entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
SSE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zo/czobpmlyr5atbcpsuque6vcmk7nafmb3smtbzoqilz46drm7zbkm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6q/c6qyrmvchep2lyeodxjgze7brt2fv4khvsx2os2smplvfajckxaz.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # x_1 => sigmoid # x_2 => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class SSE(nn.Module): """SSE : Channel Squeeze and Spatial Excitation block. Paper : https://arxiv.org/abs/1803.02579 Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178 """ def __init__(self, in_channels): """Constructor method for SSE class. Args: in_channels(int): The number of input channels in the feature map. """ super(SSE, self).__init__() self.in_channels = in_channels self.conv = nn.Conv2d(in_channels=self.in_channels, out_channels=1, kernel_size=1, stride=1) def forward(self, x) ->torch.Tensor: """Forward Method. Args: x(torch.Tensor): The input tensor of shape (batch, channels, height, width) Returns: Tensor of same shape """ x_inp = x x = self.conv(x) x = torch.sigmoid(x) x = torch.mul(x_inp, x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](primals_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf1 class SSENew(nn.Module): """SSE : Channel Squeeze and Spatial Excitation block. Paper : https://arxiv.org/abs/1803.02579 Adapted from https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/66178 """ def __init__(self, in_channels): """Constructor method for SSE class. Args: in_channels(int): The number of input channels in the feature map. """ super(SSENew, self).__init__() self.in_channels = in_channels self.conv = nn.Conv2d(in_channels=self.in_channels, out_channels=1, kernel_size=1, stride=1) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Atharva-Phatak/torchflare
SSE
false
13,333
[ "Apache-2.0" ]
86
945f4bee73a855edd8cb19cd646731155499a27f
https://github.com/Atharva-Phatak/torchflare/tree/945f4bee73a855edd8cb19cd646731155499a27f
ModelNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.cat] # Source node to ATen node mapping: # h => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zv/czvynky4oalmloglgtzknnnppmxomthxuw2oxxbkmpms5mdr6woj.py # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 500 x2 = (xindex // 2000) x3 = xindex % 2000 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (2016*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (2048*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/w6/cw662frhzlhbtv7e6y3yral7v4ea62wwb2adkoxku3gvogqatytc.py # Topologically Sorted Source Nodes: [h_1, linear_1], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # h_1 => relu # linear_1 => view_2 # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu, [64, 500]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 500 x1 = (xindex // 500) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (500*(x1 % 4)) + (2016*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500, ), (1, )) assert_size_stride(primals_5, (500, 500), (500, 1)) assert_size_stride(primals_6, (500, ), (1, )) assert_size_stride(primals_7, (4, 500), (500, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf1, primals_4, buf2, buf9, 32000, grid=grid(32000), stream=stream0) del primals_4 buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [h_1, linear_1], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf2, buf3, 32000, grid=grid(32000), stream=stream0) buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (500, 500), (1, 500), 0), out=buf4) buf5 = buf2; del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_6, buf5, buf8, 32000, grid=grid(32000), stream=stream0) del primals_6 buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [h_2, linear_2], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf5, buf6, 32000, grid=grid(32000), stream=stream0) del buf5 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf7) del primals_8 return (reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf3, buf6, primals_7, buf8, primals_5, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((500, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.init import kaiming_uniform_ import torch.utils.data def weight_init(m): if m.__class__.__name__ == 'Linear': m.weight.data.copy_(kaiming_uniform_(m.weight.data)) m.bias.data.fill_(0) class ModelNet(nn.Module): def __init__(self, observation_space, action_space, h1=500, h2=500): super(ModelNet, self).__init__() self.fc1 = nn.Linear(observation_space.shape[0] + action_space. shape[0], h1) self.fc2 = nn.Linear(h1, h2) self.output_layer = nn.Linear(h2, observation_space.shape[0]) self.fc1.apply(weight_init) self.fc2.apply(weight_init) self.output_layer.apply(weight_init) def forward(self, ob, ac): h = torch.cat([ob, ac], dim=-1) h = F.relu(self.fc1(h)) h = F.relu(self.fc2(h)) return self.output_layer(h) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'observation_space': torch.rand([4, 4]), 'action_space': torch.rand([4, 4])}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.nn.init import kaiming_uniform_ import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 500 x2 = xindex // 2000 x3 = xindex % 2000 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 2016 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 2048 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 500 x1 = xindex // 500 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 500 * (x1 % 4) + 2016 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500,), (1,)) assert_size_stride(primals_5, (500, 500), (500, 1)) assert_size_stride(primals_6, (500,), (1,)) assert_size_stride(primals_7, (4, 500), (500, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf1, primals_4, buf2, buf9, 32000, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_4 buf3 = buf1 del buf1 triton_poi_fused_relu_view_2[grid(32000)](buf2, buf3, 32000, XBLOCK =256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (500, 500), ( 1, 500), 0), out=buf4) buf5 = buf2 del buf2 buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf4, primals_6, buf5, buf8, 32000, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_6 buf6 = buf4 del buf4 triton_poi_fused_relu_view_2[grid(32000)](buf5, buf6, 32000, XBLOCK =256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf6, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf7) del primals_8 return reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 8), (8, 1), 0 ), buf3, buf6, primals_7, buf8, primals_5, buf9 def weight_init(m): if m.__class__.__name__ == 'Linear': m.weight.data.copy_(kaiming_uniform_(m.weight.data)) m.bias.data.fill_(0) class ModelNetNew(nn.Module): def __init__(self, observation_space, action_space, h1=500, h2=500): super(ModelNetNew, self).__init__() self.fc1 = nn.Linear(observation_space.shape[0] + action_space. shape[0], h1) self.fc2 = nn.Linear(h1, h2) self.output_layer = nn.Linear(h2, observation_space.shape[0]) self.fc1.apply(weight_init) self.fc2.apply(weight_init) self.output_layer.apply(weight_init) def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.output_layer.weight primals_8 = self.output_layer.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
AswinRetnakumar/Machina
ModelNet
false
13,334
[ "MIT" ]
302
6519935ca4553192ac99fc1c7c1e7cab9dd72693
https://github.com/AswinRetnakumar/Machina/tree/6519935ca4553192ac99fc1c7c1e7cab9dd72693
TVLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6n/c6nimak5zbthq5qzhy4ixcujhlsgcwwimsxrlof7ud5njaqrhzf7.py # Topologically Sorted Source Nodes: [sub, pow_1, h_tv, truediv, sub_1, pow_2, w_tv, truediv_1, add, mul, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add, aten.mul] # Source node to ATen node mapping: # add => add # h_tv => sum_1 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # truediv => div # truediv_1 => div_1 # truediv_2 => div_2 # w_tv => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_7), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 12), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_12, %slice_16), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 12), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4), kwargs = {}) triton_per_fused_add_div_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex % 12 r1 = (rindex // 12) r2 = rindex % 3 r3 = (rindex // 3) tmp0 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r0 + (16*r1)), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (1 + r2 + (4*r3)), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r2 + (4*r3)), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = 0.08333333333333333 tmp17 = tmp7 * tmp16 tmp18 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tmp20 = 2.0 tmp21 = tmp19 * tmp20 tmp22 = 0.25 tmp23 = tmp21 * tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, h_tv, truediv, sub_1, pow_2, w_tv, truediv_1, add, mul, truediv_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_pow_sub_sum_0.run(buf2, arg0_1, 1, 192, grid=grid(1), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TVLoss(nn.Module): def __init__(self, TVLoss_weight=1): super(TVLoss, self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = (x.size()[2] - 1) * x.size()[3] count_w = x.size()[2] * (x.size()[3] - 1) h_tv = torch.pow(x[:, :, 1:, :] - x[:, :, :h_x - 1, :], 2).sum() w_tv = torch.pow(x[:, :, :, 1:] - x[:, :, :, :w_x - 1], 2).sum() return self.TVLoss_weight * 2 * (h_tv / count_h + w_tv / count_w ) / batch_size def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex % 12 r1 = rindex // 12 r2 = rindex % 3 r3 = rindex // 3 tmp0 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r0 + 16 * r1), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (1 + r2 + 4 * r3), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r2 + 4 * r3), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = 0.08333333333333333 tmp17 = tmp7 * tmp16 tmp18 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tmp20 = 2.0 tmp21 = tmp19 * tmp20 tmp22 = 0.25 tmp23 = tmp21 * tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_pow_sub_sum_0[grid(1)](buf2, arg0_1, 1, 192, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class TVLossNew(nn.Module): def __init__(self, TVLoss_weight=1): super(TVLossNew, self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Axrid/cv_template
TVLoss
false
13,335
[ "MIT" ]
69
5c344692a1fcfb08b75d7104bcc78307b5640ecf
https://github.com/Axrid/cv_template/tree/5c344692a1fcfb08b75d7104bcc78307b5640ecf
WSDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mz/cmz5p6zca3yecahcbga3tvqgpa5b3g637odbbpvmooy7ns67yt4k.py # Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow] # Source node to ATen node mapping: # g => mul_4 # g_pred => mul_2 # intersection => sum_1 # mul => mul # mul_1 => mul_1 # mul_3 => mul_3 # mul_5 => mul_5 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sum_2 => sum_2 # sum_3 => sum_3 # wt => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.15), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, 1), kwargs = {}) # %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %mul_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_4, 2.0), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [-1]), kwargs = {}) triton_per_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp5 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = 0.7 tmp2 = tmp0 * tmp1 tmp3 = 0.15 tmp4 = tmp2 + tmp3 tmp6 = 2.0 tmp7 = tmp5 * tmp6 tmp8 = 1.0 tmp9 = tmp7 - tmp8 tmp10 = tmp4 * tmp9 tmp11 = tmp0 * tmp6 tmp12 = tmp11 - tmp8 tmp13 = tmp4 * tmp12 tmp14 = tmp10 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp10 * tmp10 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.where(xmask, tmp20, 0) tmp23 = tl.sum(tmp22, 1)[:, None] tmp24 = tmp13 * tmp13 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, 0) tmp28 = tl.sum(tmp27, 1)[:, None] tl.store(out_ptr0 + (x0), tmp18, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) tl.store(out_ptr2 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jo/cjo432xww7vctyrb7ojy7nnu3oefdpgj6fe4hswstyckuyu2qbg4.py # Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # loss => sub_2 # loss_1 => mean # mul_6 => mul_6 # truediv => div # Graph fragment: # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, 100.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 100.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp6 = tl.load(in_ptr2 + (r0), None) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 100.0 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp3 tmp9 = tmp4 / tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 4.