2udygtysrw.py
# Topologically Sorted Source Nodes: [mul, z, mul_1, z_1, mul_2, z_2, mul_3, z_3], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# z => add
# z_1 => add_1
# z_2 => add_2
# z_3 => add_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %select_7), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select_9), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %select_11), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr2 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp14 = tl.load(in_ptr1 + (1))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp21 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp22 = tl.load(in_ptr1 + (2))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp29 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp30 = tl.load(in_ptr1 + (3))
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp9 = tmp6 / tmp8
tmp10 = tmp0 * tmp9
tmp11 = 0.0
tmp12 = tmp10 + tmp11
tmp16 = tmp15 - tmp4
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp17 / tmp8
tmp19 = tmp13 * tmp18
tmp20 = tmp12 + tmp19
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp8
tmp27 = tmp21 * tmp26
tmp28 = tmp20 + tmp27
tmp32 = tmp31 - tmp4
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp33 / tmp8
tmp35 = tmp29 * tmp34
tmp36 = tmp28 + tmp35
tl.store(out_ptr0 + (x0), tmp36, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 64), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 128), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 192), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_3
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, sp], Original ATen: [aten.tanh, aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_tanh_0.run(buf0, buf4, 16, grid=grid(16), stream=stream0)
buf12 = empty_strided_cuda((1, 16), (16, 1), torch.float32)
buf5 = reinterpret_tensor(buf12, (1, 4), (16, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
extern_kernels.mm(primals_1, reinterpret_tensor(buf4, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_1, sp_1], Original ATen: [aten.tanh, aten.mean]
triton_poi_fused_mean_tanh_0.run(buf1, buf6, 16, grid=grid(16), stream=stream0)
buf7 = reinterpret_tensor(buf12, (1, 4), (16, 1), 4) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
extern_kernels.mm(primals_1, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_2, sp_2], Original ATen: [aten.tanh, aten.mean]
triton_poi_fused_mean_tanh_0.run(buf2, buf8, 16, grid=grid(16), stream=stream0)
buf9 = reinterpret_tensor(buf12, (1, 4), (16, 1), 8) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
extern_kernels.mm(primals_1, reinterpret_tensor(buf8, (4, 4), (1, 4), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_3, sp_3], Original ATen: [aten.tanh, aten.mean]
triton_poi_fused_mean_tanh_0.run(buf3, buf10, 16, grid=grid(16), stream=stream0)
buf11 = reinterpret_tensor(buf12, (1, 4), (16, 1), 12) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
extern_kernels.mm(primals_1, reinterpret_tensor(buf10, (4, 4), (1, 4), 0), out=buf11)
buf13 = empty_strided_cuda((1, ), (1, ), torch.float32)
buf14 = empty_strided_cuda((1, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [beta_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf12, buf13, buf14, 1, 16, grid=grid(1), stream=stream0)
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, z, mul_1, z_1, mul_2, z_2, mul_3, z_3], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_2.run(primals_2, buf12, buf13, buf14, buf15, 64, grid=grid(64), stream=stream0)
return (buf15, primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192), buf0, buf1, buf2, buf3, buf12, buf13, buf14, buf10, buf8, buf6, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def init_drop(dropout):
if dropout > 0:
return nn.Dropout(dropout)
else:
return lambda x: x
class SelfAttention(nn.Module):
def __init__(self, hidden_dim, attn_drop, txt):
"""
Description
-----------
This part is used to calculate type-level attention and semantic-level attention, and utilize them to generate :math:`z^{sc}` and :math:`z^{mp}`.
.. math::
w_{n}&=\\frac{1}{|V|}\\sum\\limits_{i\\in V} \\textbf{a}^\\top \\cdot \\tanh\\left(\\textbf{W}h_i^{n}+\\textbf{b}\\right) \\\\
\\beta_{n}&=\\frac{\\exp\\left(w_{n}\\right)}{\\sum_{i=1}^M\\exp\\left(w_{i}\\right)} \\\\
z &= \\sum_{n=1}^M \\beta_{n}\\cdot h^{n}
Parameters
----------
txt : str
A str to identify view, MP or SC
Returns
-------
z : matrix
The fused embedding matrix
"""
super(SelfAttention, self).__init__()
self.fc = nn.Linear(hidden_dim, hidden_dim, bias=True)
nn.init.xavier_normal_(self.fc.weight, gain=1.414)
self.tanh = nn.Tanh()
self.att = nn.Parameter(torch.empty(size=(1, hidden_dim)),
requires_grad=True)
nn.init.xavier_normal_(self.att.data, gain=1.414)
self.softmax = nn.Softmax(dim=0)
self.attn_drop = init_drop(attn_drop)
self.txt = txt
def forward(self, embeds):
beta = []
attn_curr = self.attn_drop(self.att)
for embed in embeds:
sp = self.tanh(self.fc(embed)).mean(dim=0)
beta.append(attn_curr.matmul(sp.t()))
beta = torch.cat(beta, dim=-1).view(-1)
beta = self.softmax(beta)
None
z = 0
for i in range(len(embeds)):
z += embeds[i] * beta[i]
return z
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_dim': 4, 'attn_drop': 0.5, 'txt': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp8 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = libdevice.tanh(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = 4.0
tmp12 = tmp10 / tmp11
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr2 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp7 = tl.load(in_ptr3 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp13 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp14 = tl.load(in_ptr1 + 1)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp21 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp22 = tl.load(in_ptr1 + 2)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp29 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp30 = tl.load(in_ptr1 + 3)
tmp31 = tl.broadcast_to(tmp30, [XBLOCK])
tmp5 = tmp2 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp9 = tmp6 / tmp8
tmp10 = tmp0 * tmp9
tmp11 = 0.0
tmp12 = tmp10 + tmp11
tmp16 = tmp15 - tmp4
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp17 / tmp8
tmp19 = tmp13 * tmp18
tmp20 = tmp12 + tmp19
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp8
tmp27 = tmp21 * tmp26
tmp28 = tmp20 + tmp27
tmp32 = tmp31 - tmp4
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp33 / tmp8
tmp35 = tmp29 * tmp34
tmp36 = tmp28 + tmp35
tl.store(out_ptr0 + x0, tmp36, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 64), reinterpret_tensor(primals_3, (4, 4), (1, 4),
0), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 128), reinterpret_tensor(primals_3, (4, 4), (1, 4),
0), alpha=1, beta=1, out=buf2)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 192), reinterpret_tensor(primals_3, (4, 4), (1, 4),
0), alpha=1, beta=1, out=buf3)
del primals_3
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_tanh_0[grid(16)](buf0, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf12 = empty_strided_cuda((1, 16), (16, 1), torch.float32)
buf5 = reinterpret_tensor(buf12, (1, 4), (16, 1), 0)
extern_kernels.mm(primals_1, reinterpret_tensor(buf4, (4, 4), (1, 4
), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mean_tanh_0[grid(16)](buf1, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf12, (1, 4), (16, 1), 4)
extern_kernels.mm(primals_1, reinterpret_tensor(buf6, (4, 4), (1, 4
), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mean_tanh_0[grid(16)](buf2, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf12, (1, 4), (16, 1), 8)
extern_kernels.mm(primals_1, reinterpret_tensor(buf8, (4, 4), (1, 4
), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mean_tanh_0[grid(16)](buf3, buf10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf12, (1, 4), (16, 1), 12)
extern_kernels.mm(primals_1, reinterpret_tensor(buf10, (4, 4), (1,
4), 0), out=buf11)
buf13 = empty_strided_cuda((1,), (1,), torch.float32)
buf14 = empty_strided_cuda((1,), (1,), torch.float32)
triton_per_fused__softmax_1[grid(1)](buf12, buf13, buf14, 1, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_2[grid(64)](primals_2, buf12, buf13, buf14,
buf15, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf15, primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16,
4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64
), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128
), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192
), buf0, buf1, buf2, buf3, buf12, buf13, buf14, buf10, buf8, buf6, buf4
def init_drop(dropout):
if dropout > 0:
return nn.Dropout(dropout)
else:
return lambda x: x
class SelfAttentionNew(nn.Module):
def __init__(self, hidden_dim, attn_drop, txt):
"""
Description
-----------
This part is used to calculate type-level attention and semantic-level attention, and utilize them to generate :math:`z^{sc}` and :math:`z^{mp}`.
.. math::
w_{n}&=\\frac{1}{|V|}\\sum\\limits_{i\\in V} \\textbf{a}^\\top \\cdot \\tanh\\left(\\textbf{W}h_i^{n}+\\textbf{b}\\right) \\\\
\\beta_{n}&=\\frac{\\exp\\left(w_{n}\\right)}{\\sum_{i=1}^M\\exp\\left(w_{i}\\right)} \\\\
z &= \\sum_{n=1}^M \\beta_{n}\\cdot h^{n}
Parameters
----------
txt : str
A str to identify view, MP or SC
Returns
-------
z : matrix
The fused embedding matrix
"""
super(SelfAttentionNew, self).__init__()
self.fc = nn.Linear(hidden_dim, hidden_dim, bias=True)
nn.init.xavier_normal_(self.fc.weight, gain=1.414)
self.tanh = nn.Tanh()
self.att = nn.Parameter(torch.empty(size=(1, hidden_dim)),
requires_grad=True)
nn.init.xavier_normal_(self.att.data, gain=1.414)
self.softmax = nn.Softmax(dim=0)
self.attn_drop = init_drop(attn_drop)
self.txt = txt
def forward(self, input_0):
primals_1 = self.att
primals_3 = self.fc.weight
primals_4 = self.fc.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| BUPT-GAMMA/OpenHGNN | SelfAttention | false | 13,403 | [
"Apache-2.0"
]
| 235 | 5f218dad4ed1415aa6d842bc20785c61e74e5405 | https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405 |
HouseHolderFlow | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/fu/cfui2mven43hhlvyvmrv2f4i7tlirm2mffanlifihc4yxcujsv3y.py
# Topologically Sorted Source Nodes: [mul_1, truediv, z_new], Original ATen: [aten.mul, aten.div, aten.sub]
# Source node to ATen node mapping:
# mul_1 => mul_1
# truediv => div
# z_new => sub
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %expand), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {})
triton_poi_fused_div_mul_sub_0 = async_compile.triton('triton_poi_fused_div_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp3 / tmp14
tmp16 = tmp0 - tmp15
tl.store(in_out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [vvT], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg0_1, (4, 1, 4), (4, 4, 1), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf0, reinterpret_tensor(arg1_1, (4, 4, 1), (4, 1, 1), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [mul_1, truediv, z_new], Original ATen: [aten.mul, aten.div, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_div_mul_sub_0.run(buf2, arg1_1, arg0_1, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
class HouseHolderFlow(nn.Module):
def forward(self, v, z):
"""
:param v: batch_size (B) x latent_size (L)
:param z: batch_size (B) x latent_size (L)
:return: z_new = z - 2* v v_T / norm(v,2) * z
"""
vvT = torch.bmm(v.unsqueeze(2), v.unsqueeze(1))
vvTz = torch.bmm(vvT, z.unsqueeze(2)).squeeze(2)
norm_sq = torch.sum(v * v, 1).unsqueeze(1)
norm_sq = norm_sq.expand(norm_sq.size(0), v.size(1))
z_new = z - 2 * vvTz / norm_sq
return z_new
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp11 + tmp13
tmp15 = tmp3 / tmp14
tmp16 = tmp0 - tmp15
tl.store(in_out_ptr0 + x2, tmp16, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1),
0), reinterpret_tensor(arg0_1, (4, 1, 4), (4, 4, 1), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf0, reinterpret_tensor(arg1_1, (4, 4, 1), (4,
1, 1), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_div_mul_sub_0[grid(16)](buf2, arg1_1, arg0_1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class HouseHolderFlowNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BratChar/variational-item-response-theory-public | HouseHolderFlow | false | 13,404 | [
"MIT"
]
| 52 | 12862157e99506a0ed7018f1b8a485d4e61fb5bf | https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf |
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hc/chcvgm3sfysnmktc2gfu6wuvzistmmcdmnswrsruagvhi7yf2qi6.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# std => var
# sub => sub
# x => div
# x_1 => add_1
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view_4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {})
triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp28 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 - tmp20
tmp27 = tmp26 / tmp25
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp25, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, grid=grid(4), stream=stream0)
del primals_2
del primals_3
return (buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp28 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 - tmp20
tmp27 = tmp26 / tmp25
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp25, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = buf0
del buf0
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0[grid(4)](buf1, buf5,
primals_1, primals_2, primals_3, buf6, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_2
del primals_3
return buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1,
1), 0), buf5
class LayerNormNew(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNormNew, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Boyiliee/PONO | LayerNorm | false | 13,405 | [
"MIT"
]
| 133 | b9108e8bf8ba0228635532ba5bdc973b7393d045 | https://github.com/Boyiliee/PONO/tree/b9108e8bf8ba0228635532ba5bdc973b7393d045 |
ItemInferenceNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwibqvrnbfx7xhnfzzckhfwxbmmaeepyx4l2irzdxw23feqjr3lp.py
# Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# long => convert_element_type
# Graph fragment:
# %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%squeeze, torch.int64), kwargs = {})
triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.int64)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2e/c2e4nfp52zmurk7ex2ep3mryrqdejop45i2wrjnw5y6jlqjwwz62.py
# Topologically Sorted Source Nodes: [mu, logvar], Original ATen: [aten.embedding]
# Source node to ATen node mapping:
# logvar => embedding_1
# mu => embedding
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %convert_element_type), kwargs = {})
# %embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_3, %convert_element_type), kwargs = {})
triton_poi_fused_embedding_1 = async_compile.triton('triton_poi_fused_embedding_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_embedding_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask)
tmp7 = tl.load(in_ptr2 + (x0 + (4*tmp4)), xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu, logvar], Original ATen: [aten.embedding]
triton_poi_fused_embedding_1.run(buf0, primals_2, primals_3, buf1, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_2
del primals_3
return (buf1, buf2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
class ItemInferenceNetwork(nn.Module):
def __init__(self, num_item, item_feat_dim):
super().__init__()
self.mu_lookup = nn.Embedding(num_item, item_feat_dim)
self.logvar_lookup = nn.Embedding(num_item, item_feat_dim)
def forward(self, item_index):
item_index = item_index.squeeze(1)
mu = self.mu_lookup(item_index.long())
logvar = self.logvar_lookup(item_index.long())
return mu, logvar
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_item': 4, 'item_feat_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0.to(tl.int64)
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_embedding_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask)
tmp7 = tl.load(in_ptr2 + (x0 + 4 * tmp4), xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused__to_copy_0[grid(256)](primals_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_embedding_1[grid(1024)](buf0, primals_2, primals_3,
buf1, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
del primals_3
return buf1, buf2, buf0
class ItemInferenceNetworkNew(nn.Module):
def __init__(self, num_item, item_feat_dim):
super().__init__()
self.mu_lookup = nn.Embedding(num_item, item_feat_dim)
self.logvar_lookup = nn.Embedding(num_item, item_feat_dim)
def forward(self, input_0):
primals_2 = self.mu_lookup.weight
primals_3 = self.logvar_lookup.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| BratChar/variational-item-response-theory-public | ItemInferenceNetwork | false | 13,406 | [
"MIT"
]
| 52 | 12862157e99506a0ed7018f1b8a485d4e61fb5bf | https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf |
TargetContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7l/c7lf5woemwxcoeo376uvq4tswpw24vydykzmrhtxemqtbvcbg3gw.py
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %add_tensor), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_out_ptr0 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp6 = tmp4 + tmp5
tmp7 = tmp3 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, buf1, buf4, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
return (buf5, primals_3, buf0, buf1, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class TargetContextGate(nn.Module):
"""Apply the context gate only to the target context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(TargetContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(z * target + source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_out_ptr0 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp6 = tmp4 + tmp5
tmp7 = tmp3 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4),
(1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = buf2
del buf2
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, buf1, buf4,
primals_7, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_7
return buf5, primals_3, buf0, buf1, buf3, buf4, buf5
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class TargetContextGateNew(nn.Module):
"""Apply the context gate only to the target context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(TargetContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| BradLin0819/kg2text | TargetContextGate | false | 13,407 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
ContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/x7/cx7xziu4lpr42gzh3hblzhyhhr2agimvsluvyrub77hqbwauajw5.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# z => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1)
del primals_4
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(primals_1, primals_2, buf4, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_8
del primals_9
return (buf2, buf3, buf5, primals_3, buf0, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1,
12), 0), out=buf1)
del primals_4
buf2 = buf1
del buf1
triton_poi_fused_sigmoid_1[grid(16)](buf2, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_2[grid(32)](primals_1, primals_2, buf4, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_8
del primals_9
return buf2, buf3, buf5, primals_3, buf0, buf2, buf4
class ContextGateNew(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGateNew, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, input_0, input_1, input_2):
primals_4 = self.gate.weight
primals_5 = self.gate.bias
primals_1 = self.source_proj.weight
primals_7 = self.source_proj.bias
primals_8 = self.target_proj.weight
primals_9 = self.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1], output[2]
| BradLin0819/kg2text | ContextGate | false | 13,408 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
DenseSAGEConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yf/cyfz6srx4443jhi7lgfjbfu3ehgnaqfqo3rj5tlqazzc5tiz24ql.py
# Topologically Sorted Source Nodes: [adj], Original ATen: [aten.add]
# Source node to ATen node mapping:
# adj => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %expand), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = x1
tmp2 = x0
tmp3 = tmp1 == tmp2
tmp4 = 1.0
tmp5 = 0.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2g/c2gow746iojnl6yugujjn3non5klwrqsxgmhc4ib5irxlfwbv7ap.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lb/clbw2sp4wu7io3zuw5as2fbn27we4tverl434cs7noplq3gyshrf.py
# Topologically Sorted Source Nodes: [sum_1, out_1], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# out_1 => div
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %sum_1), kwargs = {})
triton_poi_fused_div_sum_2 = async_compile.triton('triton_poi_fused_div_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uz/cuzvezpdln3rubwurbnkmv43r4ee3bomupctxovgoebdll43j7ei.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.linalg_vector_norm, aten.clamp_min]
# Source node to ATen node mapping:
# out_3 => add_1
# out_4 => clamp_min, pow_1, pow_2, sum_2
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-12), kwargs = {})
triton_poi_fused_add_clamp_min_linalg_vector_norm_3 = async_compile.triton('triton_poi_fused_add_clamp_min_linalg_vector_norm_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_min_linalg_vector_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_min_linalg_vector_norm_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2))
tmp13 = tl.broadcast_to(tmp12, [XBLOCK])
tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (3))
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp8 = tmp5 + tmp7
tmp9 = tmp8 * tmp8
tmp10 = tmp4 + tmp9
tmp14 = tmp11 + tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp10 + tmp15
tmp20 = tmp17 + tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-12
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tl.store(out_ptr0 + (x0), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7oi477z57e4xbimwteapee62e32snn6tf2qbinkhztc2zy6aim.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.div]
# Source node to ATen node mapping:
# out_3 => add_1
# out_4 => div_1
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %expand_3), kwargs = {})
triton_poi_fused_add_div_4 = async_compile.triton('triton_poi_fused_add_div_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [adj], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_1, buf1, 256, grid=grid(256), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [sum_1, out_1], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_2.run(buf3, buf0, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_3, out=buf4)
del primals_3
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.linalg_vector_norm, aten.clamp_min]
triton_poi_fused_add_clamp_min_linalg_vector_norm_3.run(buf4, primals_4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.div]
triton_poi_fused_add_div_4.run(buf4, primals_4, buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
return (buf6, primals_4, buf4, reinterpret_tensor(buf3, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn.functional as F
import torch.utils.data
from torch.nn import Parameter
def uniform(size, tensor):
stdv = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-stdv, stdv)
class DenseSAGEConv(torch.nn.Module):
"""See :class:`torch_geometric.nn.conv.sage_conv.SAGEConv`.
:rtype: :class:`Tensor`
"""
def __init__(self, in_channels, out_channels, normalize=True, bias=True):
super(DenseSAGEConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.weight = Parameter(torch.Tensor(self.in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
uniform(self.in_channels, self.weight)
uniform(self.in_channels, self.bias)
def forward(self, x, adj, mask=None, add_loop=True):
"""
Args:
x (Tensor): Node feature tensor :math:`\\mathbf{X} \\in \\mathbb{R}^{B
\\times N \\times F}`, with batch-size :math:`B`, (maximum)
number of nodes :math:`N` for each graph, and feature
dimension :math:`F`.
adj (Tensor): Adjacency tensor :math:`\\mathbf{A} \\in \\mathbb{R}^{B
\\times N \\times N}`.
mask (ByteTensor, optional): Mask matrix
:math:`\\mathbf{M} \\in {\\{ 0, 1 \\}}^{B \\times N}` indicating
the valid nodes for each graph. (default: :obj:`None`)
add_loop (bool, optional): If set to :obj:`False`, the layer will
not automatically add self-loops to the adjacency matrices.
(default: :obj:`True`)
"""
x = x.unsqueeze(0) if x.dim() == 2 else x
adj = adj.unsqueeze(0) if adj.dim() == 2 else adj
B, N, _ = x.size()
if add_loop:
eye = torch.eye(N, dtype=adj.dtype, device=adj.device)
adj = adj + eye.unsqueeze(0).expand_as(adj)
out = torch.matmul(adj, x)
out = out / adj.sum(dim=-1, keepdim=True)
out = torch.matmul(out, self.weight)
if self.bias is not None:
out = out + self.bias
if self.normalize:
out = F.normalize(out, p=2, dim=-1)
if mask is not None:
mask = mask.view(B, N, 1)
out = out * mask
return out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.
in_channels, self.out_channels)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.utils.data
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = x1
tmp2 = x0
tmp3 = tmp1 == tmp2
tmp4 = 1.0
tmp5 = 0.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_div_sum_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(in_out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_min_linalg_vector_norm_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + 1)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + 2)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK])
tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + 3)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp8 = tmp5 + tmp7
tmp9 = tmp8 * tmp8
tmp10 = tmp4 + tmp9
tmp14 = tmp11 + tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp10 + tmp15
tmp20 = tmp17 + tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-12
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tl.store(out_ptr0 + x0, tmp25, xmask)
@triton.jit
def triton_poi_fused_add_div_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_2, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(256)](primals_1, buf1, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_div_sum_2[grid(256)](buf3, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
del buf0
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
primals_3, out=buf4)
del primals_3
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_add_clamp_min_linalg_vector_norm_3[grid(64)](buf4,
primals_4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf6 = buf1
del buf1
triton_poi_fused_add_div_4[grid(256)](buf4, primals_4, buf5, buf6,
256, XBLOCK=128, num_warps=4, num_stages=1)
del buf5
return buf6, primals_4, buf4, reinterpret_tensor(buf3, (4, 64), (1, 4), 0)
def uniform(size, tensor):
stdv = 1.0 / math.sqrt(size)
if tensor is not None:
tensor.data.uniform_(-stdv, stdv)
class DenseSAGEConvNew(torch.nn.Module):
"""See :class:`torch_geometric.nn.conv.sage_conv.SAGEConv`.
:rtype: :class:`Tensor`
"""
def __init__(self, in_channels, out_channels, normalize=True, bias=True):
super(DenseSAGEConvNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.normalize = normalize
self.weight = Parameter(torch.Tensor(self.in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
uniform(self.in_channels, self.weight)
uniform(self.in_channels, self.bias)
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.
in_channels, self.out_channels)
def forward(self, input_0, input_1):
primals_3 = self.weight
primals_4 = self.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Bawaw/pytorch_geometric | DenseSAGEConv | false | 13,409 | [
"MIT"
]
| 62 | 868548d4396fc66e39b08e2ff19091a367ddac13 | https://github.com/Bawaw/pytorch_geometric/tree/868548d4396fc66e39b08e2ff19091a367ddac13 |
AverageAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/75/c75w3rgnfmm4c7hp5div65urlkb5kzh2656pt75swmio7vzn3vp3.py
# Topologically Sorted Source Nodes: [ones, triangle, mask], Original ATen: [aten.ones, aten.tril, aten.mul]
# Source node to ATen node mapping:
# mask => mul_1
# ones => full_default
# triangle => full_default_1, le, sub, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub, 0), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %full_default, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %permute), kwargs = {})
triton_poi_fused_mul_ones_tril_0 = async_compile.triton('triton_poi_fused_mul_ones_tril_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_ones_tril_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_ones_tril_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0 + ((-1)*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 <= tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = 1 + x1
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp3 / tmp7
tmp9 = tmp5 * tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ha/chavpwdtejkyqus2olvrr56v6fhdolpm5dx6l26ahmwfvz664fnv.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %bmm], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bj/cbjkk5x2yiy67l3q4l7ooe5u7plvwkualpweocfe25rsydr62zek.py
# Topologically Sorted Source Nodes: [sigmoid, mul_1, sigmoid_1, mul_2, gating_outputs_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.sigmoid_backward]
# Source node to ATen node mapping:
# gating_outputs_1 => add_1
# mul_1 => mul_2
# mul_2 => mul_3
# sigmoid => sigmoid
# sigmoid_1 => sigmoid_1
# Graph fragment:
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {})
# %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %bmm), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_2), kwargs = {})
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x2), xmask)
tmp6 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp11 = tmp9 * tmp10
tmp12 = tmp5 + tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp9
tmp15 = tmp9 * tmp14
tmp16 = tmp13 - tmp3
tmp17 = tmp3 * tmp16
tl.store(out_ptr0 + (x2), tmp12, xmask)
tl.store(out_ptr1 + (x2), tmp15, xmask)
tl.store(out_ptr2 + (x2), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 8), (8, 1))
assert_size_stride(primals_3, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones, triangle, mask], Original ATen: [aten.ones, aten.tril, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_ones_tril_0.run(buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [average_outputs], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0), primals_1, out=buf1)
del buf0
buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf1, buf2, 128, grid=grid(128), stream=stream0)
buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (16, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 8), (1, 8), 0), out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, mul_1, sigmoid_1, mul_2, gating_outputs_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.sigmoid_backward]
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2.run(buf3, primals_3, primals_1, buf1, buf4, buf5, buf6, 64, grid=grid(64), stream=stream0)
del buf3
del primals_3
return (buf4, buf1, primals_1, buf1, reinterpret_tensor(buf2, (16, 8), (8, 1), 0), buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
self.dropout_1 = nn.Dropout(dropout)
self.relu = nn.ReLU()
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
"""Layer definition.
Args:
x: ``(batch_size, input_len, model_dim)``
Returns:
(FloatTensor): Output ``(batch_size, input_len, model_dim)``.
"""
inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
def update_dropout(self, dropout):
self.dropout_1.p = dropout
self.dropout_2.p = dropout
class AverageAttention(nn.Module):
"""
Average Attention module from
"Accelerating Neural Transformer via an Average Attention Network"
:cite:`DBLP:journals/corr/abs-1805-00631`.
Args:
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, model_dim, dropout=0.1, aan_useffn=False):
self.model_dim = model_dim
self.aan_useffn = aan_useffn
super(AverageAttention, self).__init__()
if aan_useffn:
self.average_layer = PositionwiseFeedForward(model_dim,
model_dim, dropout)
self.gating_layer = nn.Linear(model_dim * 2, model_dim * 2)
def cumulative_average_mask(self, batch_size, inputs_len, device):
"""
Builds the mask to compute the cumulative average as described in
:cite:`DBLP:journals/corr/abs-1805-00631` -- Figure 3
Args:
batch_size (int): batch size
inputs_len (int): length of the inputs
Returns:
(FloatTensor):
* A Tensor of shape ``(batch_size, input_len, input_len)``
"""
triangle = torch.tril(torch.ones(inputs_len, inputs_len, dtype=
torch.float, device=device))
weights = torch.ones(1, inputs_len, dtype=torch.float, device=device
) / torch.arange(1, inputs_len + 1, dtype=torch.float, device=
device)
mask = triangle * weights.transpose(0, 1)
return mask.unsqueeze(0).expand(batch_size, inputs_len, inputs_len)
def cumulative_average(self, inputs, mask_or_step, layer_cache=None,
step=None):
"""
Computes the cumulative average as described in
:cite:`DBLP:journals/corr/abs-1805-00631` -- Equations (1) (5) (6)
Args:
inputs (FloatTensor): sequence to average
``(batch_size, input_len, dimension)``
mask_or_step: if cache is set, this is assumed
to be the current step of the
dynamic decoding. Otherwise, it is the mask matrix
used to compute the cumulative average.
layer_cache: a dictionary containing the cumulative average
of the previous step.