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow] stream0 = get_raw_stream(0) triton_per_fused_add_mul_pow_sub_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean] triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) del buf0 del buf1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch.nn.parallel class WSDiceLoss(nn.Module): def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15): super().__init__() self.smooth = smooth self.power = power self.v2 = v2 self.v1 = v1 def dice_loss(self, pred, target): iflat = pred.reshape(pred.shape[0], -1) tflat = target.reshape(pred.shape[0], -1) wt = tflat * (self.v2 - self.v1) + self.v1 g_pred = wt * (2 * iflat - 1) g = wt * (2 * tflat - 1) intersection = (g_pred * g).sum(-1) loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self. power).sum(-1) + (g ** self.power).sum(-1) + self.smooth) return loss.mean() def forward(self, pred, target, weight_mask=None): loss = self.dice_loss(pred, target) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp5 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = 0.7 tmp2 = tmp0 * tmp1 tmp3 = 0.15 tmp4 = tmp2 + tmp3 tmp6 = 2.0 tmp7 = tmp5 * tmp6 tmp8 = 1.0 tmp9 = tmp7 - tmp8 tmp10 = tmp4 * tmp9 tmp11 = tmp0 * tmp6 tmp12 = tmp11 - tmp8 tmp13 = tmp4 * tmp12 tmp14 = tmp10 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp10 * tmp10 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.where(xmask, tmp20, 0) tmp23 = tl.sum(tmp22, 1)[:, None] tmp24 = tmp13 * tmp13 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, 0) tmp28 = tl.sum(tmp27, 1)[:, None] tl.store(out_ptr0 + x0, tmp18, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) tl.store(out_ptr2 + x0, tmp28, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 100.0 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp3 tmp9 = tmp4 / tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 4.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_add_mul_pow_sub_sum_0[grid(4)](arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf2 return buf4, class WSDiceLossNew(nn.Module): def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15): super().__init__() self.smooth = smooth self.power = power self.v2 = v2 self.v1 = v1 def dice_loss(self, pred, target): iflat = pred.reshape(pred.shape[0], -1) tflat = target.reshape(pred.shape[0], -1) wt = tflat * (self.v2 - self.v1) + self.v1 g_pred = wt * (2 * iflat - 1) g = wt * (2 * tflat - 1) intersection = (g_pred * g).sum(-1) loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self. power).sum(-1) + (g ** self.power).sum(-1) + self.smooth) return loss.mean() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Atharva-Peshkar/pytorch_connectomics
WSDiceLoss
false
13,336
[ "MIT" ]
99
8eccd9640a9a454d4df095a3529a030e58f882f5
https://github.com/Atharva-Peshkar/pytorch_connectomics/tree/8eccd9640a9a454d4df095a3529a030e58f882f5
InputInjection
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nw/cnwstmvf4avgqqw5lh4fg5fqhyxv6b637lj7cpurr4it7ajwhzi5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x3 = (xindex // 2) x4 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp24 + tmp18 tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x3)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x3)), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x3)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5))) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + (x4), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a2/ca2ipk6vwg5ykf7uixiwiry7t2tymmzgrfywc7msbxu7kq6ovbsd.py # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_1 => avg_pool2d_1 # x_2 => avg_pool2d_2 # x_3 => avg_pool2d_3 # Graph fragment: # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [3, 3], [2, 2], [1, 1]), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_1, [3, 3], [2, 2], [1, 1]), kwargs = {}) # %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_2, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + ((-3) + (4*x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + ((-2) + (4*x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp12 + tmp7 tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp13 tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp22 + tmp20 tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + (4*x0), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 + tmp23 tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tmp28 + tmp26 tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + (4*x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 + tmp29 tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + (4*x0)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + (4*x0)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp37 + tmp35 tmp39 = tl.full([1], 9, tl.int32) tmp40 = tmp38 / tmp39 tmp41 = tmp0 < tmp14 tmp42 = tmp2 & tmp41 tmp43 = tmp42 & tmp42 tmp44 = tmp1 < tmp14 tmp45 = tmp8 & tmp44 tmp46 = tmp42 & tmp45 tmp47 = tmp40 + tmp40 tmp48 = tmp14 < tmp14 tmp49 = tmp15 & tmp48 tmp50 = tmp42 & tmp49 tmp51 = tmp40 + tmp47 tmp52 = tmp45 & tmp42 tmp53 = tmp40 + tmp51 tmp54 = tmp45 & tmp45 tmp55 = tmp40 + tmp53 tmp56 = tmp45 & tmp49 tmp57 = tmp40 + tmp55 tmp58 = tmp49 & tmp42 tmp59 = tmp40 + tmp57 tmp60 = tmp49 & tmp45 tmp61 = tmp40 + tmp59 tmp62 = tmp49 & tmp49 tmp63 = tmp40 + tmp61 tmp64 = tmp63 / tmp39 tmp65 = tmp64 + tmp64 tmp66 = tmp64 + tmp65 tmp67 = tmp64 + tmp66 tmp68 = tmp64 + tmp67 tmp69 = tmp64 + tmp68 tmp70 = tmp64 + tmp69 tmp71 = tmp64 + tmp70 tmp72 = tmp64 + tmp71 tmp73 = tmp72 / tmp39 tl.store(in_out_ptr0 + (x0), tmp73, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = buf1; del buf1 # reuse buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf3, buf0, 16, grid=grid(16), stream=stream0) del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class InputInjection(nn.Module): """Downsampling module for CGNet.""" def __init__(self, num_downsampling): super(InputInjection, self).__init__() self.pool = nn.ModuleList() for i in range(num_downsampling): self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) def forward(self, x): for pool in self.pool: x = pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_downsampling': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x3 = xindex // 2 x4 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp24 + tmp18 tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x3), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x3), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x3), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5) ) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + x4, tmp53, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + (-3 + 4 * x0), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + (-2 + 4 * x0), tmp11 & xmask, eviction_policy ='evict_last', other=0.0) tmp13 = tmp12 + tmp7 tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp18 & xmask, eviction_policy ='evict_last', other=0.0) tmp20 = tmp19 + tmp13 tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp21 & xmask, eviction_policy ='evict_last', other=0.0) tmp23 = tmp22 + tmp20 tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + 4 * x0, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp25 + tmp23 tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp29 = tmp28 + tmp26 tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + 4 * x0), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp32 = tmp31 + tmp29 tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + 4 * x0), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + 4 * x0), tmp36 & xmask, eviction_policy= 'evict_last', other=0.0) tmp38 = tmp37 + tmp35 tmp39 = tl.full([1], 9, tl.int32) tmp40 = tmp38 / tmp39 tmp41 = tmp0 < tmp14 tmp42 = tmp2 & tmp41 tmp42 & tmp42 tmp44 = tmp1 < tmp14 tmp45 = tmp8 & tmp44 tmp42 & tmp45 tmp47 = tmp40 + tmp40 tmp48 = tmp14 < tmp14 tmp49 = tmp15 & tmp48 tmp42 & tmp49 tmp51 = tmp40 + tmp47 tmp45 & tmp42 tmp53 = tmp40 + tmp51 tmp45 & tmp45 tmp55 = tmp40 + tmp53 tmp45 & tmp49 tmp57 = tmp40 + tmp55 tmp49 & tmp42 tmp59 = tmp40 + tmp57 tmp49 & tmp45 tmp61 = tmp40 + tmp59 tmp49 & tmp49 tmp63 = tmp40 + tmp61 tmp64 = tmp63 / tmp39 tmp65 = tmp64 + tmp64 tmp66 = tmp64 + tmp65 tmp67 = tmp64 + tmp66 tmp68 = tmp64 + tmp67 tmp69 = tmp64 + tmp68 tmp70 = tmp64 + tmp69 tmp71 = tmp64 + tmp70 tmp72 = tmp64 + tmp71 tmp73 = tmp72 / tmp39 tl.store(in_out_ptr0 + x0, tmp73, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = buf1 del buf1 buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf2 triton_poi_fused_avg_pool2d_1[grid(16)](buf3, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 return buf3, class InputInjectionNew(nn.Module): """Downsampling module for CGNet.""" def __init__(self, num_downsampling): super(InputInjectionNew, self).__init__() self.pool = nn.ModuleList() for i in range(num_downsampling): self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Atten4Vis/DemystifyLocalViT
InputInjection
false
13,337
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
MSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3o/c3ojeovop77jtjsbc2sbf6phxmf3ewz3f7gszih7ehz6obviaiu2.py # Topologically Sorted Source Nodes: [loss, loss_1, loss_2], Original ATen: [aten.mse_loss, aten.mean, aten.mul] # Source node to ATen node mapping: # loss => pow_1, sub # loss_1 => mean # loss_2 => mul # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused_mean_mse_loss_mul_0 = async_compile.triton('triton_per_fused_mean_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss, loss_1, loss_2], Original ATen: [aten.mse_loss, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mean_mse_loss_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import functools import torch from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: assert weight.dim() == loss.dim() if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1) loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def mse_loss(pred, target): """Warpper of mse loss.""" return F.mse_loss(pred, target, reduction='none') class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ loss = self.loss_weight * mse_loss(pred, target, weight, reduction= self.reduction, avg_factor=avg_factor) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import functools from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_mse_loss_mul_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: assert weight.dim() == loss.dim() if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1) loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def mse_loss(pred, target): """Warpper of mse loss.""" return F.mse_loss(pred, target, reduction='none') class MSELossNew(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Atten4Vis/DemystifyLocalViT
MSELoss
false
13,338
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
ConvEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/o4/co4nsnmwmq6u72ocszlwnicby3irkdzg333bffvczctebolija3z.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 48 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2l/c2lopujvmnumdt346ycuertt5fmhzvjrvguon2iyn4d4fxs2achu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wv/cwvgka2tdnkfhotjblshnd7peeqx5dbyqvmgelrsa445t7sdxarg.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/md/cmd6uxoj7vkg4y6dkpwgb74y3dyvezsu6l3bkfbbdav6au736de4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hn/chnpwdoej4gta7prmx4k2xe4eb3rvns4vkblxa54m5eeo3bauolj.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ms/cms2snsaekjbs2o5a7du5miwsk2blg2i4z6ztiic5tg3u4w2hrph.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) % 32 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (32*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (16 + x0 + (32*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (32*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1040 + x0 + (32*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3l/c3laeflqitli4nlvg62vqus7fk4cylqy4q3h4mdam6sibuo7ta5a.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6e/c6e64uvwope3htne4j3wnrtfgpuq4it6szqyws4rvyp3ig5gax5y.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) % 16 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (64*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1056 + x0 + (64*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/is/cislszvushfyrlagyxjg6baxtplrakvczxw352n2yl5ya2lp4xuq.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_2 # x_7 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ig/cigucyqkcssulkihmdbeutlqdudwm23dmoolk63tjgyb7v6ffn3w.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_8 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 8 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (128*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1088 + x0 + (128*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tl/ctlxvr7xz67jmpa6hj57qujjamt7ur6ixuspeyligjrnxdm4jy5g.py # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_10 => relu_3 # x_9 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ev/cevxyh3kryr7minjqzmgvdyen3krrhdenaprhkfa4nqj7rr3exy2.py # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_11 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 4 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (256*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1152 + x0 + (256*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k4/ck46lb2gu3xsigittm756kvkjit7mphtwafja2wmxou7z6lmjsgv.py # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_12 => convolution_4 # x_13 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gn/cgn7j46ycunh7bbqew3eami55g2yemwmukx752xu3c5zgzoqa2bp.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_14 => getitem_8, getitem_9 # Graph fragment: # %getitem_8 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {}) # %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y0 = yindex % 2 y4 = (yindex // 2) y2 = (yindex // 4) y5 = yindex % 4 y6 = yindex tmp0 = tl.load(in_ptr0 + (x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (256 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1024 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1280 + x3 + (512*y0) + (2048*y4)), xmask & ymask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1, 1], 1, tl.int8) tmp9 = tl.full([1, 1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1, 1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1, 1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (y5 + (4*x3) + (1024*y2)), tmp6, xmask & ymask) tl.store(out_ptr1 + (x3 + (256*y6)), tmp16, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 48, 9, grid=grid(48, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 512, 9, grid=grid(512, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.float32) buf9 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf7, buf8, buf9, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.float32) buf13 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_9.run(buf11, buf12, buf13, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf15, primals_7, 65536, grid=grid(65536), stream=stream0) del primals_7 buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.float32) buf17 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.int8) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_11.run(buf15, buf16, buf17, 16384, grid=grid(16384), stream=stream0) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_12.run(buf19, primals_9, 32768, grid=grid(32768), stream=stream0) del primals_9 buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.float32) buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.int8) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_13.run(buf19, buf20, buf21, 8192, grid=grid(8192), stream=stream0) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf23, primals_11, 16384, grid=grid(16384), stream=stream0) del primals_11 buf24 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.float32) buf25 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.int8) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_15.run(buf23, buf24, buf25, 16, 256, grid=grid(16, 256), stream=stream0) return (buf24, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21, buf23, buf25, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvEncoder(nn.Module): """ A simple Convolutional Encoder Model """ def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1)) self.relu1 = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1)) self.relu2 = nn.ReLU(inplace=True) self.maxpool2 = nn.MaxPool2d((2, 2)) self.conv3 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1)) self.relu3 = nn.ReLU(inplace=True) self.maxpool3 = nn.MaxPool2d((2, 2)) self.conv4 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1)) self.relu4 = nn.ReLU(inplace=True) self.maxpool4 = nn.MaxPool2d((2, 2)) self.conv5 = nn.Conv2d(128, 256, (3, 3), padding=(1, 1)) self.relu5 = nn.ReLU(inplace=True) self.maxpool5 = nn.MaxPool2d((2, 2)) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.relu2(x) x = self.maxpool2(x) x = self.conv3(x) x = self.relu3(x) x = self.maxpool3(x) x = self.conv4(x) x = self.relu4(x) x = self.maxpool4(x) x = self.conv5(x) x = self.relu5(x) x = self.maxpool5(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 48 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 % 32 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (16 + x0 + 32 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 32 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1040 + x0 + 32 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 % 16 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 64 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1056 + x0 + 64 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 8 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 128 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1088 + x0 + 128 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 4 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 256 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1152 + x0 + 256 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y0 = yindex % 2 y4 = yindex // 2 y2 = yindex // 4 y5 = yindex % 4 y6 = yindex tmp0 = tl.load(in_ptr0 + (x3 + 512 * y0 + 2048 * y4), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (256 + x3 + 512 * y0 + 2048 * y4), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1024 + x3 + 512 * y0 + 2048 * y4), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1280 + x3 + 512 * y0 + 2048 * y4), xmask & ymask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1, 1], 1, tl.int8) tmp9 = tl.full([1, 1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1, 1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1, 1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (y5 + 4 * x3 + 1024 * y2), tmp6, xmask & ymask) tl.store(out_ptr1 + (x3 + 256 * y6), tmp16, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(48, 9)](primals_1, buf0, 48, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((32, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_2[grid(512, 9)](primals_4, buf2, 512, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_3[grid(2048, 9)](primals_6, buf3, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_4[grid(8192, 9)](primals_8, buf4, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_6[grid(262144)](buf7, primals_2, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.float32) buf9 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(65536)](buf7, buf8, buf9, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(131072)](buf11, primals_5, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.float32) buf13 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.int8) triton_poi_fused_max_pool2d_with_indices_9[grid(32768)](buf11, buf12, buf13, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_10[grid(65536)](buf15, primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch .float32) buf17 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch .int8) triton_poi_fused_max_pool2d_with_indices_11[grid(16384)](buf15, buf16, buf17, 16384, XBLOCK=128, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_12[grid(32768)](buf19, primals_9, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.float32) buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_13[grid(8192)](buf19, buf20, buf21, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf20, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_14[grid(16384)](buf23, primals_11, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf24 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch. float32) buf25 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_15[grid(16, 256)](buf23, buf24, buf25, 16, 256, XBLOCK=256, YBLOCK=1, num_warps=4, num_stages=1) return (buf24, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf17, buf19, buf20, buf21, buf23, buf25) class ConvEncoderNew(nn.Module): """ A simple Convolutional Encoder Model """ def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1)) self.relu1 = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1)) self.relu2 = nn.ReLU(inplace=True) self.maxpool2 = nn.MaxPool2d((2, 2)) self.conv3 = nn.Conv2d(32, 64, (3, 3), padding=(1, 1)) self.relu3 = nn.ReLU(inplace=True) self.maxpool3 = nn.MaxPool2d((2, 2)) self.conv4 = nn.Conv2d(64, 128, (3, 3), padding=(1, 1)) self.relu4 = nn.ReLU(inplace=True) self.maxpool4 = nn.MaxPool2d((2, 2)) self.conv5 = nn.Conv2d(128, 256, (3, 3), padding=(1, 1)) self.relu5 = nn.ReLU(inplace=True) self.maxpool5 = nn.MaxPool2d((2, 2)) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Alexander-Minyushkin/image_similarity
ConvEncoder
false
13,339
[ "Apache-2.0" ]
160
99bb68f0ccf226c068c43ad4feb47b76f7a5f180
https://github.com/Alexander-Minyushkin/image_similarity/tree/99bb68f0ccf226c068c43ad4feb47b76f7a5f180
CrossEntropyLoss2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # loss => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t2/ct2dbabladhyyceg2gmfqrslgo4edv7x6gs7iscumud7suileuje.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # loss => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class CrossEntropyLoss2d(nn.Module): """This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class.""" def __init__(self, weight=None, ignore_index=-100): super().__init__() self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index) def forward(self, output, target): loss = self.CE(output, target) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class CrossEntropyLoss2dNew(nn.Module): """This criterion combines nn.LogSoftmax() and nn.NLLLoss() in one single class.""" def __init__(self, weight=None, ignore_index=-100): super().__init__() self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
AtlasGooo2/WoodScape
CrossEntropyLoss2d
false
13,340
[ "MIT" ]
348
597d9dda472c09bafea58ea69853948d63197eca
https://github.com/AtlasGooo2/WoodScape/tree/597d9dda472c09bafea58ea69853948d63197eca
Hsigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/al/calq2n2c6yqrixmkhatumobmz5aiem2fkhbma7mrxbgbs6pw5oaq.py # Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.2 tmp2 = tmp0 * tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = 6.0 tmp8 = triton_helpers.minimum(tmp6, tmp7) tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.2 tmp2 = tmp0 * tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = 6.0 tmp8 = triton_helpers.minimum(tmp6, tmp7) tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HsigmoidNew(nn.Module): def __init__(self, inplace=True): super(HsigmoidNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BHD233/PaddleOCR2Pytorch
Hsigmoid
false
13,341
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
ExampleBackbone
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ft/cftqaeqt35oge5l3bbpv3uhleqvp2lsejqwbjdklod7sy6k66dz2.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 46128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (3, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 46128, grid=grid(46128), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class ExampleBackbone(nn.Module): def __init__(self): super(ExampleBackbone, self).__init__() self.conv = nn.Conv2d(3, 3, 3) def init_weights(self, pretrained=None): pass def forward(self, x): return [self.conv(x)] def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 46128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (3, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(46128)](buf1, primals_2, 46128, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class ExampleBackboneNew(nn.Module): def __init__(self): super(ExampleBackboneNew, self).__init__() self.conv = nn.Conv2d(3, 3, 3) def init_weights(self, pretrained=None): pass def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Atten4Vis/DemystifyLocalViT
ExampleBackbone
false
13,342
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
ConvDecoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2u/c2u5qht532os4nfrfov242toaxqk537zy54wskh7uss5oqplxtb3.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (512*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lj/cljchghs7s25kwji6zf5u7xdcrdr6dwh7jy7qlpatd2kmj7xpra3.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (4096*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nt/cntmzt5txgqohevznc4al5y2eih467yszbml2b6xggsk3rxl47zd.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (256*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ui/cuifchlkssgxqd3yyhyenilox2sjsvrhxgqhuye3hujd6cbauu5h.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (128*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/62/c622z53iz7qctxidigolkcjhdgv3gi2oj7ew2o5qozsuwxhav6yl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zi/czidrsm7uahjflyqrnerg4jkjln2pxwwkil6yvuaz5hlhyelmhga.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 48 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lq/clqfi7hlcjymrsi7txui4btym4vbwb3lqkhoqflt5e6zfa3ae3im.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f2/cf2zplou7ifb2ooqu5ctl4wmxdwd7vn2nk6drond7ww5akzlv3cq.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3l/c3laeflqitli4nlvg62vqus7fk4cylqy4q3h4mdam6sibuo7ta5a.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sf/csf3snr7rwsgxjphuecadv2ainpqizqchb7hm3azthfhg6ffmxdg.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4h/c4hscan6vcihpy74mppss5xf67cjabzvo4xyrsfmt342dajek3o6.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_8 => convolution_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16384], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 16384 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 3 y1 = (yindex // 3) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (49152*y1)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (16384*y3)), tmp4, ymask) tl.store(out_ptr1 + (y0 + (3*x2) + (49152*y1)), tmp6, ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (256, 128, 2, 2), (512, 4, 2, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_4, (128, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 32, 2, 2), (128, 4, 2, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (16, 3, 2, 2), (12, 4, 2, 1)) assert_size_stride(primals_11, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 2, 2), (512, 1, 256, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 32768, 4, grid=grid(32768, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 1024, 16, grid=grid(1024, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 8192, 4, grid=grid(8192, 4), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 2048, 4, grid=grid(2048, 4), stream=stream0) del primals_6 buf4 = empty_strided_cuda((32, 16, 2, 2), (64, 1, 32, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 512, 4, grid=grid(512, 4), stream=stream0) del primals_8 buf5 = empty_strided_cuda((16, 3, 2, 2), (12, 1, 6, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 48, 4, grid=grid(48, 4), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 32768, grid=grid(32768), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf9, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_7, 131072, grid=grid(131072), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf13, primals_9, 262144, grid=grid(262144), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 128, 128), (49152, 1, 384, 3)) buf15 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1), torch.float32) buf16 = empty_strided_cuda((4, 3, 128, 128), (49152, 1, 384, 3), torch.bool) # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_10.run(buf14, primals_11, buf15, buf16, 12, 16384, grid=grid(12, 16384), stream=stream0) del buf14 del primals_11 return (buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 128, 2, 2), (512, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 2, 2), (256, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 3, 2, 2), (12, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvDecoder(nn.Module): """ A simple Convolutional Decoder Model """ def __init__(self): super().__init__() self.deconv1 = nn.ConvTranspose2d(256, 128, (2, 2), stride=(2, 2)) self.relu1 = nn.ReLU(inplace=True) self.deconv2 = nn.ConvTranspose2d(128, 64, (2, 2), stride=(2, 2)) self.relu2 = nn.ReLU(inplace=True) self.deconv3 = nn.ConvTranspose2d(64, 32, (2, 2), stride=(2, 2)) self.relu3 = nn.ReLU(inplace=True) self.deconv4 = nn.ConvTranspose2d(32, 16, (2, 2), stride=(2, 2)) self.relu4 = nn.ReLU(inplace=True) self.deconv5 = nn.ConvTranspose2d(16, 3, (2, 2), stride=(2, 2)) self.relu5 = nn.ReLU(inplace=True) def forward(self, x): x = self.deconv1(x) x = self.relu1(x) x = self.deconv2(x) x = self.relu2(x) x = self.deconv3(x) x = self.relu3(x) x = self.deconv4(x) x = self.relu4(x) x = self.deconv5(x) x = self.relu5(x) return x def get_inputs(): return [torch.rand([4, 256, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 512 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 256 * x2 + 4096 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 256 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 128 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 48 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 3 y1 = yindex // 3 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 49152 * y1), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 16384 * y3), tmp4, ymask) tl.store(out_ptr1 + (y0 + 3 * x2 + 49152 * y1), tmp6, ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (256, 128, 2, 2), (512, 4, 2, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_4, (128, 64, 2, 2), (256, 4, 2, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 32, 2, 2), (128, 4, 2, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (16, 3, 2, 2), (12, 4, 2, 1)) assert_size_stride(primals_11, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 2, 2), (512, 1, 256, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(32768, 4)](primals_1, buf0, 32768, 4, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.float32) triton_poi_fused_1[grid(1024, 16)](primals_3, buf1, 1024, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((128, 64, 2, 2), (256, 1, 128, 64), torch .float32) triton_poi_fused_2[grid(8192, 4)](primals_4, buf2, 8192, 4, XBLOCK= 4, YBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 32, 2, 2), (128, 1, 64, 32), torch. float32) triton_poi_fused_3[grid(2048, 4)](primals_6, buf3, 2048, 4, XBLOCK= 4, YBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((32, 16, 2, 2), (64, 1, 32, 16), torch. float32) triton_poi_fused_4[grid(512, 4)](primals_8, buf4, 512, 4, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((16, 3, 2, 2), (12, 1, 6, 3), torch.float32) triton_poi_fused_5[grid(48, 4)](primals_10, buf5, 48, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_6[grid(32768)](buf7, primals_2, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_7[grid(65536)](buf9, primals_5, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(131072)](buf11, primals_7, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_9[grid(262144)](buf13, primals_9, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf14 = extern_kernels.convolution(buf13, buf5, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 3, 128, 128), (49152, 1, 384, 3)) buf15 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1), torch.float32) buf16 = empty_strided_cuda((4, 3, 128, 128), (49152, 1, 384, 3), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(12, 16384) ](buf14, primals_11, buf15, buf16, 12, 16384, XBLOCK=256, YBLOCK=16, num_warps=8, num_stages=1) del buf14 del primals_11 return (buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf16) class ConvDecoderNew(nn.Module): """ A simple Convolutional Decoder Model """ def __init__(self): super().__init__() self.deconv1 = nn.ConvTranspose2d(256, 128, (2, 2), stride=(2, 2)) self.relu1 = nn.ReLU(inplace=True) self.deconv2 = nn.ConvTranspose2d(128, 64, (2, 2), stride=(2, 2)) self.relu2 = nn.ReLU(inplace=True) self.deconv3 = nn.ConvTranspose2d(64, 32, (2, 2), stride=(2, 2)) self.relu3 = nn.ReLU(inplace=True) self.deconv4 = nn.ConvTranspose2d(32, 16, (2, 2), stride=(2, 2)) self.relu4 = nn.ReLU(inplace=True) self.deconv5 = nn.ConvTranspose2d(16, 3, (2, 2), stride=(2, 2)) self.relu5 = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.deconv1.weight primals_2 = self.deconv1.bias primals_4 = self.deconv2.weight primals_5 = self.deconv2.bias primals_6 = self.deconv3.weight primals_7 = self.deconv3.bias primals_8 = self.deconv4.weight primals_9 = self.deconv4.bias primals_10 = self.deconv5.weight primals_11 = self.deconv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Alexander-Minyushkin/image_similarity
ConvDecoder
false
13,343
[ "Apache-2.0" ]
160
99bb68f0ccf226c068c43ad4feb47b76f7a5f180
https://github.com/Alexander-Minyushkin/image_similarity/tree/99bb68f0ccf226c068c43ad4feb47b76f7a5f180
CrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # loss => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/57/c572rujtphach6djeurlg5nv3rt5e37ifechqsganatcxbygg5m5.py # Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] # Source node to ATen node mapping: # loss => exp, log, mul, neg, sub_1, sum_1, sum_2 # loss_1 => mean # loss_cls => mul_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tmp33 = 1.0 tmp34 = tmp32 * tmp33 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, buf0, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: assert weight.dim() == loss.dim() if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1) loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=255): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. Default: 255 Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): assert pred.dim() == 2 and label.dim() == 1 or pred.dim( ) == 4 and label.dim( ) == 3, 'Only pred shape [N, C], label shape [N] or pred shape [N, C, H, W], label shape [N, H, W] are supported' label, weight = _expand_onehot_labels(label, weight, pred.shape, ignore_index) if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits(pred, label.float(), pos_weight=class_weight, reduction='none') loss = weight_reduce_loss(loss, weight, reduction=reduction, avg_factor =avg_factor) return loss def cross_entropy(pred, label, weight=None, class_weight=None, reduction= 'mean', avg_factor=None, ignore_index=-100): """The wrapper function for :func:`F.cross_entropy`""" loss = F.cross_entropy(pred, label, weight=class_weight, reduction= 'none', ignore_index=ignore_index) if weight is not None: weight = weight.float() loss = weight_reduce_loss(loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor= None, class_weight=None, ignore_index=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, 'BCE loss does not support ignore_index' assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits(pred_slice, target, weight= class_weight, reduction='mean')[None] class CrossEntropyLoss(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): super(CrossEntropyLoss, self).__init__() assert use_sigmoid is False or use_mask is False self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function.""" assert reduction_override in (None, 'none', 'mean', 'sum') reduction = (reduction_override if reduction_override else self. reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion(cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tmp33 = 1.0 tmp34 = tmp32 * tmp33 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2, buf0, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf2, def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: assert weight.dim() == loss.dim() if weight.dim() > 1: assert weight.size(1) == 1 or weight.size(1) == loss.size(1) loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=255): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (int | None): The label index to be ignored. Default: 255 Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): assert pred.dim() == 2 and label.dim() == 1 or pred.dim( ) == 4 and label.dim( ) == 3, 'Only pred shape [N, C], label shape [N] or pred shape [N, C, H, W], label shape [N, H, W] are supported' label, weight = _expand_onehot_labels(label, weight, pred.shape, ignore_index) if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits(pred, label.float(), pos_weight=class_weight, reduction='none') loss = weight_reduce_loss(loss, weight, reduction=reduction, avg_factor =avg_factor) return loss def cross_entropy(pred, label, weight=None, class_weight=None, reduction= 'mean', avg_factor=None, ignore_index=-100): """The wrapper function for :func:`F.cross_entropy`""" loss = F.cross_entropy(pred, label, weight=class_weight, reduction= 'none', ignore_index=ignore_index) if weight is not None: weight = weight.float() loss = weight_reduce_loss(loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor= None, class_weight=None, ignore_index=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. ignore_index (None): Placeholder, to be consistent with other loss. Default: None. Returns: torch.Tensor: The calculated loss """ assert ignore_index is None, 'BCE loss does not support ignore_index' assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits(pred_slice, target, weight= class_weight, reduction='mean')[None] class CrossEntropyLossNew(nn.Module): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): super(CrossEntropyLossNew, self).__init__() assert use_sigmoid is False or use_mask is False self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Atten4Vis/DemystifyLocalViT