Returns:
a tensor of the same shape and type as ``inputs``.
"""
if layer_cache is not None:
step = mask_or_step
average_attention = (inputs + step * layer_cache['prev_g']) / (step
+ 1)
layer_cache['prev_g'] = average_attention
return average_attention
else:
mask = mask_or_step
return torch.matmul(mask, inputs)
def forward(self, inputs, mask=None, layer_cache=None, step=None):
"""
Args:
inputs (FloatTensor): ``(batch_size, input_len, model_dim)``
Returns:
(FloatTensor, FloatTensor):
* gating_outputs ``(batch_size, input_len, model_dim)``
* average_outputs average attention
``(batch_size, input_len, model_dim)``
"""
batch_size = inputs.size(0)
inputs_len = inputs.size(1)
average_outputs = self.cumulative_average(inputs, self.
cumulative_average_mask(batch_size, inputs_len, inputs.device) if
layer_cache is None else step, layer_cache=layer_cache)
if self.aan_useffn:
average_outputs = self.average_layer(average_outputs)
gating_outputs = self.gating_layer(torch.cat((inputs,
average_outputs), -1))
input_gate, forget_gate = torch.chunk(gating_outputs, 2, dim=2)
gating_outputs = torch.sigmoid(input_gate) * inputs + torch.sigmoid(
forget_gate) * average_outputs
return gating_outputs, average_outputs
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'model_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_ones_tril_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0 + -1 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 <= tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = 1 + x1
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp3 / tmp7
tmp9 = tmp5 * tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x2, xmask)
tmp6 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask)
tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp11 = tmp9 * tmp10
tmp12 = tmp5 + tmp11
tmp13 = 1.0
tmp14 = tmp13 - tmp9
tmp15 = tmp9 * tmp14
tmp16 = tmp13 - tmp3
tmp17 = tmp3 * tmp16
tl.store(out_ptr0 + x2, tmp12, xmask)
tl.store(out_ptr1 + x2, tmp15, xmask)
tl.store(out_ptr2 + x2, tmp17, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 8), (8, 1))
assert_size_stride(primals_3, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_ones_tril_0[grid(16)](buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0
), primals_1, out=buf1)
del buf0
buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_1[grid(128)](primals_1, buf1, buf2, 128,
XBLOCK=128, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_2, (8, 8), (1, 8), 0), out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2[grid(64)](buf3,
primals_3, primals_1, buf1, buf4, buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf3
del primals_3
return buf4, buf1, primals_1, buf1, reinterpret_tensor(buf2, (16, 8), (
8, 1), 0), buf5, buf6
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
self.dropout_1 = nn.Dropout(dropout)
self.relu = nn.ReLU()
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
"""Layer definition.
Args:
x: ``(batch_size, input_len, model_dim)``
Returns:
(FloatTensor): Output ``(batch_size, input_len, model_dim)``.
"""
inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
def update_dropout(self, dropout):
self.dropout_1.p = dropout
self.dropout_2.p = dropout
class AverageAttentionNew(nn.Module):
"""
Average Attention module from
"Accelerating Neural Transformer via an Average Attention Network"
:cite:`DBLP:journals/corr/abs-1805-00631`.
Args:
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, model_dim, dropout=0.1, aan_useffn=False):
self.model_dim = model_dim
self.aan_useffn = aan_useffn
super(AverageAttentionNew, self).__init__()
if aan_useffn:
self.average_layer = PositionwiseFeedForward(model_dim,
model_dim, dropout)
self.gating_layer = nn.Linear(model_dim * 2, model_dim * 2)
def cumulative_average_mask(self, batch_size, inputs_len, device):
"""
Builds the mask to compute the cumulative average as described in
:cite:`DBLP:journals/corr/abs-1805-00631` -- Figure 3
Args:
batch_size (int): batch size
inputs_len (int): length of the inputs
Returns:
(FloatTensor):
* A Tensor of shape ``(batch_size, input_len, input_len)``
"""
triangle = torch.tril(torch.ones(inputs_len, inputs_len, dtype=
torch.float, device=device))
weights = torch.ones(1, inputs_len, dtype=torch.float, device=device
) / torch.arange(1, inputs_len + 1, dtype=torch.float, device=
device)
mask = triangle * weights.transpose(0, 1)
return mask.unsqueeze(0).expand(batch_size, inputs_len, inputs_len)
def cumulative_average(self, inputs, mask_or_step, layer_cache=None,
step=None):
"""
Computes the cumulative average as described in
:cite:`DBLP:journals/corr/abs-1805-00631` -- Equations (1) (5) (6)
Args:
inputs (FloatTensor): sequence to average
``(batch_size, input_len, dimension)``
mask_or_step: if cache is set, this is assumed
to be the current step of the
dynamic decoding. Otherwise, it is the mask matrix
used to compute the cumulative average.
layer_cache: a dictionary containing the cumulative average
of the previous step.
Returns:
a tensor of the same shape and type as ``inputs``.
"""
if layer_cache is not None:
step = mask_or_step
average_attention = (inputs + step * layer_cache['prev_g']) / (step
+ 1)
layer_cache['prev_g'] = average_attention
return average_attention
else:
mask = mask_or_step
return torch.matmul(mask, inputs)
def forward(self, input_0):
primals_2 = self.gating_layer.weight
primals_3 = self.gating_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| BradLin0819/kg2text | AverageAttention | false | 13,410 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
PONO | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/pf/cpf4xkwj7b5z2r36riunmn3xtrbgh6xyhyc6laareb453wryzdiy.py
# Topologically Sorted Source Nodes: [mean, var, add, std], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => sqrt
# var => var
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1, [1]), kwargs = {correction: 1, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mean_sqrt_var_0 = async_compile.triton('triton_poi_fused_add_mean_sqrt_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_sqrt_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hl/chlskxwc5bfk2hl32it5jifadeo3qcigki3gn3enapfsa4uhfkk6.py
# Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# sub => sub
# x => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, var, add, std], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_sqrt_var_0.run(arg0_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.div]
triton_poi_fused_div_sub_1.run(arg0_1, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf2, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PONO(nn.Module):
def __init__(self, input_size=None, return_stats=False, affine=False,
eps=1e-05):
super(PONO, self).__init__()
self.return_stats = return_stats
self.input_size = input_size
self.eps = eps
self.affine = affine
if affine:
self.beta = nn.Parameter(torch.zeros(1, 1, *input_size))
self.gamma = nn.Parameter(torch.ones(1, 1, *input_size))
else:
self.beta, self.gamma = None, None
def forward(self, x):
mean = x.mean(dim=1, keepdim=True)
std = (x.var(dim=1, keepdim=True) + self.eps).sqrt()
x = (x - mean) / std
if self.affine:
x = x * self.gamma + self.beta
return x, mean, std
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mean_sqrt_var_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_sqrt_var_0[grid(64)](arg0_1, buf0, buf1,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(256)](arg0_1, buf0, buf1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf2, buf0, buf1
class PONONew(nn.Module):
def __init__(self, input_size=None, return_stats=False, affine=False,
eps=1e-05):
super(PONONew, self).__init__()
self.return_stats = return_stats
self.input_size = input_size
self.eps = eps
self.affine = affine
if affine:
self.beta = nn.Parameter(torch.zeros(1, 1, *input_size))
self.gamma = nn.Parameter(torch.ones(1, 1, *input_size))
else:
self.beta, self.gamma = None, None
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1], output[2]
| Boyiliee/PONO | PONO | false | 13,411 | [
"MIT"
]
| 133 | b9108e8bf8ba0228635532ba5bdc973b7393d045 | https://github.com/Boyiliee/PONO/tree/b9108e8bf8ba0228635532ba5bdc973b7393d045 |
SELayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3p/c3pvtte4adxbodvqq4iab6zximg555lpk2lopxwzpt4fva4eetqt.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# y_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class SELayer(nn.Module):
def __init__(self, in_channels, reduction):
super().__init__()
mid_channels = in_channels // reduction
self.fc1 = nn.Linear(in_channels, mid_channels)
self.fc2 = nn.Linear(mid_channels, in_channels)
def forward(self, x):
n_batches, n_channels, _, _ = x.size()
y = F.adaptive_avg_pool2d(x, output_size=1).view(n_batches, n_channels)
y = F.relu(self.fc1(y), inplace=True)
y = F.sigmoid(self.fc2(y)).view(n_batches, n_channels, 1, 1)
return x * y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'reduction': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](primals_1, buf4, buf5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0
), buf3, buf4, primals_4
class SELayerNew(nn.Module):
def __init__(self, in_channels, reduction):
super().__init__()
mid_channels = in_channels // reduction
self.fc1 = nn.Linear(in_channels, mid_channels)
self.fc2 = nn.Linear(mid_channels, in_channels)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BrandonHanx/pytorch_image_classification | SELayer | false | 13,412 | [
"MIT"
]
| 1,114 | 13f037c442f251c5cd938672245b39df157f1c98 | https://github.com/BrandonHanx/pytorch_image_classification/tree/13f037c442f251c5cd938672245b39df157f1c98 |
SourceContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6s/c6s456zdtwmlik5mrlyh27gyo7fuehy7vzu5kdq6caawwt6hjyvr.py
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor, %mul), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), out=buf4)
del primals_8
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, primals_9, buf1, buf2, 16, grid=grid(16), stream=stream0)
del primals_9
return (buf5, primals_3, buf0, buf1, buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class SourceContextGate(nn.Module):
"""Apply the context gate only to the source context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(SourceContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8
), 0), out=buf4)
del primals_8
buf5 = buf4
del buf4
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, primals_9,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_9
return buf5, primals_3, buf0, buf1, buf2, buf3, buf5
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class SourceContextGateNew(nn.Module):
"""Apply the context gate only to the source context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(SourceContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| BradLin0819/kg2text | SourceContextGate | false | 13,413 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
KL_loss_softmax | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3w/c3wv3ushivzru26snkabczkcghoctmzpyj4rqh5rompyw6zmabff.py
# Topologically Sorted Source Nodes: [KL_loss, img_prob, loss], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum]
# Source node to ATen node mapping:
# KL_loss => eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub, where, where_1
# img_prob => log
# loss => sum_1
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg1_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {})
triton_per_fused_log_mul_sub_sum_xlogy_0 = async_compile.triton('triton_per_fused_log_mul_sub_sum_xlogy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mul_sub_sum_xlogy_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_mul_sub_sum_xlogy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float("nan")
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = tl_math.log(tmp9)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [KL_loss, img_prob, loss], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_log_mul_sub_sum_xlogy_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.init
class KL_loss_softmax(nn.Module):
"""
Compute KL_divergence between all prediction score (already sum=1, omit softmax function)
"""
def __init__(self):
super(KL_loss_softmax, self).__init__()
self.KL_loss = nn.KLDivLoss(reduce=False)
def forward(self, im, s):
img_prob = torch.log(im)
s_prob = s
KL_loss = self.KL_loss(img_prob, s_prob)
loss = KL_loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_mul_sub_sum_xlogy_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float('nan')
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = tl_math.log(tmp9)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_log_mul_sub_sum_xlogy_0[grid(1)](arg1_1, arg0_1,
buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class KL_loss_softmaxNew(nn.Module):
"""
Compute KL_divergence between all prediction score (already sum=1, omit softmax function)
"""
def __init__(self):
super(KL_loss_softmaxNew, self).__init__()
self.KL_loss = nn.KLDivLoss(reduce=False)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BruceW91/CVSE | KL_loss_softmax | false | 13,414 | [
"MIT"
]
| 152 | 20fa1ff50d1dcb4a7b3799071fa78038e52db804 | https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804 |
GlobalAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f5/cf5pnuv5il7avsmzck3quom7r6zvcfuulsdwpzlv2epzfmcgqgwb.py
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn_h_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x3), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4fypgfipklcxtitafatnyqdaatx5tws6qfndqotcy4qivcph6d.py
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# align_vectors_2 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf2, buf7, 64, grid=grid(64), stream=stream0)
del buf2
return (buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda
import torch.distributed
def aeq(*args):
"""
Assert all arguments have the same value
"""
arguments = (arg for arg in args)
first = next(arguments)
assert all(arg == first for arg in arguments
), 'Not all arguments have the same value: ' + str(args)
def sequence_mask(lengths, max_len=None):
"""
Creates a boolean mask from sequence lengths.
"""
batch_size = lengths.numel()
max_len = max_len or lengths.max()
return torch.arange(0, max_len, device=lengths.device).type_as(lengths
).repeat(batch_size, 1).lt(lengths.unsqueeze(1))
class GlobalAttention(nn.Module):
"""
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
Constructs a unit mapping a query `q` of size `dim`
and a source matrix `H` of size `n x dim`, to an output
of size `dim`.
.. mermaid::
graph BT
A[Query]
subgraph RNN
C[H 1]
D[H 2]
E[H N]
end
F[Attn]
G[Output]
A --> F
C --> F
D --> F
E --> F
C -.-> G
D -.-> G
E -.-> G
F --> G
All models compute the output as
:math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where
:math:`a_j` is the softmax of a score function.
Then then apply a projection layer to [q, c].
However they
differ on how they compute the attention score.