CrossEntropyLoss
false
13,344
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
SimpleModel
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sd/csdfq3pwxme6skykh2xidrwr6t4ujkpebegmshqc4a6ptefksvl7.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() def forward(self, x): return x * 2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SimpleModelNew(nn.Module): def __init__(self): super(SimpleModelNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
AyushExel/tensorboardX
SimpleModel
false
13,345
[ "MIT" ]
5,378
34552d52d9154013d36772e4c32e9b189a3b9217
https://github.com/AyushExel/tensorboardX/tree/34552d52d9154013d36772e4c32e9b189a3b9217
SpatialGatherModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs_1 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vq/cvqpprnukykv7fb6t2uveui44qrapemorby5j3fnnfeymwpqwe63.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1, ocr_context], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class SpatialGatherModule(nn.Module): """Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, scale): super(SpatialGatherModule, self).__init__() self.scale = scale def forward(self, feats, probs): """Forward function.""" batch_size, num_classes, _height, _width = probs.size() channels = feats.size(1) probs = probs.view(batch_size, num_classes, -1) feats = feats.view(batch_size, channels, -1) feats = feats.permute(0, 2, 1) probs = F.softmax(self.scale * probs, dim=2) ocr_context = torch.matmul(probs, feats) ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) return ocr_context def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK= 8, num_warps=2, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), class SpatialGatherModuleNew(nn.Module): """Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, scale): super(SpatialGatherModuleNew, self).__init__() self.scale = scale def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Atten4Vis/DemystifyLocalViT
SpatialGatherModule
false
13,346
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
AdaptiveAvgMaxPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def pooling_factor(pool_type='avg'): return 2 if pool_type == 'avgmaxc' else 1 class AdaptiveAvgMaxPool2d(torch.nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self, output_size=1, pool_type='avg'): super(AdaptiveAvgMaxPool2d, self).__init__() self.output_size = output_size self.pool_type = pool_type if pool_type == 'avgmaxc' or pool_type == 'avgmax': self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size), nn.AdaptiveMaxPool2d(output_size)]) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': None self.pool = nn.AdaptiveAvgPool2d(output_size) def forward(self, x): if self.pool_type == 'avgmaxc': x = torch.cat([p(x) for p in self.pool], dim=1) elif self.pool_type == 'avgmax': x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]), 0 ).squeeze(dim=0) else: x = self.pool(x) return x def factor(self): return pooling_factor(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' + 'output_size=' + str(self. output_size) + ', pool_type=' + self.pool_type + '))' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, def pooling_factor(pool_type='avg'): return 2 if pool_type == 'avgmaxc' else 1 class AdaptiveAvgMaxPool2dNew(torch.nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self, output_size=1, pool_type='avg'): super(AdaptiveAvgMaxPool2dNew, self).__init__() self.output_size = output_size self.pool_type = pool_type if pool_type == 'avgmaxc' or pool_type == 'avgmax': self.pool = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size), nn.AdaptiveMaxPool2d(output_size)]) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': None self.pool = nn.AdaptiveAvgPool2d(output_size) def factor(self): return pooling_factor(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' + 'output_size=' + str(self. output_size) + ', pool_type=' + self.pool_type + '))' def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BCV-Uniandes/DMS
AdaptiveAvgMaxPool2d
false
13,347
[ "MIT" ]
66
9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16
https://github.com/BCV-Uniandes/DMS/tree/9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16
TripletLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zj/czjfayfcarkuoamzfcxjw3kmfgj6fl22etyizczrjgbqk5bwokbq.py # Topologically Sorted Source Nodes: [x, y], Original ATen: [aten.div] # Source node to ATen node mapping: # x => div # y => div_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand_1), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qz/cqzob3vprd66msbqxksowaomykxxjuerzonuix4auynyweifzuqd.py # Topologically Sorted Source Nodes: [max_1, min_1], Original ATen: [aten.max, aten.min] # Source node to ATen node mapping: # max_1 => getitem # min_1 => getitem_2 # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {}) # %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%min_1, 0), kwargs = {}) triton_poi_fused_max_min_1 = async_compile.triton('triton_poi_fused_max_min_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_min_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_min_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp19 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (2)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp28 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3)) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = tmp1 - tmp2 tmp7 = tmp4 == tmp6 tmp8 = tmp7.to(tl.float32) tmp9 = tmp3 * tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp1 - tmp11 tmp15 = tmp4 == tmp14 tmp16 = tmp15.to(tl.float32) tmp17 = tmp12 * tmp16 tmp18 = triton_helpers.maximum(tmp9, tmp17) tmp20 = tmp19 * tmp1 tmp21 = tmp1 - tmp20 tmp24 = tmp4 == tmp23 tmp25 = tmp24.to(tl.float32) tmp26 = tmp21 * tmp25 tmp27 = triton_helpers.maximum(tmp18, tmp26) tmp29 = tmp28 * tmp1 tmp30 = tmp1 - tmp29 tmp33 = tmp4 == tmp32 tmp34 = tmp33.to(tl.float32) tmp35 = tmp30 * tmp34 tmp36 = triton_helpers.maximum(tmp27, tmp35) tmp37 = tmp4 != tmp6 tmp38 = tmp37.to(tl.float32) tmp39 = tmp3 * tmp38 tmp40 = 99999999.0 tmp41 = tmp8 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp4 != tmp14 tmp44 = tmp43.to(tl.float32) tmp45 = tmp12 * tmp44 tmp46 = tmp16 * tmp40 tmp47 = tmp45 + tmp46 tmp48 = triton_helpers.minimum(tmp42, tmp47) tmp49 = tmp4 != tmp23 tmp50 = tmp49.to(tl.float32) tmp51 = tmp21 * tmp50 tmp52 = tmp25 * tmp40 tmp53 = tmp51 + tmp52 tmp54 = triton_helpers.minimum(tmp48, tmp53) tmp55 = tmp4 != tmp32 tmp56 = tmp55.to(tl.float32) tmp57 = tmp30 * tmp56 tmp58 = tmp34 * tmp40 tmp59 = tmp57 + tmp58 tmp60 = triton_helpers.minimum(tmp54, tmp59) tl.store(out_ptr0 + (x0), tmp36, xmask) tl.store(out_ptr1 + (x0), tmp60, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, y], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, buf1, 16, grid=grid(16), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, mm], Original ATen: [aten.div, aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4, ), (1, ), torch.float32) buf4 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [max_1, min_1], Original ATen: [aten.max, aten.min] triton_poi_fused_max_min_1.run(buf2, arg1_1, buf3, buf4, 4, grid=grid(4), stream=stream0) del arg1_1 del buf2 buf5 = empty_strided_cuda((0, ), (1, ), torch.float32) return (buf5, buf4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn def cosine_dist(x, y): """Computes Cosine Distance.""" x = F.normalize(x, dim=1) y = F.normalize(y, dim=1) dist = 2 - 2 * torch.mm(x, y.t()) return dist def euclidean_dist(x, y): """Computes Euclidean distance.""" m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t() dist = xx + yy - 2 * torch.matmul(x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist def hard_example_mining(distance_matrix, pos_idxs, neg_idxs): """For each anchor, find the hardest positive and negative sample. Args: distance_matrix: pair wise distance between samples, shape [N, M] pos_idxs: positive index with shape [N, M] neg_idxs: negative index with shape [N, M] Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] p_inds: pytorch LongTensor, with shape [N]; indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1 n_inds: pytorch LongTensor, with shape [N]; indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1 Note: Only consider the case in which all targets have same num of samples, thus we can cope with all anchors in parallel. """ assert len(distance_matrix.size()) == 2 dist_ap, _ = torch.max(distance_matrix * pos_idxs, dim=1) dist_an, _ = torch.min(distance_matrix * neg_idxs + pos_idxs * 99999999.0, dim=1) return dist_ap, dist_an def softmax_weights(dist, mask): max_v = torch.max(dist * mask, dim=1, keepdim=True)[0] difference = dist - max_v z = torch.sum(torch.exp(difference) * mask, dim=1, keepdim=True) + 1e-06 weights = torch.exp(difference) * mask / z return weights def weighted_example_mining(distance_matrix, pos_idxs, neg_idxs): """For each anchor, find the weighted positive and negative sample. Args: distance_matrix: pytorch Variable, pair wise distance between samples, shape [N, N] pos_idxs:positive index with shape [N, M] neg_idxs: negative index with shape [N, M] Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] """ assert len(distance_matrix.size()) == 2 dist_ap = distance_matrix * pos_idxs dist_an = distance_matrix * neg_idxs weights_ap = softmax_weights(dist_ap, pos_idxs) weights_an = softmax_weights(-dist_an, neg_idxs) dist_ap = torch.sum(dist_ap * weights_ap, dim=1) dist_an = torch.sum(dist_an * weights_an, dim=1) return dist_ap, dist_an class TripletLoss(nn.Module): """Computes Triplet loss. Args: normalize_features: Whether to normalize the features. Default = True margin: The value for margin. Default = None. hard_mining: Whether to use hard sample mining. Default = True. """ def __init__(self, normalize_features: 'bool'=True, margin: 'float'= None, hard_mining: 'bool'=True): """Constructor method for TripletLoss.""" super(TripletLoss, self).__init__() self.normalize_features = normalize_features self.margin = margin self.hard_mining = hard_mining def forward(self, embedding: 'torch.Tensor', targets: 'torch.Tensor' ) ->torch.Tensor: """Forward Method. Args: embedding: The output of the network. targets: The targets. Returns: The computed Triplet Loss. """ distance_matrix = cosine_dist(embedding, embedding ) if self.normalize_features else euclidean_dist(embedding, embedding) n = distance_matrix.size(0) pos_idxs = targets.view(n, 1).expand(n, n).eq(targets.view(n, 1). expand(n, n).t()).float() neg_idxs = targets.view(n, 1).expand(n, n).ne(targets.view(n, 1). expand(n, n).t()).float() if self.hard_mining: dist_ap, dist_an = hard_example_mining(distance_matrix= distance_matrix, pos_idxs=pos_idxs, neg_idxs=neg_idxs) else: dist_ap, dist_an = weighted_example_mining(distance_matrix= distance_matrix, pos_idxs=pos_idxs, neg_idxs=neg_idxs) y = dist_an.new().resize_as_(dist_an).fill_(1) if self.margin is not None and self.margin > 0: loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=self. margin) else: loss = F.soft_margin_loss(dist_an - dist_ap, y) if loss == float('Inf'): loss = F.margin_ranking_loss(dist_an, dist_ap, y, margin=0.3) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 1])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_max_min_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp10 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + 1) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp19 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr1 + 2) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp28 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + 3) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = tmp1 - tmp2 tmp7 = tmp4 == tmp6 tmp8 = tmp7.to(tl.float32) tmp9 = tmp3 * tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp1 - tmp11 tmp15 = tmp4 == tmp14 tmp16 = tmp15.to(tl.float32) tmp17 = tmp12 * tmp16 tmp18 = triton_helpers.maximum(tmp9, tmp17) tmp20 = tmp19 * tmp1 tmp21 = tmp1 - tmp20 tmp24 = tmp4 == tmp23 tmp25 = tmp24.to(tl.float32) tmp26 = tmp21 * tmp25 tmp27 = triton_helpers.maximum(tmp18, tmp26) tmp29 = tmp28 * tmp1 tmp30 = tmp1 - tmp29 tmp33 = tmp4 == tmp32 tmp34 = tmp33.to(tl.float32) tmp35 = tmp30 * tmp34 tmp36 = triton_helpers.maximum(tmp27, tmp35) tmp37 = tmp4 != tmp6 tmp38 = tmp37.to(tl.float32) tmp39 = tmp3 * tmp38 tmp40 = 99999999.0 tmp41 = tmp8 