* Luong Attention (dot, general):
* dot: :math:`\\text{score}(H_j,q) = H_j^T q`
* general: :math:`\\text{score}(H_j, q) = H_j^T W_a q`
* Bahdanau Attention (mlp):
* :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)`
Args:
dim (int): dimensionality of query and key
coverage (bool): use coverage term
attn_type (str): type of attention to use, options [dot,general,mlp]
attn_func (str): attention function to use, options [softmax,sparsemax]
"""
def __init__(self, dim, coverage=False, attn_type='dot', attn_func=
'softmax'):
super(GlobalAttention, self).__init__()
self.dim = dim
assert attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type (got {:s}).'.format(
attn_type)
self.attn_type = attn_type
assert attn_func in ['softmax', 'sparsemax'
], 'Please select a valid attention function.'
self.attn_func = attn_func
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = nn.Linear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def score(self, h_t, h_s):
"""
Args:
h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)``
h_s (FloatTensor): sequence of sources ``(batch, src_len, dim``
Returns:
FloatTensor: raw attention scores (unnormalized) for each src index
``(batch, tgt_len, src_len)``
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = torch.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, source, memory_bank, memory_lengths=None, coverage=None):
"""
Args:
source (FloatTensor): query vectors ``(batch, tgt_len, dim)``
memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)``
memory_lengths (LongTensor): the source context lengths ``(batch,)``
coverage (FloatTensor): None (not supported yet)
Returns:
(FloatTensor, FloatTensor):
* Computed vector ``(tgt_len, batch, dim)``
* Attention distribtutions for each query
``(tgt_len, batch, src_len)``
"""
if source.dim() == 2:
one_step = True
source = source.unsqueeze(1)
else:
one_step = False
batch, source_l, dim = memory_bank.size()
batch_, target_l, dim_ = source.size()
aeq(batch, batch_)
aeq(dim, dim_)
aeq(self.dim, dim)
if coverage is not None:
batch_, source_l_ = coverage.size()
aeq(batch, batch_)
aeq(source_l, source_l_)
if coverage is not None:
cover = coverage.view(-1).unsqueeze(1)
memory_bank += self.linear_cover(cover).view_as(memory_bank)
memory_bank = torch.tanh(memory_bank)
align = self.score(source, memory_bank)
if memory_lengths is not None:
mask = sequence_mask(memory_lengths, max_len=align.size(-1))
mask = mask.unsqueeze(1)
align.masked_fill_(~mask, -float('inf'))
if self.attn_func == 'softmax':
align_vectors = F.softmax(align.view(batch * target_l, source_l
), -1)
else:
align_vectors = sparsemax(align.view(batch * target_l, source_l
), -1)
align_vectors = align_vectors.view(batch, target_l, source_l)
c = torch.bmm(align_vectors, memory_bank)
concat_c = torch.cat([c, source], 2).view(batch * target_l, dim * 2)
attn_h = self.linear_out(concat_c).view(batch, target_l, dim)
if self.attn_type in ['general', 'dot']:
attn_h = torch.tanh(attn_h)
if one_step:
attn_h = attn_h.squeeze(1)
align_vectors = align_vectors.squeeze(1)
batch_, dim_ = attn_h.size()
aeq(batch, batch_)
aeq(dim, dim_)
batch_, source_l_ = align_vectors.size()
aeq(batch, batch_)
aeq(source_l, source_l_)
else:
attn_h = attn_h.transpose(0, 1).contiguous()
align_vectors = align_vectors.transpose(0, 1).contiguous()
target_l_, batch_, dim_ = attn_h.size()
aeq(target_l, target_l_)
aeq(batch, batch_)
aeq(dim, dim_)
target_l_, batch_, source_l_ = align_vectors.size()
aeq(target_l, target_l_)
aeq(batch, batch_)
aeq(source_l, source_l_)
return attn_h, align_vectors
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x3, tmp1, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4,
4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1),
0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0)
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(64)](buf2, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
return buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5
def aeq(*args):
"""
Assert all arguments have the same value
"""
arguments = (arg for arg in args)
first = next(arguments)
assert all(arg == first for arg in arguments
), 'Not all arguments have the same value: ' + str(args)
def sequence_mask(lengths, max_len=None):
"""
Creates a boolean mask from sequence lengths.
"""
batch_size = lengths.numel()
max_len = max_len or lengths.max()
return torch.arange(0, max_len, device=lengths.device).type_as(lengths
).repeat(batch_size, 1).lt(lengths.unsqueeze(1))
class GlobalAttentionNew(nn.Module):
"""
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
Constructs a unit mapping a query `q` of size `dim`
and a source matrix `H` of size `n x dim`, to an output
of size `dim`.
.. mermaid::
graph BT
A[Query]
subgraph RNN
C[H 1]
D[H 2]
E[H N]
end
F[Attn]
G[Output]
A --> F
C --> F
D --> F
E --> F
C -.-> G
D -.-> G
E -.-> G
F --> G
All models compute the output as
:math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where
:math:`a_j` is the softmax of a score function.
Then then apply a projection layer to [q, c].
However they
differ on how they compute the attention score.
* Luong Attention (dot, general):
* dot: :math:`\\text{score}(H_j,q) = H_j^T q`
* general: :math:`\\text{score}(H_j, q) = H_j^T W_a q`
* Bahdanau Attention (mlp):
* :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)`
Args:
dim (int): dimensionality of query and key
coverage (bool): use coverage term
attn_type (str): type of attention to use, options [dot,general,mlp]
attn_func (str): attention function to use, options [softmax,sparsemax]
"""
def __init__(self, dim, coverage=False, attn_type='dot', attn_func=
'softmax'):
super(GlobalAttentionNew, self).__init__()
self.dim = dim
assert attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type (got {:s}).'.format(
attn_type)
self.attn_type = attn_type
assert attn_func in ['softmax', 'sparsemax'
], 'Please select a valid attention function.'
self.attn_func = attn_func
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = nn.Linear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def score(self, h_t, h_s):
"""
Args:
h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)``
h_s (FloatTensor): sequence of sources ``(batch, src_len, dim``
Returns:
FloatTensor: raw attention scores (unnormalized) for each src index
``(batch, tgt_len, src_len)``
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = torch.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, input_0, input_1):
primals_3 = self.linear_out.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| BradLin0819/kg2text | GlobalAttention | false | 13,415 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
resblock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# out => maximum
# Graph fragment:
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {})
# %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ab/cabrxc3mztaftcghxljcdmadm37r6mu5llu27nn63cpiczdivfe4.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# out_1 => maximum_1
# out_2 => add
# Graph fragment:
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%maximum_1, %primals_1), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
triton_poi_fused_add_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_add_eq_gt_lt_maximum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*i1', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (x4), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp8 = tmp6 + tmp7
tmp9 = tmp2 == tmp5
tmp10 = tmp2 > tmp5
tmp11 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp8, xmask)
tl.store(out_ptr1 + (x4), tmp9, xmask)
tl.store(out_ptr2 + (x4), tmp10, xmask)
tl.store(out_ptr3 + (x4), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_3, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf0
del primals_3
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt]
triton_poi_fused_add_eq_gt_lt_maximum_1.run(buf2, primals_5, primals_1, buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf2
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class resblock(nn.Module):
def __init__(self, in_channels, out_channels):
super(resblock, self).__init__()
self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
self.conv2 = mfm(out_channels, out_channels, kernel_size=3, stride=
1, padding=1)
def forward(self, x):
res = x
out = self.conv1(x)
out = self.conv2(out)
out = out + res
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x4, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp8 = tmp6 + tmp7
tmp9 = tmp2 == tmp5
tmp10 = tmp2 > tmp5
tmp11 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp8, xmask)
tl.store(out_ptr1 + x4, tmp9, xmask)
tl.store(out_ptr2 + x4, tmp10, xmask)
tl.store(out_ptr3 + x4, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_3,
buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_eq_gt_lt_maximum_1[grid(256)](buf2, primals_5,
primals_1, buf3, buf4, buf5, buf6, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf2
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6,
buf7, buf8, buf9)
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class resblockNew(nn.Module):
def __init__(self, in_channels, out_channels):
super(resblockNew, self).__init__()
self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1,
padding=1)
self.conv2 = mfm(out_channels, out_channels, kernel_size=3, stride=
1, padding=1)
def forward(self, input_0):
primals_2 = self.conv1.filter.weight
primals_3 = self.conv1.filter.bias
primals_4 = self.conv2.filter.weight
primals_5 = self.conv2.filter.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BradyFU/DVG | resblock | false | 13,416 | [
"MIT"
]
| 102 | 53fd50cdc51d783b33394726b8f8a2b2216f157b | https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b |
mfm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# max_1 => maximum
# Graph fragment:
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_2, buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf1, primals_1, primals_3, buf2, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2,
buf1, buf2, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf1, primals_1, primals_3, buf2, buf3, buf4
class mfmNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfmNew, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, input_0):
primals_1 = self.filter.weight
primals_2 = self.filter.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BradyFU/DVG | mfm | false | 13,417 | [
"MIT"
]
| 102 | 53fd50cdc51d783b33394726b8f8a2b2216f157b | https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b |
LR | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5p/c5pq5ihkqog6yst24r6r2rrf5qe3nsxkwwpixhsiqjqc6rcatvet.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class LR(torch.nn.Module):
def __init__(self, input_size, output_size):
super(LR, self).__init__()
self.lr = torch.ones(input_size)
self.lr = torch.nn.Parameter(self.lr)
def forward(self, grad):
return self.lr * grad
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class LRNew(torch.nn.Module):
def __init__(self, input_size, output_size):
super(LRNew, self).__init__()
self.lr = torch.ones(input_size)
self.lr = torch.nn.Parameter(self.lr)
def forward(self, input_0):
primals_1 = self.lr
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| Brikwerk/learn2learn | LR | false | 13,418 | [
"MIT"
]
| 1,774 | 7997c13c26ec627d13ce77ba98427260df78ada8 | https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8 |
BothContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/42/c42q6xmrtx4mk6cvsm764oigvfmjedisa43isepa27ioqcfzfgtm.py
# Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# sub => sub
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %addmm_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp4 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, buf4, buf2, buf5, 16, grid=grid(16), stream=stream0)
return (buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class BothContextGate(nn.Module):
"""Apply the context gate to both contexts"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(BothContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh((1.0 - z) * target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(16)](buf1, buf4,
buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5
class ContextGate(nn.Module):
"""
Context gate is a decoder module that takes as input the previous word
embedding, the current decoder state and the attention state, and
produces a gate.
The gate can be used to select the input from the target side context
(decoder state), from the source context (attention state) or both.
"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class BothContextGateNew(nn.Module):
"""Apply the context gate to both contexts"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(BothContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| BradLin0819/kg2text | BothContextGate | false | 13,419 | [
"Apache-2.0"
]
| 86 | e586eb2027c0d85db9826cbe1d9e14f2d26fc93f | https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f |
PlanarFlow | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/il/cil5hpoi7ygpsypgim2u7imeqozhugxjb3qehifbgnc6wf4rjrsp.py
# Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add_4 => add_4
# add_5 => add_5
# logdet_jacobian => log
# mul => mul_1
# muw => add
# mv => mul_2, sum_3
# pow_1 => pow_1
# psi => mul_4
# psi_u => mul_5, sum_4
# softplus => exp, gt, log1p, where
# sub => sub
# sum_1 => sum_2
# truediv => div
# uhat => add_1
# uw => mul, sum_1
# zwb => add_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sum_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %log1p), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, -1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %sum_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sum_2), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %div), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %primals_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %primals_4), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_3), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_1), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add_4,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-08), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_5,), kwargs = {})
triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=(8,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp10 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (0))
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (1))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp19 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (2))
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp24 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3))
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp29 = tl.load(in_ptr3 + (0))
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp37 = tl.load(in_ptr0 + (0))
tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK])
tmp52 = tl.load(in_ptr0 + (1))
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp60 = tl.load(in_ptr0 + (2))
tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK])
tmp68 = tl.load(in_ptr0 + (3))
tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK])
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tmp1 * tmp1
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp13 = tmp10 * tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp22 = tmp19 * tmp21
tmp23 = tmp18 + tmp22
tmp27 = tmp24 * tmp26
tmp28 = tmp23 + tmp27
tmp31 = tmp28 + tmp30
tmp32 = libdevice.tanh(tmp31)
tmp33 = tmp32 * tmp32
tmp34 = 1.0
tmp35 = tmp34 - tmp33
tmp36 = tmp35 * tmp12
tmp39 = 20.0
tmp40 = tmp5 > tmp39
tmp41 = tl_math.exp(tmp5)
tmp42 = libdevice.log1p(tmp41)
tmp43 = tl.where(tmp40, tmp5, tmp42)
tmp44 = -1.0
tmp45 = tmp43 + tmp44
tmp46 = tmp45 - tmp5
tmp47 = tmp46 * tmp12
tmp48 = tmp47 / tmp9
tmp49 = tmp38 + tmp48
tmp50 = tmp36 * tmp49
tmp51 = tmp35 * tmp16
tmp54 = tmp46 * tmp16
tmp55 = tmp54 / tmp9
tmp56 = tmp53 + tmp55
tmp57 = tmp51 * tmp56
tmp58 = tmp50 + tmp57
tmp59 = tmp35 * tmp21
tmp62 = tmp46 * tmp21
tmp63 = tmp62 / tmp9
tmp64 = tmp61 + tmp63
tmp65 = tmp59 * tmp64
tmp66 = tmp58 + tmp65
tmp67 = tmp35 * tmp26
tmp70 = tmp46 * tmp26
tmp71 = tmp70 / tmp9
tmp72 = tmp69 + tmp71
tmp73 = tmp67 * tmp72
tmp74 = tmp66 + tmp73
tmp75 = tmp74 + tmp34
tmp76 = tl_math.abs(tmp75)
tmp77 = 1e-08
tmp78 = tmp76 + tmp77
tmp79 = tl_math.log(tmp78)
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp31, None)
tl.store(in_out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp79, None)
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kk/ckkz4nmmavawr3cwhzxvsdtcrjydick2txrs43laojgo3e6wua2r.py
# Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# f_z => add_3
# mul_1 => mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_3), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (0))
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp4 = 20.0
tmp5 = tmp3 > tmp4
tmp6 = tl_math.exp(tmp3)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp3, tmp7)
tmp9 = -1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp10 - tmp3
tmp13 = tmp11 * tmp12
tmp16 = tmp13 / tmp15
tmp17 = tmp1 + tmp16
tmp19 = libdevice.tanh(tmp18)
tmp20 = tmp17 * tmp19
tmp21 = tmp0 + tmp20
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf4 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0.run(buf5, primals_1, primals_2, primals_3, primals_4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_3, primals_1, buf0, primals_2, buf1, buf2, buf3, 16, grid=grid(16), stream=stream0)
del buf0
del buf1
del buf2
return (buf3, buf5, primals_1, primals_2, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
class PlanarFlow(nn.Module):
"""Planar normalizing flow [Rezende & Mohamed 2015].
Provides a tighter bound on the ELBO by giving more expressive
power to the approximate distribution, such as by introducing
covariance between terms.