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp4 != tmp14 tmp44 = tmp43.to(tl.float32) tmp45 = tmp12 * tmp44 tmp46 = tmp16 * tmp40 tmp47 = tmp45 + tmp46 tmp48 = triton_helpers.minimum(tmp42, tmp47) tmp49 = tmp4 != tmp23 tmp50 = tmp49.to(tl.float32) tmp51 = tmp21 * tmp50 tmp52 = tmp25 * tmp40 tmp53 = tmp51 + tmp52 tmp54 = triton_helpers.minimum(tmp48, tmp53) tmp55 = tmp4 != tmp32 tmp56 = tmp55.to(tl.float32) tmp57 = tmp30 * tmp56 tmp58 = tmp34 * tmp40 tmp59 = tmp57 + tmp58 tmp60 = triton_helpers.minimum(tmp54, tmp59) tl.store(out_ptr0 + x0, tmp36, xmask) tl.store(out_ptr1 + x0, tmp60, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(16)](arg0_1, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4,), (1,), torch.float32) buf4 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_max_min_1[grid(4)](buf2, arg1_1, buf3, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) del arg1_1 del buf2 buf5 = empty_strided_cuda((0,), (1,), torch.float32) return buf5, buf4, buf3 def cosine_dist(x, y): """Computes Cosine Distance.""" x = F.normalize(x, dim=1) y = F.normalize(y, dim=1) dist = 2 - 2 * torch.mm(x, y.t()) return dist def euclidean_dist(x, y): """Computes Euclidean distance.""" m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t() dist = xx + yy - 2 * torch.matmul(x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist def hard_example_mining(distance_matrix, pos_idxs, neg_idxs): """For each anchor, find the hardest positive and negative sample. Args: distance_matrix: pair wise distance between samples, shape [N, M] pos_idxs: positive index with shape [N, M] neg_idxs: negative index with shape [N, M] Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] p_inds: pytorch LongTensor, with shape [N]; indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1 n_inds: pytorch LongTensor, with shape [N]; indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1 Note: Only consider the case in which all targets have same num of samples, thus we can cope with all anchors in parallel. """ assert len(distance_matrix.size()) == 2 dist_ap, _ = torch.max(distance_matrix * pos_idxs, dim=1) dist_an, _ = torch.min(distance_matrix * neg_idxs + pos_idxs * 99999999.0, dim=1) return dist_ap, dist_an def softmax_weights(dist, mask): max_v = torch.max(dist * mask, dim=1, keepdim=True)[0] difference = dist - max_v z = torch.sum(torch.exp(difference) * mask, dim=1, keepdim=True) + 1e-06 weights = torch.exp(difference) * mask / z return weights def weighted_example_mining(distance_matrix, pos_idxs, neg_idxs): """For each anchor, find the weighted positive and negative sample. Args: distance_matrix: pytorch Variable, pair wise distance between samples, shape [N, N] pos_idxs:positive index with shape [N, M] neg_idxs: negative index with shape [N, M] Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] """ assert len(distance_matrix.size()) == 2 dist_ap = distance_matrix * pos_idxs dist_an = distance_matrix * neg_idxs weights_ap = softmax_weights(dist_ap, pos_idxs) weights_an = softmax_weights(-dist_an, neg_idxs) dist_ap = torch.sum(dist_ap * weights_ap, dim=1) dist_an = torch.sum(dist_an * weights_an, dim=1) return dist_ap, dist_an class TripletLossNew(nn.Module): """Computes Triplet loss. Args: normalize_features: Whether to normalize the features. Default = True margin: The value for margin. Default = None. hard_mining: Whether to use hard sample mining. Default = True. """ def __init__(self, normalize_features: 'bool'=True, margin: 'float'= None, hard_mining: 'bool'=True): """Constructor method for TripletLoss.""" super(TripletLossNew, self).__init__() self.normalize_features = normalize_features self.margin = margin self.hard_mining = hard_mining def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Atharva-Phatak/torchflare
TripletLoss
false
13,348
[ "Apache-2.0" ]
86
945f4bee73a855edd8cb19cd646731155499a27f
https://github.com/Atharva-Phatak/torchflare/tree/945f4bee73a855edd8cb19cd646731155499a27f
AttentionPool2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ct/cctgbe64jgxq3sxjjjqccvq653sunfecfcizp3jcofnl7uiib7wo.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add] # Source node to ATen node mapping: # x_1 => cat # x_2 => add # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %view], -1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %unsqueeze), kwargs = {}) triton_poi_fused_add_cat_1 = async_compile.triton('triton_poi_fused_add_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 17 x3 = (xindex // 17) x4 = xindex % 68 x5 = xindex tmp15 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 16.0 tmp7 = tmp5 / tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 17, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr1 + ((16*x3) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + (x5), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rq/crqhbpxwwpvdowuqzuzvjdahxv45tx2y4dpxda2rurvr5kralgbn.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.7071067811865475), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 68) x3 = xindex % 68 x1 = (xindex // 17) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (204*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cr/ccrjqh2olqyevqox4t3kpoubo2s2m44cuvtxmf2k3slvdcgmmlcm.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865475), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 68) x3 = xindex % 68 x1 = (xindex // 17) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (68 + x3 + (204*x2)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6p/c6p34hneq7lp7a3tjiwk44lxqe2hzbpdjgbgmanamv35xvznwb2j.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 68 rnumel = 17 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (17*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (17*x0)), tmp11, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wf/cwf36kt6t5p6sv4fjknukcyy4vz6ejfamnreogfggthvquklzkf6.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 17) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oe/coet3g5rxo652nti4d4ogiwpej2mrpgh4cyidpv6aivegc4mda7s.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_5 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (68*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (17*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uk/cuk32wvqx6lzak6biu2zut26pzpqa3ell4xsxs3qv3cpuuon7kkw.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_5 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 17) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 17), (17, 1)) assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (12, ), (1, )) assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add] triton_poi_fused_add_cat_1.run(buf0, primals_1, primals_2, buf1, 272, grid=grid(272), stream=stream0) del buf0 del primals_1 del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 12, 17), (204, 17, 1)) buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf2, primals_4, buf3, 272, grid=grid(272), stream=stream0) buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf2, primals_4, buf4, 272, grid=grid(272), stream=stream0) buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17), 0), buf4, out=buf5) buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_4.run(buf5, buf8, 68, 17, grid=grid(68), stream=stream0) del buf5 buf9 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf9, primals_4, 816, grid=grid(816), stream=stream0) del primals_4 buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204, 1, 17), 136), out=buf10) buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf10, buf11, 16, 17, grid=grid(16, 17), stream=stream0) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 17), (68, 17, 1)) del buf11 buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf13, primals_6, 272, grid=grid(272), stream=stream0) del primals_6 return (reinterpret_tensor(buf13, (4, 4), (68, 17), 0), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204, 17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 17), (17, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np import torch as th import torch.nn as nn def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f'unsupported dimensions: {dims}') def count_flops_attn(model, _x, y): """ A counter for the `thop` package to count the operations in an attention operation. Meant to be used like: macs, params = thop.profile( model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops}, ) """ b, c, *spatial = y[0].shape num_spatial = int(np.prod(spatial)) matmul_ops = 2 * b * num_spatial ** 2 * c model.total_ops += th.DoubleTensor([matmul_ops]) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self. n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length)) weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class AttentionPool2d(nn.Module): """ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py """ def __init__(self, spacial_dim: 'int', embed_dim: 'int', num_heads_channels: 'int', output_dim: 'int'=None): super().__init__() self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) self.num_heads = embed_dim // num_heads_channels self.attention = QKVAttention(self.num_heads) def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) x = x + self.positional_embedding[None, :, :] x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x[:, :, 0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'spacial_dim': 4, 'embed_dim': 4, 'num_heads_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import numpy as np import torch as th import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 17 x3 = xindex // 17 x4 = xindex % 68 x5 = xindex tmp15 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 16.0 tmp7 = tmp5 / tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 17, tl.int64) tmp13 = tl.load(in_ptr1 + (16 * x3 + (-1 + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + x5, tmp16, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 68 x3 = xindex % 68 x1 = xindex // 17 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 204 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 68 x3 = xindex % 68 x1 = xindex // 17 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (68 + x3 + 204 * x2), xmask) tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 68 rnumel = 17 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 17 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 17 * x0), tmp11, rmask & xmask) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 17 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 68 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 17 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 17 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 17), (17, 1)) assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (12,), (1,)) assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_per_fused_mean_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) triton_poi_fused_add_cat_1[grid(272)](buf0, primals_1, primals_2, buf1, 272, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_1 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 12, 17), (204, 17, 1)) buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) triton_poi_fused_mul_2[grid(272)](buf2, primals_4, buf3, 272, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) triton_poi_fused_mul_3[grid(272)](buf2, primals_4, buf4, 272, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17), 0), buf4, out=buf5) buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32) triton_per_fused__softmax_4[grid(68)](buf5, buf8, 68, 17, XBLOCK=8, num_warps=2, num_stages=1) del buf5 buf9 = buf2 del buf2 triton_poi_fused_convolution_5[grid(816)](buf9, primals_4, 816, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204, 1, 17), 136), out=buf10) buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32) triton_poi_fused_convolution_6[grid(16, 17)](buf10, buf11, 16, 17, XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 17), (68, 17, 1)) del buf11 buf13 = buf12 del buf12 triton_poi_fused_convolution_7[grid(272)](buf13, primals_6, 272, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 return reinterpret_tensor(buf13, (4, 4), (68, 17), 0 ), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204, 17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0 ) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f'unsupported dimensions: {dims}') def count_flops_attn(model, _x, y): """ A counter for the `thop` package to count the operations in an attention operation. Meant to be used like: macs, params = thop.profile( model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops}, ) """ b, c, *spatial = y[0].shape num_spatial = int(np.prod(spatial)) matmul_ops = 2 * b * num_spatial ** 2 * c model.total_ops += th.DoubleTensor([matmul_ops]) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self. n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length)) weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class AttentionPool2dNew(nn.Module): """ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py """ def __init__(self, spacial_dim: 'int', embed_dim: 'int', num_heads_channels: 'int', output_dim: 'int'=None): super().__init__() self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5) self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) self.num_heads = embed_dim // num_heads_channels self.attention = QKVAttention(self.num_heads) def forward(self, input_0): primals_2 = self.positional_embedding primals_3 = self.qkv_proj.weight primals_4 = self.qkv_proj.bias primals_5 = self.c_proj.weight primals_6 = self.c_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
AranKomat/Diff-DALLE
AttentionPool2d
false
13,349
[ "MIT" ]
53
9418e98e97b599c5c65f16ee168fedf76a29095f
https://github.com/AranKomat/Diff-DALLE/tree/9418e98e97b599c5c65f16ee168fedf76a29095f
IoULoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5v/c5vh6nzsevsim32na7jvjcc2rudhxv6uvyusdqz3u53gnn6chxnq.py # Topologically Sorted Source Nodes: [input_1, mul, intersection, add, mul_1, sub, union, iou, iou_dual, iou_dual_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # input_1 => sigmoid # intersection => sum_1 # iou => div # iou_dual => sub_1 # iou_dual_1 => div_1 # mul => mul # mul_1 => mul_1 # sub => sub # union => sum_2 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %div), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, 4), kwargs = {}) triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp1 + tmp2 tmp8 = tmp7 - tmp3 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp6 / tmp11 tmp13 = 4.0 tmp14 = tmp13 - tmp12 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_1, mul, intersection, add, mul_1, sub, union, iou, iou_dual, iou_dual_1], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class IoULoss(nn.Module): """ Creates a criterion that computes the Intersection over Union (IoU) between a segmentation mask and its ground truth. Rahman, M.A. and Wang, Y: Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. International Symposium on Visual Computing (2016) http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf """ def __init__(self, size_average=True): super().__init__() self.size_average = size_average def forward(self, input, target): input = F.sigmoid(input) intersection = (input * target).sum() union = (input + target - input * target).sum() iou = intersection / union iou_dual = input.size(0) - iou if self.size_average: iou_dual = iou_dual / input.size(0) return iou_dual def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp1 + tmp2 tmp8 = tmp7 - tmp3 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp6 / tmp11 tmp13 = 4.0 tmp14 = tmp13 - tmp12 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sigmoid_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class IoULossNew(nn.Module): """ Creates a criterion that computes the Intersection over Union (IoU) between a segmentation mask and its ground truth. Rahman, M.A. and Wang, Y: Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation. International Symposium on Visual Computing (2016) http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf """ def __init__(self, size_average=True): super().__init__() self.size_average = size_average def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BCV-Uniandes/DMS
IoULoss
false
13,350
[ "MIT" ]
66
9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16
https://github.com/BCV-Uniandes/DMS/tree/9fa3a3a2ef5980dd17e21b73234a4cd0b3d00e16
GHMR
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oz/cozsertrqgjrqyur62xx2dwoox3tbac6et7fykm33ltnl7jxfmfm.py # Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt] # Source node to ATen node mapping: # sum_1 => sum_1 # valid => gt # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {}) triton_per_fused_gt_sum_0 = async_compile.triton('triton_per_fused_gt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 0.0 tmp5 = tmp0 > tmp4 tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp5, None) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2a/c2ayatl72atxz7llof44xg6xfcod4w34uyxjsxirgoqzc6bhc5er.py # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # add_1 => add_1 # diff => sub # loss => sub_1 # mul => mul # mul_1 => mul_1 # sqrt => sqrt # sqrt_1 => sqrt_1 # truediv => div # Graph fragment: # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.0004), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, 0.02), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 0.0004), kwargs = {}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {}) triton_poi_fused_abs_add_div_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_abs_add_div_mul_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 0.0004 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = 0.02 tmp8 = tmp6 - tmp7 tmp9 = tmp2 / tmp6 tmp10 = tl_math.abs(tmp9) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdhovzy3i75dbb4lrrvs36jdqekoz77qi3q3aloxdafcrzuwdjh.py # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] # Source node to ATen node mapping: # weights => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_like_2 = async_compile.triton('triton_poi_fused_zeros_like_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt] stream0 = get_raw_stream(0) triton_per_fused_gt_sum_0.run(arg2_1, buf0, buf4, 1, 256, grid=grid(1), stream=stream0) del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs] triton_poi_fused_abs_add_div_mul_sqrt_sub_1.run(arg0_1, arg1_1, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] triton_poi_fused_zeros_like_2.run(buf3, 256, grid=grid(256), stream=stream0) return (buf0, buf1, buf2, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class GHMR(nn.Module): """GHM Regression Loss. Details of the theorem can be viewed in the paper `Gradient Harmonized Single-stage Detector <https://arxiv.org/abs/1811.05181>`_. Args: mu (float): The parameter for the Authentic Smooth L1 loss. bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. loss_weight (float): The weight of the total GHM-R loss. """ def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0): super(GHMR, self).__init__() self.mu = mu self.bins = bins edges = torch.arange(bins + 1).float() / bins self.register_buffer('edges', edges) self.edges[-1] = 1000.0 self.momentum = momentum if momentum > 0: acc_sum = torch.zeros(bins) self.register_buffer('acc_sum', acc_sum) self.loss_weight = loss_weight def forward(self, pred, target, label_weight, avg_factor=None): """Calculate the GHM-R loss. Args: pred (float tensor of size [batch_num, 4 (* class_num)]): The prediction of box regression layer. Channel number can be 4 or 4 * class_num depending on whether it is class-agnostic. target (float tensor of size [batch_num, 4 (* class_num)]): The target regression values with the same size of pred. label_weight (float tensor of size [batch_num, 4 (* class_num)]): The weight of each sample, 0 if ignored. Returns: The gradient harmonized loss. """ mu = self.mu edges = self.edges mmt = self.momentum diff = pred - target loss = torch.sqrt(diff * diff + mu * mu) - mu g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach() weights = torch.zeros_like(g) valid = label_weight > 0 tot = max(label_weight.float().sum().item(), 1.0) n = 0 for i in range(self.bins): inds = (g >= edges[i]) & (g < edges[i + 1]) & valid num_in_bin = inds.sum().item() if num_in_bin > 0: n += 1 if mmt > 0: self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt ) * num_in_bin weights[inds] = tot / self.acc_sum[i] else: weights[inds] = tot / num_in_bin if n > 0: weights /= n loss = loss * weights loss = loss.sum() / tot return loss * self.loss_weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp4 = 0.0 tmp5 = tmp0 > tmp4 tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp5, None) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None) @triton.jit def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 0.0004 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = 0.02 tmp8 = tmp6 - tmp7 tmp9 = tmp2 / tmp6 tmp10 = tl_math.abs(tmp9) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_per_fused_gt_sum_0[grid(1)](arg2_1, buf0, buf4, 1, 256, num_warps=2, num_stages=1) del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_abs_add_div_mul_sqrt_sub_1[grid(256)](arg0_1, arg1_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_zeros_like_2[grid(256)](buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf0, buf1, buf2, buf3, buf4 class GHMRNew(nn.Module): """GHM Regression Loss. Details of the theorem can be viewed in the paper `Gradient Harmonized Single-stage Detector <https://arxiv.org/abs/1811.05181>`_. Args: mu (float): The parameter for the Authentic Smooth L1 loss. bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. loss_weight (float): The weight of the total GHM-R loss. """ def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0): super(GHMRNew, self).__init__() self.mu = mu self.bins = bins edges = torch.arange(bins + 1).float() / bins self.register_buffer('edges', edges) self.edges[-1] = 1000.0 self.momentum = momentum if momentum > 0: acc_sum = torch.zeros(bins) self.register_buffer('acc_sum', acc_sum) self.loss_weight = loss_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Atten4Vis/DemystifyLocalViT
GHMR
false
13,351
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
RepeatChannel
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ft/cft7nruwawwktg3sagd5zukvvrybsovhtkcpuag7fsxmozul63yd.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%arg0_1, [1, 4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 16 x2 = (xindex // 256) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*(x1 % 4)) + (64*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class RepeatChannel(nn.Module): def __init__(self, repeat): super(RepeatChannel, self).__init__() self.repeat = repeat def forward(self, img): return img.repeat(1, self.repeat, 1, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'repeat': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 16 x2 = xindex // 256 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * (x1 % 4) + 64 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_repeat_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RepeatChannelNew(nn.Module): def __init__(self, repeat): super(RepeatChannelNew, self).__init__() self.repeat = repeat def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
AyushExel/GANSketching
RepeatChannel
false
13,352
[ "MIT" ]
598
c72524ac4425de898087af7a4c554b777a4e2218
https://github.com/AyushExel/GANSketching/tree/c72524ac4425de898087af7a4c554b777a4e2218