@param in_features: integer
number of input dimensions. this is often
the dimensionality of the latent variables
"""
def __init__(self, in_features):
super(PlanarFlow, self).__init__()
self.u = nn.Parameter(torch.randn(in_features))
self.w = nn.Parameter(torch.randn(in_features))
self.b = nn.Parameter(torch.ones(1))
def forward(self, z):
uw = torch.dot(self.u, self.w)
muw = -1 + F.softplus(uw)
uhat = self.u + (muw - uw) * torch.transpose(self.w, 0, -1
) / torch.sum(self.w ** 2)
zwb = torch.mv(z, self.w) + self.b
f_z = z + uhat.view(1, -1) * torch.tanh(zwb).view(-1, 1)
psi = (1 - torch.tanh(zwb) ** 2).view(-1, 1) * self.w.view(1, -1)
psi_u = torch.mv(psi, uhat)
logdet_jacobian = torch.log(torch.abs(1 + psi_u) + 1e-08)
return f_z, logdet_jacobian
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp10 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + 0)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + 1)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp19 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + 2)
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp24 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + 3)
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp29 = tl.load(in_ptr3 + 0)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp37 = tl.load(in_ptr0 + 0)
tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK])
tmp52 = tl.load(in_ptr0 + 1)
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp60 = tl.load(in_ptr0 + 2)
tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK])
tmp68 = tl.load(in_ptr0 + 3)
tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK])
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tmp1 * tmp1
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp13 = tmp10 * tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp22 = tmp19 * tmp21
tmp23 = tmp18 + tmp22
tmp27 = tmp24 * tmp26
tmp28 = tmp23 + tmp27
tmp31 = tmp28 + tmp30
tmp32 = libdevice.tanh(tmp31)
tmp33 = tmp32 * tmp32
tmp34 = 1.0
tmp35 = tmp34 - tmp33
tmp36 = tmp35 * tmp12
tmp39 = 20.0
tmp40 = tmp5 > tmp39
tmp41 = tl_math.exp(tmp5)
tmp42 = libdevice.log1p(tmp41)
tmp43 = tl.where(tmp40, tmp5, tmp42)
tmp44 = -1.0
tmp45 = tmp43 + tmp44
tmp46 = tmp45 - tmp5
tmp47 = tmp46 * tmp12
tmp48 = tmp47 / tmp9
tmp49 = tmp38 + tmp48
tmp50 = tmp36 * tmp49
tmp51 = tmp35 * tmp16
tmp54 = tmp46 * tmp16
tmp55 = tmp54 / tmp9
tmp56 = tmp53 + tmp55
tmp57 = tmp51 * tmp56
tmp58 = tmp50 + tmp57
tmp59 = tmp35 * tmp21
tmp62 = tmp46 * tmp21
tmp63 = tmp62 / tmp9
tmp64 = tmp61 + tmp63
tmp65 = tmp59 * tmp64
tmp66 = tmp58 + tmp65
tmp67 = tmp35 * tmp26
tmp70 = tmp46 * tmp26
tmp71 = tmp70 / tmp9
tmp72 = tmp69 + tmp71
tmp73 = tmp67 * tmp72
tmp74 = tmp66 + tmp73
tmp75 = tmp74 + tmp34
tmp76 = tl_math.abs(tmp75)
tmp77 = 1e-08
tmp78 = tmp76 + tmp77
tmp79 = tl_math.log(tmp78)
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp31, None)
tl.store(in_out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp79, None)
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + 0)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp4 = 20.0
tmp5 = tmp3 > tmp4
tmp6 = tl_math.exp(tmp3)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp3, tmp7)
tmp9 = -1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp10 - tmp3
tmp13 = tmp11 * tmp12
tmp16 = tmp13 / tmp15
tmp17 = tmp1 + tmp16
tmp19 = libdevice.tanh(tmp18)
tmp20 = tmp17 * tmp19
tmp21 = tmp0 + tmp20
tl.store(out_ptr0 + x2, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf4 = empty_strided_cuda((4,), (1,), torch.float32)
buf5 = buf4
del buf4
get_raw_stream(0)
triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0[grid
(1)](buf5, primals_1, primals_2, primals_3, primals_4, buf0,
buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(16)](primals_3, primals_1, buf0,
primals_2, buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del buf0
del buf1
del buf2
return buf3, buf5, primals_1, primals_2, primals_3, primals_4
class PlanarFlowNew(nn.Module):
"""Planar normalizing flow [Rezende & Mohamed 2015].
Provides a tighter bound on the ELBO by giving more expressive
power to the approximate distribution, such as by introducing
covariance between terms.
@param in_features: integer
number of input dimensions. this is often
the dimensionality of the latent variables
"""
def __init__(self, in_features):
super(PlanarFlowNew, self).__init__()
self.u = nn.Parameter(torch.randn(in_features))
self.w = nn.Parameter(torch.randn(in_features))
self.b = nn.Parameter(torch.ones(1))
def forward(self, input_0):
primals_1 = self.u
primals_2 = self.w
primals_4 = self.b
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
| BratChar/variational-item-response-theory-public | PlanarFlow | false | 13,420 | [
"MIT"
]
| 52 | 12862157e99506a0ed7018f1b8a485d4e61fb5bf | https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf |
group | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# x_1 => maximum
# Graph fragment:
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {})
# %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 64)
x3 = xindex % 64
x1 = (xindex // 16) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dx/cdxsiauqixxznc5upksv4k5qv54fs7gz2sgvr4qfd5yyu72syijl.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
# Source node to ATen node mapping:
# x_3 => maximum_1
# Graph fragment:
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {})
triton_poi_fused_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 324)
x3 = xindex % 324
x1 = (xindex // 81) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (648*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (324 + x3 + (648*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + (x4), tmp6, xmask)
tl.store(out_ptr1 + (x4), tmp7, xmask)
tl.store(out_ptr2 + (x4), tmp8, xmask)
tl.store(out_ptr3 + (x4), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_2, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1))
buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt]
triton_poi_fused_eq_gt_lt_maximum_1.run(buf2, primals_5, buf3, buf4, buf5, buf6, 1296, grid=grid(1296), stream=stream0)
del buf2
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class group(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding
):
super(group, self).__init__()
self.conv_a = mfm(in_channels, in_channels, 1, 1, 0)
self.conv = mfm(in_channels, out_channels, kernel_size, stride, padding
)
def forward(self, x):
x = self.conv_a(x)
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1, 'padding': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 64
x3 = xindex % 64
x1 = xindex // 16 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 324
x3 = xindex % 324
x1 = xindex // 81 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 648 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (324 + x3 + 648 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp7 = tmp2 == tmp5
tmp8 = tmp2 > tmp5
tmp9 = tmp2 < tmp5
tl.store(out_ptr0 + x4, tmp6, xmask)
tl.store(out_ptr1 + x4, tmp7, xmask)
tl.store(out_ptr2 + x4, tmp8, xmask)
tl.store(out_ptr3 + x4, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2,
buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1))
buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool)
triton_poi_fused_eq_gt_lt_maximum_1[grid(1296)](buf2, primals_5,
buf3, buf4, buf5, buf6, 1296, XBLOCK=256, num_warps=4, num_stages=1
)
del buf2
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6,
buf7, buf8, buf9)
class mfm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, type=1):
super(mfm, self).__init__()
self.out_channels = out_channels
if type == 1:
self.filter = nn.Conv2d(in_channels, 2 * out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
else:
self.filter = nn.Linear(in_channels, 2 * out_channels)
def forward(self, x):
x = self.filter(x)
out = torch.split(x, self.out_channels, 1)
return torch.max(out[0], out[1])
class groupNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding
):
super(groupNew, self).__init__()
self.conv_a = mfm(in_channels, in_channels, 1, 1, 0)
self.conv = mfm(in_channels, out_channels, kernel_size, stride, padding
)
def forward(self, input_0):
primals_1 = self.conv_a.filter.weight
primals_2 = self.conv_a.filter.bias
primals_4 = self.conv.filter.weight
primals_5 = self.conv.filter.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BradyFU/DVG | group | false | 13,421 | [
"MIT"
]
| 102 | 53fd50cdc51d783b33394726b8f8a2b2216f157b | https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b |
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py
# Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# q_1 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/um/cumdt56px4jhgi4x7ers5m2jlyr4stfdyfhyb47o43khr5qzdg6f.py
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_3 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ja/cjapoylwc442ttbiaridhuezkvo2e7durqwl2lytr7aq6togjqw3.py
# Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# attn_weights_4 => div_1
# sum_1 => sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_17, [1]), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {})
triton_poi_fused_div_sum_4 = async_compile.triton('triton_poi_fused_div_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 4, 16, grid=grid(4, 16), stream=stream0)
buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_7
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_4.run(buf6, buf10, 64, grid=grid(64), stream=stream0)
return (reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float('-inf')).type_as(t)
def _get_full_incremental_state_key(module_instance, key):
module_name = module_instance.__class__.__name__
if not hasattr(module_instance, '_fairseq_instance_id'):
INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1
module_instance._fairseq_instance_id = INCREMENTAL_STATE_INSTANCE_ID[
module_name]
return '{}.{}.{}'.format(module_name, module_instance.
_fairseq_instance_id, key)
def get_incremental_state(module, incremental_state, key):
"""Helper for getting incremental state for an nn.Module."""
full_key = _get_full_incremental_state_key(module, key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(module, incremental_state, key, value):
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = _get_full_incremental_state_key(module, key)
incremental_state[full_key] = value
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self._mask = None
self.in_proj_weight = nn.Parameter(torch.Tensor(3 * embed_dim,
embed_dim))
if bias:
self.in_proj_bias = nn.Parameter(torch.Tensor(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.0)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(self, query, key, value, mask_future_timesteps=False,
key_padding_mask=None, incremental_state=None, need_weights=True,
static_kv=False):
"""Input shape: Time x Batch x Channel
Self-attention can be implemented by passing in the same arguments for
query, key and value. Future timesteps can be masked with the
`mask_future_timesteps` argument. Padding elements can be excluded from
the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
batch x src_len, where padding elements are indicated by 1s.
"""
qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr()
kv_same = key.data_ptr() == value.data_ptr()
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
assert key.size() == value.size()
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
if static_kv:
assert kv_same and not qkv_same
key = value = None
else:
saved_state = None
if qkv_same:
q, k, v = self.in_proj_qkv(query)
elif kv_same:
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = q.new(0)
else:
k, v = self.in_proj_kv(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q *= self.scaling
if saved_state is not None:
if 'prev_key' in saved_state:
k = torch.cat((saved_state['prev_key'], k), dim=0)
if 'prev_value' in saved_state:
v = torch.cat((saved_state['prev_value'], v), dim=0)
saved_state['prev_key'] = k
saved_state['prev_value'] = v
self._set_input_buffer(incremental_state, saved_state)
src_len = k.size(0)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
k = k.contiguous().view(src_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
v = v.contiguous().view(src_len, bsz * self.num_heads, self.head_dim
).transpose(0, 1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len,
src_len]
if mask_future_timesteps and incremental_state is None:
assert query.size() == key.size(
), 'mask_future_timesteps only applies to self-attention'
attn_weights += self.buffered_mask(attn_weights).unsqueeze(0)
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.float().masked_fill(key_padding_mask
.unsqueeze(1).unsqueeze(2), float('-inf')).type_as(attn_weights
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
src_len)
attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as(
attn_weights)
attn_weights = F.dropout(attn_weights, p=self.dropout, training=
self.training)
attn = torch.bmm(attn_weights, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.
head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.sum(dim=1) / self.num_heads
else:
attn_weights = None
return attn, attn_weights
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=None, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
if end is not None:
weight = weight[:end, :]
if bias is not None:
bias = bias[:end]
if start is not None:
weight = weight[start:, :]
if bias is not None:
bias = bias[start:]
return F.linear(input.type_as(weight), weight, bias)
def buffered_mask(self, tensor):
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.sum(dim=1) / self.num_heads
else:
attn_weights = None
return attn, attn_weights
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query):
return self._in_proj(query, end=self.embed_dim)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=None, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
if end is not None:
weight = weight[:end, :]
if bias is not None:
bias = bias[:end]
if start is not None:
weight = weight[start:, :]
if bias is not None:
bias = bias[start:]
return F.linear(input.type_as(weight), weight, bias)
def buffered_mask(self, tensor):
dim = tensor.size(-1)
if self._mask is None:
self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._mask.size(0) < dim:
self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_(
dim, dim)), 1)
return self._mask[:dim, :dim]
def reorder_incremental_state(self, incremental_state, new_order):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer[k] = input_buffer[k].index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(self, incremental_state, 'attn_state'
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(self, incremental_state, 'attn_state', buffer)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4),
reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1,
beta=1, out=buf1)
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8),
reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1,
beta=1, out=buf2)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0),
0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1,
16, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(4, 16)](buf7, buf8, 4, 16, XBLOCK=16,
YBLOCK=4, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0)
del buf7
extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf9)
del primals_7
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_div_sum_4[grid(64)](buf6, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0
), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0
), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0
), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0
), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0)
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float('-inf')).type_as(t)
def _get_full_incremental_state_key(module_instance, key):
module_name = module_instance.__class__.__name__
if not hasattr(module_instance, '_fairseq_instance_id'):
INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1
module_instance._fairseq_instance_id = INCREMENTAL_STATE_INSTANCE_ID[
module_name]
return '{}.{}.{}'.format(module_name, module_instance.
_fairseq_instance_id, key)
def get_incremental_state(module, incremental_state, key):
"""Helper for getting incremental state for an nn.Module."""
full_key = _get_full_incremental_state_key(module, key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(module, incremental_state, key, value):
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = _get_full_incremental_state_key(module, key)
incremental_state[full_key] = value
class MultiheadAttentionNew(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads'
self.scaling = self.head_dim ** -0.5
self._mask = None
self.in_proj_weight = nn.Parameter(torch.Tensor(3 * embed_dim,
embed_dim))
if bias:
self.in_proj_bias = nn.Parameter(torch.Tensor(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.in_proj_bias is not None:
nn.init.constant_(self.in_proj_bias, 0.0)
nn.init.constant_(self.out_proj.bias, 0.0)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=None, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
if end is not None:
weight = weight[:end, :]
if bias is not None:
bias = bias[:end]
if start is not None:
weight = weight[start:, :]
if bias is not None:
bias = bias[start:]
return F.linear(input.type_as(weight), weight, bias)
def buffered_mask(self, tensor):
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
src_len)
attn_weights = attn_weights.sum(dim=1) / self.num_heads
else:
attn_weights = None
return attn, attn_weights
def in_proj_qkv(self, query):
return self._in_proj(query).chunk(3, dim=-1)
def in_proj_kv(self, key):
return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1)
def in_proj_q(self, query):
return self._in_proj(query, end=self.embed_dim)
def in_proj_k(self, key):
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim)
def in_proj_v(self, value):
return self._in_proj(value, start=2 * self.embed_dim)
def _in_proj(self, input, start=None, end=None):
weight = self.in_proj_weight
bias = self.in_proj_bias
if end is not None:
weight = weight[:end, :]
if bias is not None:
bias = bias[:end]
if start is not None:
weight = weight[start:, :]
if bias is not None:
bias = bias[start:]
return F.linear(input.type_as(weight), weight, bias)
def buffered_mask(self, tensor):
dim = tensor.size(-1)
if self._mask is None:
self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._mask.size(0) < dim:
self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_(
dim, dim)), 1)
return self._mask[:dim, :dim]
def reorder_incremental_state(self, incremental_state, new_order):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer[k] = input_buffer[k].index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(self, incremental_state, 'attn_state'
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(self, incremental_state, 'attn_state', buffer)
def forward(self, input_0, input_1, input_2):
primals_4 = self.in_proj_weight
primals_5 = self.in_proj_bias
primals_6 = self.out_proj.weight
primals_7 = self.out_proj.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| Blind-Aid/sentiment-discovery | MultiheadAttention | false | 13,422 | [
"BSD-3-Clause"
]
| 1,093 | 081c7c855e00864b52e97cac0b0e097cc86d9731 | https://github.com/Blind-Aid/sentiment-discovery/tree/081c7c855e00864b52e97cac0b0e097cc86d9731 |
HypergradTransform | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/t5/ct5aym6gkkwcylmnrw44a7ehpexj5bq6osxrw6a5hw6xslsepzf6.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class HypergradTransform(torch.nn.Module):
"""Hypergradient-style per-parameter learning rates"""
def __init__(self, param, lr=0.01):
super(HypergradTransform, self).__init__()
self.lr = lr * torch.ones_like(param, requires_grad=True)
self.lr = torch.nn.Parameter(self.lr)
def forward(self, grad):
return self.lr * grad
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'param': torch.rand([4, 4])}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class HypergradTransformNew(torch.nn.Module):
"""Hypergradient-style per-parameter learning rates"""
def __init__(self, param, lr=0.01):
super(HypergradTransformNew, self).__init__()
self.lr = lr * torch.ones_like(param, requires_grad=True)
self.lr = torch.nn.Parameter(self.lr)
def forward(self, input_0):
primals_1 = self.lr
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| Brikwerk/learn2learn | HypergradTransform | false | 13,423 | [
"MIT"
]
| 1,774 | 7997c13c26ec627d13ce77ba98427260df78ada8 | https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8 |
EncoderImagePrecomp | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ng/cngpcyff472xmahalfd4udr74dej5n23g5wwo5ojifycq5hfsy5l.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div]
# Source node to ATen node mapping:
# X => div
# norm => add
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %add), kwargs = {})
triton_poi_fused_add_div_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2v/c2v6byid3mgkwe3kidoq46zpvtz63pzqlij5nqqh2jb4aeqxsxr7.py
# Topologically Sorted Source Nodes: [features_mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# features_mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%div, [1]), kwargs = {})
triton_poi_fused_mean_1 = async_compile.triton('triton_poi_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_pow_sqrt_sum_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [features_mean], Original ATen: [aten.mean]
triton_poi_fused_mean_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
return (buf1, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class EncoderImagePrecomp(nn.Module):
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImagePrecomp, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
features = self.fc(images)
if not self.no_imgnorm:
features = l2norm(features, dim=-1)
"""features_mean: visual initial memory"""
features_mean = torch.mean(features, 1)
"""choose whether to l2norm"""
return features, features_mean
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecomp, self).load_state_dict(new_state)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'img_dim': 4, 'embed_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_pow_sqrt_sum_0[grid(256)](buf0, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mean_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf1, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class EncoderImagePrecompNew(nn.Module):
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImagePrecompNew, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecompNew, self).load_state_dict(new_state)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| BruceW91/CVSE | EncoderImagePrecomp | false | 13,424 | [
"MIT"
]
| 152 | 20fa1ff50d1dcb4a7b3799071fa78038e52db804 | https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804 |
JointsMSELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/oz/cozcvms5imf5eaepem6n7j5ycrknvfez7heocrew5cbjvurugsw3.py
# Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, loss, mul_2, mul_3, mse_loss_1, loss_1, mul_4, mul_5, mse_loss_2, loss_2, mul_6, mul_7, mse_loss_3, loss_3], Original ATen: [aten.mul, aten.mse_loss, aten.add]
# Source node to ATen node mapping:
# loss => add
# loss_1 => add_1
# loss_2 => add_2
# loss_3 => add_3
# mse_loss => mean, pow_1, sub
# mse_loss_1 => mean_1, pow_2, sub_1
# mse_loss_2 => mean_2, pow_3, sub_2
# mse_loss_3 => mean_3, pow_4, sub_3
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, %select_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, %select_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, %select_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_5, %select_5), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_2), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_6, %select_6), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_7, %select_7), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mean_3), kwargs = {})
triton_per_fused_add_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_mse_loss_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp12 = tmp10 * tmp11
tmp14 = tmp13 * tmp11
tmp15 = tmp12 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.sum(tmp17, 1)[:, None]
tmp22 = tmp20 * tmp21
tmp24 = tmp23 * tmp21
tmp25 = tmp22 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp32 = tmp30 * tmp31
tmp34 = tmp33 * tmp31
tmp35 = tmp32 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = 4.0
tmp41 = tmp9 / tmp40
tmp42 = 0.0
tmp43 = tmp41 + tmp42
tmp44 = tmp19 / tmp40
tmp45 = tmp43 + tmp44
tmp46 = tmp29 / tmp40
tmp47 = tmp45 + tmp46
tmp48 = tmp39 / tmp40
tmp49 = tmp47 + tmp48
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp49, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, loss, mul_2, mul_3, mse_loss_1, loss_1, mul_4, mul_5, mse_loss_2, loss_2, mul_6, mul_7, mse_loss_3, loss_3], Original ATen: [aten.mul, aten.mse_loss, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mse_loss_mul_0.run(buf4, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.multiprocessing
class JointsMSELoss(nn.Module):
def __init__(self, use_target_weight):
super(JointsMSELoss, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
self.use_target_weight = use_target_weight
def forward(self, output, target, target_weight):
batch_size = output.size(0)
num_joints = output.size(1)
heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1
)
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
loss = 0
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss += self.criterion(heatmap_pred.mul(target_weight[:,
idx]), heatmap_gt.mul(target_weight[:, idx]))
else:
loss += self.criterion(heatmap_pred, heatmap_gt)
return loss
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'use_target_weight': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp12 = tmp10 * tmp11
tmp14 = tmp13 * tmp11
tmp15 = tmp12 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.sum(tmp17, 1)[:, None]
tmp22 = tmp20 * tmp21
tmp24 = tmp23 * tmp21
tmp25 = tmp22 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp32 = tmp30 * tmp31
tmp34 = tmp33 * tmp31
tmp35 = tmp32 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = 4.0
tmp41 = tmp9 / tmp40
tmp42 = 0.0
tmp43 = tmp41 + tmp42
tmp44 = tmp19 / tmp40
tmp45 = tmp43 + tmp44
tmp46 = tmp29 / tmp40
tmp47 = tmp45 + tmp46
tmp48 = tmp39 / tmp40
tmp49 = tmp47 + tmp48
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp49, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mse_loss_mul_0[grid(1)](buf4, arg0_1, arg2_1,
arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf4,
class JointsMSELossNew(nn.Module):
def __init__(self, use_target_weight):
super(JointsMSELossNew, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
self.use_target_weight = use_target_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| CHUNYUWANG/imu-human-pose-pytorch | JointsMSELoss | false | 13,425 | [
"MIT"
]
| 72 | f4813336571789f46eabdfb520e7ed5b20ac04ea | https://github.com/CHUNYUWANG/imu-human-pose-pytorch/tree/f4813336571789f46eabdfb520e7ed5b20ac04ea |
Multi_feature_fusing | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lc/clcwvem23i2fuqeipij4ajgu7qjdq7yvfhrqdzpsbsflwmhlhpbt.py
# Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, pow_1, sum_1, sqrt, norm], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# norm => add_1
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# v_fused_emb => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.75), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
triton_poi_fused_add_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp7 = tmp6 * tmp6
tmp9 = tmp8 * tmp1
tmp11 = tmp10 * tmp4
tmp12 = tmp9 + tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp7 + tmp13
tmp16 = tmp15 * tmp1
tmp18 = tmp17 * tmp4
tmp19 = tmp16 + tmp18
tmp20 = tmp19 * tmp19
tmp21 = tmp14 + tmp20
tmp23 = tmp22 * tmp1
tmp25 = tmp24 * tmp4
tmp26 = tmp23 + tmp25
tmp27 = tmp26 * tmp26
tmp28 = tmp21 + tmp27
tmp29 = libdevice.sqrt(tmp28)
tmp30 = 1e-12
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x0), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4y/c4yboiqpel4x7zs3szg5qgd3pivn42eh3kaxvluafam467w3pxmw.py
# Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, X], Original ATen: [aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# X => div
# mul => mul
# mul_1 => mul_1
# v_fused_emb => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.75), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_div_mul_1 = async_compile.triton('triton_poi_fused_add_div_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp7 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, pow_1, sum_1, sqrt, norm], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_sqrt_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, X], Original ATen: [aten.mul, aten.add, aten.div]
triton_poi_fused_add_div_mul_1.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul_2, mul_3, t_fused_emb, pow_2, sum_2, sqrt_1, norm_1], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt]
triton_poi_fused_add_mul_pow_sqrt_sum_0.run(arg2_1, arg3_1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, mul_3, t_fused_emb, X_1], Original ATen: [aten.mul, aten.add, aten.div]
triton_poi_fused_add_div_mul_1.run(arg2_1, arg3_1, buf2, buf3, 256, grid=grid(256), stream=stream0)
del arg2_1
del arg3_1
del buf2
return (buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class Multi_feature_fusing(nn.Module):
"""
Emb the features from both modalities to the joint attribute label space.
"""
def __init__(self, embed_dim, fuse_type='weight_sum'):
"""
param image_dim: dim of visual feature
param embed_dim: dim of embedding space
"""
super(Multi_feature_fusing, self).__init__()
self.fuse_type = fuse_type
self.embed_dim = embed_dim
if fuse_type == 'concat':
input_dim = int(2 * embed_dim)
self.joint_emb_v = nn.Linear(input_dim, embed_dim)
self.joint_emb_t = nn.Linear(input_dim, embed_dim)
self.init_weights_concat()
if fuse_type == 'adap_sum':
self.joint_emb_v = nn.Linear(embed_dim, 1)
self.joint_emb_t = nn.Linear(embed_dim, 1)
self.init_weights_adap_sum()
def init_weights_concat(self):
"""Xavier initialization"""
r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 2 * self.embed_dim)
self.joint_emb_v.weight.data.uniform_(-r, r)
self.joint_emb_v.bias.data.fill_(0)
self.joint_emb_t.weight.data.uniform_(-r, r)
self.joint_emb_t.bias.data.fill_(0)
def init_weights_adap_sum(self):
"""Xavier initialization"""
r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 1)
self.joint_emb_v.weight.data.uniform_(-r, r)
self.joint_emb_v.bias.data.fill_(0)
self.joint_emb_t.weight.data.uniform_(-r, r)
self.joint_emb_t.bias.data.fill_(0)
def forward(self, v_emb_instance, t_emb_instance, v_emb_concept,
t_emb_concept, alpha=0.75):
"""
Forward propagation.
:param v_emb_instance, t_emb_instance: instance-level visual or textual features, shape: (batch_size, emb_dim)
:param v_emb_concept, t_emb_concept: consensus-level concept features, shape: (batch_size, emb_dim)
:return: joint embbeding features for both modalities
"""
if self.fuse_type == 'multiple':
v_fused_emb = v_emb_instance.mul(v_emb_concept)
v_fused_emb = l2norm(v_fused_emb)
t_fused_emb = t_emb_instance.mul(t_emb_concept)
t_fused_emb = l2norm(t_fused_emb)
elif self.fuse_type == 'concat':
v_fused_emb = torch.cat([v_emb_instance, v_emb_concept], dim=1)
v_fused_emb = self.joint_emb_instance_v(v_fused_emb)
v_fused_emb = l2norm(v_fused_emb)
t_fused_emb = torch.cat([t_emb_instance, t_emb_concept], dim=1)
t_fused_emb = self.joint_emb_instance_v(t_fused_emb)
t_fused_emb = l2norm(t_fused_emb)
elif self.fuse_type == 'adap_sum':
v_mean = (v_emb_instance + v_emb_concept) / 2
v_emb_instance_mat = self.joint_emb_instance_v(v_mean)
alpha_v = F.sigmoid(v_emb_instance_mat)
v_fused_emb = alpha_v * v_emb_instance + (1 - alpha_v
) * v_emb_concept
v_fused_emb = l2norm(v_fused_emb)
t_mean = (t_emb_instance + t_emb_concept) / 2
t_emb_instance_mat = self.joint_emb_instance_t(t_mean)
alpha_t = F.sigmoid(t_emb_instance_mat)
t_fused_emb = alpha_t * t_emb_instance + (1 - alpha_t
) * t_emb_concept
t_fused_emb = l2norm(t_fused_emb)
elif self.fuse_type == 'weight_sum':
v_fused_emb = alpha * v_emb_instance + (1 - alpha) * v_emb_concept
v_fused_emb = l2norm(v_fused_emb)
t_fused_emb = alpha * t_emb_instance + (1 - alpha) * t_emb_concept
t_fused_emb = l2norm(t_fused_emb)
return v_fused_emb, t_fused_emb
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp7 = tmp6 * tmp6
tmp9 = tmp8 * tmp1
tmp11 = tmp10 * tmp4
tmp12 = tmp9 + tmp11
tmp13 = tmp12 * tmp12
tmp14 = tmp7 + tmp13
tmp16 = tmp15 * tmp1
tmp18 = tmp17 * tmp4
tmp19 = tmp16 + tmp18
tmp20 = tmp19 * tmp19
tmp21 = tmp14 + tmp20
tmp23 = tmp22 * tmp1
tmp25 = tmp24 * tmp4
tmp26 = tmp23 + tmp25
tmp27 = tmp26 * tmp26
tmp28 = tmp21 + tmp27
tmp29 = libdevice.sqrt(tmp28)
tmp30 = 1e-12
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x0, tmp31, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp7 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_sqrt_sum_0[grid(64)](arg0_1, arg1_1,
buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_1[grid(256)](arg0_1, arg1_1, buf0,
buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf2 = buf0
del buf0
triton_poi_fused_add_mul_pow_sqrt_sum_0[grid(64)](arg2_1, arg3_1,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mul_1[grid(256)](arg2_1, arg3_1, buf2,
buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg2_1
del arg3_1
del buf2
return buf1, buf3
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class Multi_feature_fusingNew(nn.Module):
"""
Emb the features from both modalities to the joint attribute label space.
"""
def __init__(self, embed_dim, fuse_type='weight_sum'):
"""
param image_dim: dim of visual feature
param embed_dim: dim of embedding space
"""
super(Multi_feature_fusingNew, self).__init__()
self.fuse_type = fuse_type
self.embed_dim = embed_dim
if fuse_type == 'concat':
input_dim = int(2 * embed_dim)
self.joint_emb_v = nn.Linear(input_dim, embed_dim)
self.joint_emb_t = nn.Linear(input_dim, embed_dim)
self.init_weights_concat()
if fuse_type == 'adap_sum':
self.joint_emb_v = nn.Linear(embed_dim, 1)
self.joint_emb_t = nn.Linear(embed_dim, 1)
self.init_weights_adap_sum()
def init_weights_concat(self):
"""Xavier initialization"""
r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 2 * self.embed_dim)
self.joint_emb_v.weight.data.uniform_(-r, r)
self.joint_emb_v.bias.data.fill_(0)
self.joint_emb_t.weight.data.uniform_(-r, r)
self.joint_emb_t.bias.data.fill_(0)
def init_weights_adap_sum(self):
"""Xavier initialization"""
r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 1)
self.joint_emb_v.weight.data.uniform_(-r, r)
self.joint_emb_v.bias.data.fill_(0)
self.joint_emb_t.weight.data.uniform_(-r, r)
self.joint_emb_t.bias.data.fill_(0)
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0], output[1]
| BruceW91/CVSE | Multi_feature_fusing | false | 13,426 | [
"MIT"
]
| 152 | 20fa1ff50d1dcb4a7b3799071fa78038e52db804 | https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804 |
MetaCurvatureTransform | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ws/cws2widmnufjuyq7fjq4jjvoqutr4ip5yocpl7jr6f3fz7oo2hfm.py
# Topologically Sorted Source Nodes: [matmul, update], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# matmul => clone_1
# update => view_2
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone_1, [64, 4]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jl/cjlbjijtpvxoudyymgohb6gbqmwikkpwupbw3wtza3pwdycfsg4x.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul, update], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [update], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_3, out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf4, 256, grid=grid(256), stream=stream0)
return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
class MetaCurvatureTransform(torch.nn.Module):
"""
[[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/optim/transforms/module_transform.py)
**Description**
Implements the Meta-Curvature transform of Park and Oliva, 2019.
Unlike `ModuleTranform` and `KroneckerTransform`, this class does not wrap other Modules but is directly
called on a weight to instantiate the transform.
**Arguments**
* **param** (Tensor) - The weight whose gradients will be transformed.
* **lr** (float, *optional*, default=1.0) - Scaling factor of the udpate. (non-learnable)
**References**
1. Park & Oliva. 2019. Meta-curvature.
**Example**
~~~python
classifier = torch.nn.Linear(784, 10, bias=False)
metacurvature_update = MetaCurvatureTransform(classifier.weight)
loss(classifier(X), y).backward()
update = metacurvature_update(classifier.weight.grad)
classifier.weight.data.add_(-lr, update) # Not a differentiable update. See l2l.optim.DifferentiableSGD.
~~~
"""
def __init__(self, param, lr=1.0):
super(MetaCurvatureTransform, self).__init__()
self.lr = lr
shape = param.shape
if len(shape) == 1:
self.dim = 1
self.mc = torch.nn.Parameter(torch.ones_like(param))
elif len(shape) == 2:
self.dim = 2
self.mc_in = torch.nn.Parameter(torch.eye(shape[0]))
self.mc_out = torch.nn.Parameter(torch.eye(shape[1]))
elif len(shape) == 4:
self.dim = 4
self.n_in = shape[0]
self.n_out = shape[1]
self.n_f = int(np.prod(shape) / (self.n_in * self.n_out))
self.mc_in = torch.nn.Parameter(torch.eye(self.n_in))
self.mc_out = torch.nn.Parameter(torch.eye(self.n_out))
self.mc_f = torch.nn.Parameter(torch.eye(self.n_f))
else:
raise NotImplementedError('Parameter with shape', shape,
'is not supported by MetaCurvature.')
def forward(self, grad):
if self.dim == 1:
update = self.mc * grad
elif self.dim == 2:
update = self.mc_in @ grad @ self.mc_out
else:
update = grad.permute(2, 3, 0, 1).contiguous()
shape = update.shape
update = update.view(-1, self.n_out) @ self.mc_out
update = self.mc_f @ update.view(self.n_f, -1)
update = update.view(self.n_f, self.n_in, self.n_out)
update = update.permute(1, 0, 2).contiguous().view(self.n_in, -1)
update = self.mc_in @ update
update = update.view(self.n_in, self.n_f, self.n_out).permute(1,
0, 2).contiguous().view(shape)
update = update.permute(2, 3, 0, 1).contiguous()
return self.lr * update
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'param': torch.rand([4, 4])}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask &
ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_clone_view_1[grid(64, 4)](buf1, buf2, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.mm(buf2, primals_3, out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_mul_2[grid(256)](buf4, 256, XBLOCK=256, num_warps=
4, num_stages=1)
return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor(
primals_3, (4, 4), (1, 4), 0)
class MetaCurvatureTransformNew(torch.nn.Module):
"""
[[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/optim/transforms/module_transform.py)
**Description**
Implements the Meta-Curvature transform of Park and Oliva, 2019.
Unlike `ModuleTranform` and `KroneckerTransform`, this class does not wrap other Modules but is directly
called on a weight to instantiate the transform.
**Arguments**
* **param** (Tensor) - The weight whose gradients will be transformed.
* **lr** (float, *optional*, default=1.0) - Scaling factor of the udpate. (non-learnable)
**References**
1. Park & Oliva. 2019. Meta-curvature.
**Example**
~~~python
classifier = torch.nn.Linear(784, 10, bias=False)
metacurvature_update = MetaCurvatureTransform(classifier.weight)
loss(classifier(X), y).backward()
update = metacurvature_update(classifier.weight.grad)
classifier.weight.data.add_(-lr, update) # Not a differentiable update. See l2l.optim.DifferentiableSGD.
~~~
"""
def __init__(self, param, lr=1.0):
super(MetaCurvatureTransformNew, self).__init__()
self.lr = lr
shape = param.shape
if len(shape) == 1:
self.dim = 1
self.mc = torch.nn.Parameter(torch.ones_like(param))
elif len(shape) == 2:
self.dim = 2
self.mc_in = torch.nn.Parameter(torch.eye(shape[0]))
self.mc_out = torch.nn.Parameter(torch.eye(shape[1]))
elif len(shape) == 4:
self.dim = 4
self.n_in = shape[0]
self.n_out = shape[1]
self.n_f = int(np.prod(shape) / (self.n_in * self.n_out))
self.mc_in = torch.nn.Parameter(torch.eye(self.n_in))
self.mc_out = torch.nn.Parameter(torch.eye(self.n_out))
self.mc_f = torch.nn.Parameter(torch.eye(self.n_f))
else:
raise NotImplementedError('Parameter with shape', shape,
'is not supported by MetaCurvature.')
def forward(self, input_0):
primals_1 = self.mc_in
primals_3 = self.mc_out
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Brikwerk/learn2learn | MetaCurvatureTransform | false | 13,427 | [
"MIT"
]
| 1,774 | 7997c13c26ec627d13ce77ba98427260df78ada8 | https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8 |
EncoderImageWeightNormPrecomp | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vx/cvxzmthv4i2niuhjkx7pdwegys74ubmwp36fuzpk743r7lkqg4tm.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused_div_mul_norm_0 = async_compile.triton('triton_per_fused_div_mul_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o5/co5cdabzbupnjencqkkpbxe3og4msok4322pvm3hncpx45zyl64c.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div]
# Source node to ATen node mapping:
# X => div_1
# norm => add
# pow_1 => pow_3
# sqrt => sqrt
# sum_1 => sum_2
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %add), kwargs = {})
triton_poi_fused_add_div_pow_sqrt_sum_1 = async_compile.triton('triton_poi_fused_add_div_pow_sqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sqrt_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sqrt_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_norm_0.run(buf1, primals_2, primals_1, buf2, 1, 16, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div]
triton_poi_fused_add_div_pow_sqrt_sum_1.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
return (buf4, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
from torch.nn.utils.weight_norm import weight_norm
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class EncoderImageWeightNormPrecomp(nn.Module):
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImageWeightNormPrecomp, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = weight_norm(nn.Linear(img_dim, embed_size), dim=None)
def forward(self, images):
"""Extract image feature vectors."""
features = self.fc(images)
if not self.no_imgnorm:
features = l2norm(features, dim=-1)
return features
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImageWeightNormPrecomp, self).load_state_dict(new_state)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'img_dim': 4, 'embed_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
from torch.nn.utils.weight_norm import weight_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
@triton.jit
def triton_poi_fused_add_div_pow_sqrt_sum_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mul_norm_0[grid(1)](buf1, primals_2, primals_1,
buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_pow_sqrt_sum_1[grid(256)](buf3, buf4, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return buf4, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4
, (64, 4), (4, 1), 0), buf3
def l2norm(X, dim=-1, eps=1e-12):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
class EncoderImageWeightNormPrecompNew(nn.Module):
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImageWeightNormPrecompNew, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = weight_norm(nn.Linear(img_dim, embed_size), dim=None)
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImageWeightNormPrecompNew, self).load_state_dict(new_state
)
def forward(self, input_0):
primals_3 = self.fc.bias
primals_1 = self.fc.weight_g
primals_2 = self.fc.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| BruceW91/CVSE | EncoderImageWeightNormPrecomp | false | 13,428 | [
"MIT"
]
| 152 | 20fa1ff50d1dcb4a7b3799071fa78038e52db804 | https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804 |
GraphConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/rl/crljeqnoa6ykpfmvk4fgvc6cahtaak6ilhiaoxyzgcd7ynbpfnj2.py
# Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones]
# Source node to ATen node mapping:
# ones => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_ones_0 = async_compile.triton('triton_poi_fused_ones_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ones_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dn/cdnkxcepcwle4u3a2zcw72axoqvmyd4bn2kvjp72wctqmnh3vrpp.py
# Topologically Sorted Source Nodes: [result, result_1], Original ATen: [aten.div, aten.add]
# Source node to ATen node mapping:
# result => div
# result_1 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_6, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %view_8), kwargs = {})
triton_poi_fused_add_div_1 = async_compile.triton('triton_poi_fused_add_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones]
stream0 = get_raw_stream(0)
triton_poi_fused_ones_0.run(buf0, 4, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones, norm], Original ATen: [aten.ones, aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, out=buf1)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4)
del primals_5
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [result, result_1], Original ATen: [aten.div, aten.add]
triton_poi_fused_add_div_1.run(buf5, buf1, buf4, primals_6, 256, grid=grid(256), stream=stream0)
del buf4
del primals_6
return (buf5, buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn
import torch.autograd
def sparse_bmm(sparse_matrix, dense_matrix_batch):
"""
Perform torch.bmm on an unbatched sparse matrix and a batched dense matrix.
Args:
sparse_matrix (torch.sparse.FloatTensor): Shape = (m, n)
dense_matrix_batch (torch.FloatTensor): Shape = (b, n, p)
Returns:
(torch.FloatTensor):
Result of the batched matrix multiplication. Shape = (b, n, p)
"""
m = sparse_matrix.shape[0]
b, n, p = dense_matrix_batch.shape
dense_matrix = dense_matrix_batch.transpose(0, 1).reshape(n, b * p)
result = torch.sparse.mm(sparse_matrix, dense_matrix)
return result.reshape(m, b, p).transpose(0, 1)
class GraphConv(nn.Module):
"""A simple graph convolution layer, similar to the one defined by *Kipf et al.* in
`Semi-Supervised Classification with Graph Convolutional Networks`_ ICLR 2017
This operation with self_layer=False is equivalent to :math:`(A H W)` where:
- :math:`H` is the node features with shape (batch_size, num_nodes, input_dim)
- :math:`W` is a weight matrix of shape (input_dim, output_dim)
- :math:`A` is the adjacency matrix of shape (num_nodes, num_nodes).
It can include self-loop.
With normalize_adj=True, it is equivalent to :math:`(D^{-1} A H W)`, where:
- :math:`D` is a diagonal matrix with :math:`D_{ii}` = the sum of the i-th row of A.
In other words, :math:`D` is the incoming degree of each node.
With self_layer=True, it is equivalent to the above plus :math:`(H W_{\\text{self}})`, where:
- :math:`W_{\\text{self}}` is a separate weight matrix to filter each node's self features.
Note that when self_layer is True, A should not include self-loop.
Args:
input_dim (int): The number of features in each input node.
output_dim (int): The number of features in each output node.
bias (bool): Whether to add bias after the node-wise linear layer.
Example:
>>> node_feat = torch.rand(1, 3, 5)
>>> i = torch.LongTensor(
... [[0, 1, 1, 2, 2, 0], [1, 0, 2, 1, 0, 2]])
>>> v = torch.FloatTensor([1, 1, 1, 1, 1, 1])
>>> adj = torch.sparse.FloatTensor(i, v, torch.Size([3, 3]))
>>> model = GraphConv(5, 10)
>>> output = model(node_feat, adj)
>>> # pre-normalize adj
>>> adj = normalize_adj(adj)
>>> output = model(node_feat, adj, normalize_adj=False)
.. _Semi-Supervised Classification with Graph Convolutional Networks:
https://arxiv.org/abs/1609.02907
"""
def __init__(self, input_dim, output_dim, self_layer=True, bias=True):
super(GraphConv, self).__init__()
self.self_layer = self_layer
self.linear = nn.Linear(input_dim, output_dim, bias=bias)
if self_layer:
self.linear_self = nn.Linear(input_dim, output_dim, bias=bias)
else:
self.linear_self = None
self.initialize()
def initialize(self):
nn.init.xavier_uniform_(self.linear.weight.data)
if self.linear.bias is not None:
self.linear.bias.data.uniform_(-1.0, 1.0)
if self.self_layer:
nn.init.xavier_uniform_(self.linear_self.weight.data)
if self.linear_self.bias is not None:
self.linear_self.bias.data.uniform_(-1.0, 1.0)
def forward(self, node_feat, adj, normalize_adj=True):
"""
Args:
node_feat (torch.FloatTensor):
Shape = (batch_size, num_nodes, input_dim)
The input features of each node.
adj (torch.sparse.FloatTensor or torch.FloatTensor):
Shape = (num_nodes, num_nodes)
The adjacency matrix. adj[i, j] is non-zero if there's an
incoming edge from j to i. Should not include self-loop if
self_layer is True.
normalize_adj (bool):
Set this to true to apply normalization to adjacency; that is,
each output feature will be divided by the number of incoming
neighbors. If normalization is not desired, or if the adjacency
matrix is pre-normalized, set this to False to improve
performance.
Returns:
(torch.FloatTensor):
The output features of each node.
Shape = (batch_size, num_nodes, output_dim)
"""
if adj.type().endswith('sparse.FloatTensor'):
if normalize_adj:
norm = torch.sparse.mm(adj, torch.ones((adj.shape[0], 1),
device=node_feat.device))
result = sparse_bmm(adj, self.linear(node_feat)) / norm
else:
result = sparse_bmm(adj, self.linear(node_feat))
elif normalize_adj:
norm = torch.matmul(adj, torch.ones((adj.shape[0], 1), device=
node_feat.device))
result = torch.matmul(adj, self.linear(node_feat)) / norm
else:
result = torch.matmul(adj, self.linear(node_feat))
if self.self_layer:
result += self.linear_self(node_feat)
return result
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 1.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_div_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_ones_0[grid(4)](buf0, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
buf0, out=buf1)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (64,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_3
del primals_4
buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0),
out=buf3)
buf4 = buf2
del buf2
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4)
del primals_5
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_div_1[grid(256)](buf5, buf1, buf4, primals_6,
256, XBLOCK=128, num_warps=4, num_stages=1)
del buf4
del primals_6
return buf5, buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0)
def sparse_bmm(sparse_matrix, dense_matrix_batch):
"""
Perform torch.bmm on an unbatched sparse matrix and a batched dense matrix.
Args:
sparse_matrix (torch.sparse.FloatTensor): Shape = (m, n)
dense_matrix_batch (torch.FloatTensor): Shape = (b, n, p)
Returns:
(torch.FloatTensor):
Result of the batched matrix multiplication. Shape = (b, n, p)
"""
m = sparse_matrix.shape[0]
b, n, p = dense_matrix_batch.shape
dense_matrix = dense_matrix_batch.transpose(0, 1).reshape(n, b * p)
result = torch.sparse.mm(sparse_matrix, dense_matrix)
return result.reshape(m, b, p).transpose(0, 1)
class GraphConvNew(nn.Module):
"""A simple graph convolution layer, similar to the one defined by *Kipf et al.* in
`Semi-Supervised Classification with Graph Convolutional Networks`_ ICLR 2017
This operation with self_layer=False is equivalent to :math:`(A H W)` where:
- :math:`H` is the node features with shape (batch_size, num_nodes, input_dim)
- :math:`W` is a weight matrix of shape (input_dim, output_dim)
- :math:`A` is the adjacency matrix of shape (num_nodes, num_nodes).
It can include self-loop.
With normalize_adj=True, it is equivalent to :math:`(D^{-1} A H W)`, where:
- :math:`D` is a diagonal matrix with :math:`D_{ii}` = the sum of the i-th row of A.
In other words, :math:`D` is the incoming degree of each node.
With self_layer=True, it is equivalent to the above plus :math:`(H W_{\\text{self}})`, where:
- :math:`W_{\\text{self}}` is a separate weight matrix to filter each node's self features.
Note that when self_layer is True, A should not include self-loop.
Args:
input_dim (int): The number of features in each input node.
output_dim (int): The number of features in each output node.
bias (bool): Whether to add bias after the node-wise linear layer.
Example:
>>> node_feat = torch.rand(1, 3, 5)
>>> i = torch.LongTensor(
... [[0, 1, 1, 2, 2, 0], [1, 0, 2, 1, 0, 2]])
>>> v = torch.FloatTensor([1, 1, 1, 1, 1, 1])
>>> adj = torch.sparse.FloatTensor(i, v, torch.Size([3, 3]))
>>> model = GraphConv(5, 10)
>>> output = model(node_feat, adj)
>>> # pre-normalize adj
>>> adj = normalize_adj(adj)
>>> output = model(node_feat, adj, normalize_adj=False)
.. _Semi-Supervised Classification with Graph Convolutional Networks:
https://arxiv.org/abs/1609.02907
"""
def __init__(self, input_dim, output_dim, self_layer=True, bias=True):
super(GraphConvNew, self).__init__()
self.self_layer = self_layer
self.linear = nn.Linear(input_dim, output_dim, bias=bias)
if self_layer:
self.linear_self = nn.Linear(input_dim, output_dim, bias=bias)
else:
self.linear_self = None
self.initialize()
def initialize(self):
nn.init.xavier_uniform_(self.linear.weight.data)
if self.linear.bias is not None:
self.linear.bias.data.uniform_(-1.0, 1.0)
if self.self_layer:
nn.init.xavier_uniform_(self.linear_self.weight.data)
if self.linear_self.bias is not None:
self.linear_self.bias.data.uniform_(-1.0, 1.0)
def forward(self, input_0, input_1):
primals_3 = self.linear.weight
primals_4 = self.linear.bias
primals_5 = self.linear_self.weight
primals_6 = self.linear_self.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| Burningdust21/kaolin | GraphConv | false | 13,429 | [
"ECL-2.0",
"Apache-2.0"
]
| 3,747 | 23e8a0fa4e2cb0249cee4c3c0c1ab1f7e6793531 | https://github.com/Burningdust21/kaolin/tree/23e8a0fa4e2cb0249cee4c3c0c1ab1f7e6793531 |
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
import torch.nn.init
import torch.optim
class Model(nn.Module):
""" Class representing sampleable neural network model """
def num_params(self):
""" Get the number of model parameters. """
return sum(p.numel() for p in self.parameters())
def summary(self, hashsummary=False):
None
None
self.num_params()
None
None
if hashsummary:
None
for idx, hashvalue in enumerate(self.hashsummary()):
None
def hashsummary(self):
""" Print a model summary - checksums of each layer parameters """
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()
).hexdigest() for x in child.parameters())
return result
def loss(self, x_data, y_true, reduce='mean'):
""" Forward propagate network and return a value of loss function """
if reduce not in (None, 'sum', 'mean'):
raise ValueError('`reduce` must be either None, `sum`, or `mean`!')
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce)
def loss_value(self, x_data, y_true, y_pred, reduce=None):
""" Calculate a value of loss function """
raise NotImplementedError
class Encoder(Model):
""" Linear encoder """
def __init__(self, c_in, c_out, affine=True):
super(Encoder, self).__init__()
assert c_out % 2 == 0
self.fc1 = nn.Linear(c_in, c_in // 2)
self.fc2 = nn.Linear(c_in // 2, c_in)
def forward(self, x):
x = torch.relu(x)
x = self.fc1(x)
return self.fc2(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c_in': 4, 'c_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
import torch.nn.init
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, primals_4
class Model(nn.Module):
""" Class representing sampleable neural network model """
def num_params(self):
""" Get the number of model parameters. """
return sum(p.numel() for p in self.parameters())
def summary(self, hashsummary=False):
None
None
self.num_params()
None
None
if hashsummary:
None
for idx, hashvalue in enumerate(self.hashsummary()):
None
def hashsummary(self):
""" Print a model summary - checksums of each layer parameters """
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()
).hexdigest() for x in child.parameters())
return result
def loss(self, x_data, y_true, reduce='mean'):
""" Forward propagate network and return a value of loss function """
if reduce not in (None, 'sum', 'mean'):
raise ValueError('`reduce` must be either None, `sum`, or `mean`!')
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce)
def loss_value(self, x_data, y_true, y_pred, reduce=None):
""" Calculate a value of loss function """
raise NotImplementedError
class EncoderNew(Model):
""" Linear encoder """
def __init__(self, c_in, c_out, affine=True):
super(EncoderNew, self).__init__()
assert c_out % 2 == 0
self.fc1 = nn.Linear(c_in, c_in // 2)
self.fc2 = nn.Linear(c_in // 2, c_in)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data | Encoder | false | 13,430 | [
"MIT"
]
| 51 | 2b1213f944cf5f2c60799099a469989a1f0a6d3a | https://github.com/CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data/tree/2b1213f944cf5f2c60799099a469989a1f0a6d3a |
LinearDrop | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout]
buf2 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf1, (4, 4, 4, 8), (128, 32, 8, 1), 0), 0.5, True)
del buf1
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_5
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_dropout]
buf6 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), 0.5, True)
del buf5
buf7 = buf6[0]
buf8 = buf6[1]
del buf6
return (buf7, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf8, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
import torch.nn.init
import torch.optim
class Model(nn.Module):
""" Class representing sampleable neural network model """
def num_params(self):
""" Get the number of model parameters. """
return sum(p.numel() for p in self.parameters())
def summary(self, hashsummary=False):
None
None
self.num_params()
None
None
if hashsummary:
None
for idx, hashvalue in enumerate(self.hashsummary()):
None
def hashsummary(self):
""" Print a model summary - checksums of each layer parameters """
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()
).hexdigest() for x in child.parameters())
return result
def loss(self, x_data, y_true, reduce='mean'):
""" Forward propagate network and return a value of loss function """
if reduce not in (None, 'sum', 'mean'):
raise ValueError('`reduce` must be either None, `sum`, or `mean`!')
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce)
def loss_value(self, x_data, y_true, y_pred, reduce=None):
""" Calculate a value of loss function """
raise NotImplementedError
class LinearDrop(Model):
""" Linear block with dropout """
def __init__(self, c_in, c_out, affine=True):
super(LinearDrop, self).__init__()
assert c_out % 2 == 0
self.fc1 = nn.Linear(c_in, c_in * 2)
self.fc2 = nn.Linear(c_in * 2, c_out)
def forward(self, x):
x = torch.relu(x)
x = F.dropout(self.fc1(x))
out = F.dropout(self.fc2(x))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c_in': 4, 'c_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
import torch.nn.init
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf1, (4, 4, 4, 8), (128, 32, 8, 1), 0), 0.5, True)
del buf1
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf5)
del primals_5
buf6 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), 0.5, True)
del buf5
buf7 = buf6[0]
buf8 = buf6[1]
del buf6
return buf7, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf8, primals_4
class Model(nn.Module):
""" Class representing sampleable neural network model """
def num_params(self):
""" Get the number of model parameters. """
return sum(p.numel() for p in self.parameters())
def summary(self, hashsummary=False):
None
None
self.num_params()
None
None
if hashsummary:
None
for idx, hashvalue in enumerate(self.hashsummary()):
None
def hashsummary(self):
""" Print a model summary - checksums of each layer parameters """
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()
).hexdigest() for x in child.parameters())
return result
def loss(self, x_data, y_true, reduce='mean'):
""" Forward propagate network and return a value of loss function """
if reduce not in (None, 'sum', 'mean'):
raise ValueError('`reduce` must be either None, `sum`, or `mean`!')
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce)
def loss_value(self, x_data, y_true, y_pred, reduce=None):
""" Calculate a value of loss function """
raise NotImplementedError
class LinearDropNew(Model):
""" Linear block with dropout """
def __init__(self, c_in, c_out, affine=True):
super(LinearDropNew, self).__init__()
assert c_out % 2 == 0
self.fc1 = nn.Linear(c_in, c_in * 2)
self.fc2 = nn.Linear(c_in * 2, c_out)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data | LinearDrop | false | 13,431 | [
"MIT"
]
| 51 | 2b1213f944cf5f2c60799099a469989a1f0a6d3a | https://github.com/CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data/tree/2b1213f944cf5f2c60799099a469989a1f0a6d3a |
InstanceNormLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bt/cbty6aktspcpn2i4hqhd57tuurtxy7jyiq6n7smwcnjcrfghdp6t.py
# Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mean_1 => mean_1
# pow_1 => pow_1
# sqrt => sqrt
# x => sub
# x_1 => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2, 3], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_add_div_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_pow_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tmp7 = tmp0 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp13 = tmp12 / tmp5
tmp14 = 1e-08
tmp15 = tmp13 + tmp14
tmp16 = libdevice.sqrt(tmp15)
tmp17 = tmp7 / tmp16
tl.store(out_ptr2 + (r1 + (16*x0)), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_pow_sqrt_sub_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class InstanceNormLayer(nn.Module):
"""Implements instance normalization layer."""
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, x):
if len(x.shape) != 4:
raise ValueError(
f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!'
)
x = x - torch.mean(x, dim=[2, 3], keepdim=True)
x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) +
self.epsilon)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tmp7 = tmp0 - tmp6
tmp8 = tmp7 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp13 = tmp12 / tmp5
tmp14 = 1e-08
tmp15 = tmp13 + tmp14
tmp16 = libdevice.sqrt(tmp15)
tmp17 = tmp7 / tmp16
tl.store(out_ptr2 + (r1 + 16 * x0), tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf2,
16, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class InstanceNormLayerNew(nn.Module):
"""Implements instance normalization layer."""
def __init__(self, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| CV-IP/interfacegan | InstanceNormLayer | false | 13,432 | [
"MIT"
]
| 855 | 5a556b8e693f6e1888f769f653aaafaaccca5dc2 | https://github.com/CV-IP/interfacegan/tree/5a556b8e693f6e1888f769f653aaafaaccca5dc2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.