PixelShuffleICNR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2d/c2dyd6cxufxiz7t2xxctkapc3g6iacdxmd3isuzgu56z6l2crhd6.py # Topologically Sorted Source Nodes: [pixel_shuffle], Original ATen: [aten.pixel_shuffle] # Source node to ATen node mapping: # pixel_shuffle => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_pixel_shuffle_0 = async_compile.triton('triton_poi_fused_pixel_shuffle_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 2], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pixel_shuffle_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pixel_shuffle_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x4 = xindex y0 = yindex % 4 y1 = (yindex // 4) % 2 y2 = (yindex // 8) % 4 y3 = (yindex // 32) y5 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*x4) + (32*y1) + (64*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4 + (2*y5)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [pixel_shuffle], Original ATen: [aten.pixel_shuffle] stream0 = get_raw_stream(0) triton_poi_fused_pixel_shuffle_0.run(buf0, buf1, 128, 2, grid=grid(128, 2), stream=stream0) del buf0 return (reinterpret_tensor(buf1, (4, 1, 8, 8), (64, 64, 8, 1), 0), primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class PixelShuffleICNR(nn.Module): def __init__(self, in_planes, out_planes, scale=2): super().__init__() self.conv = conv1x1(in_planes, out_planes) self.shuffle = nn.PixelShuffle(scale) kernel = self.ICNR(self.conv.weight, upscale_factor=scale) self.conv.weight.data.copy_(kernel) @staticmethod def ICNR(tensor, upscale_factor=2, inizializer=nn.init.kaiming_normal_): """Fills the input Tensor or Variable with values according to the method described in "Checkerboard artifact free sub-pixel convolution" https://arxiv.org/abs/1707.02937 Andrew Aitken et al. (2017), this inizialization should be used in the last convolutional layer before a PixelShuffle operation :param tensor: an n-dimensional torch.Tensor or autograd.Variable :param upscale_factor: factor to increase spatial resolution by :param inizializer: inizializer to be used for sub_kernel inizialization """ new_shape = [int(tensor.shape[0] / upscale_factor ** 2)] + list(tensor .shape[1:]) sub_kernel = torch.zeros(new_shape) sub_kernel = inizializer(sub_kernel) sub_kernel = sub_kernel.transpose(0, 1) sub_kernel = sub_kernel.contiguous().view(sub_kernel.shape[0], sub_kernel.shape[1], -1) kernel = sub_kernel.repeat(1, 1, upscale_factor ** 2) transposed_shape = [tensor.shape[1]] + [tensor.shape[0]] + list(tensor .shape[2:]) kernel = kernel.contiguous().view(transposed_shape) kernel = kernel.transpose(0, 1) return kernel def forward(self, x): return self.shuffle(self.conv(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'out_planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pixel_shuffle_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x4 = xindex y0 = yindex % 4 y1 = yindex // 4 % 2 y2 = yindex // 8 % 4 y3 = yindex // 32 y5 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * x4 + 32 * y1 + 64 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4 + 2 * y5), tmp0, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 4, 2, 4, 2), (64, 64, 16, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pixel_shuffle_0[grid(128, 2)](buf0, buf1, 128, 2, XBLOCK=2, YBLOCK=64, num_warps=4, num_stages=1) del buf0 return reinterpret_tensor(buf1, (4, 1, 8, 8), (64, 64, 8, 1), 0 ), primals_1, primals_2 def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class PixelShuffleICNRNew(nn.Module): def __init__(self, in_planes, out_planes, scale=2): super().__init__() self.conv = conv1x1(in_planes, out_planes) self.shuffle = nn.PixelShuffle(scale) kernel = self.ICNR(self.conv.weight, upscale_factor=scale) self.conv.weight.data.copy_(kernel) @staticmethod def ICNR(tensor, upscale_factor=2, inizializer=nn.init.kaiming_normal_): """Fills the input Tensor or Variable with values according to the method described in "Checkerboard artifact free sub-pixel convolution" https://arxiv.org/abs/1707.02937 Andrew Aitken et al. (2017), this inizialization should be used in the last convolutional layer before a PixelShuffle operation :param tensor: an n-dimensional torch.Tensor or autograd.Variable :param upscale_factor: factor to increase spatial resolution by :param inizializer: inizializer to be used for sub_kernel inizialization """ new_shape = [int(tensor.shape[0] / upscale_factor ** 2)] + list(tensor .shape[1:]) sub_kernel = torch.zeros(new_shape) sub_kernel = inizializer(sub_kernel) sub_kernel = sub_kernel.transpose(0, 1) sub_kernel = sub_kernel.contiguous().view(sub_kernel.shape[0], sub_kernel.shape[1], -1) kernel = sub_kernel.repeat(1, 1, upscale_factor ** 2) transposed_shape = [tensor.shape[1]] + [tensor.shape[0]] + list(tensor .shape[2:]) kernel = kernel.contiguous().view(transposed_shape) kernel = kernel.transpose(0, 1) return kernel def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
AtlasGooo2/WoodScape
PixelShuffleICNR
false
13,353
[ "MIT" ]
348
597d9dda472c09bafea58ea69853948d63197eca
https://github.com/AtlasGooo2/WoodScape/tree/597d9dda472c09bafea58ea69853948d63197eca
Mlp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nh/cnhx37tsffx4r7taj3xi72s7yfpnnccem24fupfbht6b7bzliavu.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_1 => add, erf, mul, mul_1, mul_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.gelu] stream0 = get_raw_stream(0) triton_poi_fused_gelu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_gelu_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4 class MlpNew(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Atten4Vis/DemystifyLocalViT
Mlp
false
13,354
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
MonoLinearHyperNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3v/c3vb5yn3xqc7zzpcdx25of3xswnqdr6bcmykof6kgugznu46p3sa.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp8 = tmp7 / tmp5 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/33/c33l2klxrl7oq4sgwznyguv3gcncbnv6c6bqfmrgrx7lzj4sq6tl.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mean] # Source node to ATen node mapping: # loss => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%view_1,), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 64.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1), (1, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1), (1, 1), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 1, 4, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mean] triton_per_fused_mean_1.run(buf5, buf3, 1, 64, grid=grid(1), stream=stream0) del buf3 return (buf5, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from abc import abstractmethod from torch import nn from torch.nn.utils import weight_norm class HyperNet(nn.Module): """This module is responsible for taking the losses from all tasks and return a single loss term. We can think of this as our learnable loss criterion """ def __init__(self, main_task, input_dim): super().__init__() self.main_task = main_task self.input_dim = input_dim def forward(self, losses, outputs=None, labels=None, data=None): """ :param losses: losses form each task. This should be a tensor of size (batch_size, self.input_dim) :param outputs: Optional. Parameters model output. :param labels: Optional. Target. :param data: Optiona. Parameters model input. :return: """ pass def _init_weights(self): pass def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) class MonoHyperNet(HyperNet): """Monotonic Hypernets """ def __init__(self, main_task, input_dim, clamp_bias=False): super().__init__(main_task=main_task, input_dim=input_dim) self.clamp_bias = clamp_bias def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) @abstractmethod def clamp(self): pass class MonoLinearHyperNet(MonoHyperNet): """Linear weights, e.g. \\sum_j lpha_j * l_j """ def __init__(self, main_task, input_dim, skip_connection=False, clamp_bias=False, init_value=1.0, weight_normalization=True): super().__init__(main_task=main_task, input_dim=main_task, clamp_bias=clamp_bias) self.init_value = init_value self.skip_connection = skip_connection self.linear = nn.Linear(input_dim, 1, bias=False) self._init_weights() self.weight_normalization = weight_normalization if self.weight_normalization: self.linear = weight_norm(self.linear) def _init_weights(self): self.linear.weight = nn.init.constant_(self.linear.weight, self. init_value) def forward(self, losses, outputs=None, labels=None, data=None): loss = self.linear(losses).mean() if self.skip_connection: loss += losses[:, self.main_task].mean() return loss def clamp(self): """make sure parameters are non-negative """ if self.weight_normalization: self.linear.weight_v.data.clamp_(0) self.linear.weight_g.data.clamp_(0) else: self.linear.weight.data.clamp_(0) if self.linear.bias is not None and self.clamp_bias: self.linear.bias.data.clamp_(0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'main_task': 4, 'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from abc import abstractmethod from torch import nn from torch.nn.utils import weight_norm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp8 = tmp7 / tmp5 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 64.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1), (1, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1), (1, 1), torch.float32) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused__weight_norm_interface_0[grid(1)](buf1, primals_2, primals_1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4 del buf4 triton_per_fused_mean_1[grid(1)](buf5, buf3, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf3 return buf5, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_3 , (64, 4), (4, 1), 0) class HyperNet(nn.Module): """This module is responsible for taking the losses from all tasks and return a single loss term. We can think of this as our learnable loss criterion """ def __init__(self, main_task, input_dim): super().__init__() self.main_task = main_task self.input_dim = input_dim def forward(self, losses, outputs=None, labels=None, data=None): """ :param losses: losses form each task. This should be a tensor of size (batch_size, self.input_dim) :param outputs: Optional. Parameters model output. :param labels: Optional. Target. :param data: Optiona. Parameters model input. :return: """ pass def _init_weights(self): pass def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) class MonoHyperNet(HyperNet): """Monotonic Hypernets """ def __init__(self, main_task, input_dim, clamp_bias=False): super().__init__(main_task=main_task, input_dim=input_dim) self.clamp_bias = clamp_bias def get_weights(self): """ :return: list of model parameters """ return list(self.parameters()) @abstractmethod def clamp(self): pass class MonoLinearHyperNetNew(MonoHyperNet): """Linear weights, e.g. \\sum_j lpha_j * l_j """ def __init__(self, main_task, input_dim, skip_connection=False, clamp_bias=False, init_value=1.0, weight_normalization=True): super().__init__(main_task=main_task, input_dim=main_task, clamp_bias=clamp_bias) self.init_value = init_value self.skip_connection = skip_connection self.linear = nn.Linear(input_dim, 1, bias=False) self._init_weights() self.weight_normalization = weight_normalization if self.weight_normalization: self.linear = weight_norm(self.linear) def _init_weights(self): self.linear.weight = nn.init.constant_(self.linear.weight, self. init_value) def clamp(self): """make sure parameters are non-negative """ if self.weight_normalization: self.linear.weight_v.data.clamp_(0) self.linear.weight_g.data.clamp_(0) else: self.linear.weight.data.clamp_(0) if self.linear.bias is not None and self.clamp_bias: self.linear.bias.data.clamp_(0) def forward(self, input_0): primals_1 = self.linear.weight_g primals_2 = self.linear.weight_v primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
AvivNavon/AuxiLearn
MonoLinearHyperNet
false
13,355
[ "MIT" ]
58
2c32f5cb548714ad3efe5c804003a30d6f012e2b
https://github.com/AvivNavon/AuxiLearn/tree/2c32f5cb548714ad3efe5c804003a30d6f012e2b
L2Norm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gj/cgj7f4rogjebeuosz3asgun5w2hregxq3ziitg4vtnz4jtcqfmau.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div] # Source node to ATen node mapping: # mul => mul # norm => add # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %primals_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-10 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class L2Norm(nn.Module): def __init__(self, n_dims, scale=20.0, eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_dims': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-10 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class L2NormNew(nn.Module): def __init__(self, n_dims, scale=20.0, eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2NormNew, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Atten4Vis/DemystifyLocalViT
L2Norm
false
13,356
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
Hswish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HswishNew(nn.Module): def __init__(self, inplace=True): super(HswishNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BHD233/PaddleOCR2Pytorch
Hswish
false
13,357
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
ClsHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_3 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_3 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) del primals_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0) del buf3 return (buf4, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ClsHead(nn.Module): """ Class orientation Args: params(dict): super parameters for build Class network """ def __init__(self, in_channels, class_dim, **kwargs): super(ClsHead, self).__init__() self.training = False self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, class_dim, bias=True) def forward(self, x): x = self.pool(x) x = torch.reshape(x, shape=[x.shape[0], x.shape[1]]) x = self.fc(x) if not self.training: x = F.softmax(x, dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'class_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf2) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf3 return buf4, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf4 class ClsHeadNew(nn.Module): """ Class orientation Args: params(dict): super parameters for build Class network """ def __init__(self, in_channels, class_dim, **kwargs): super(ClsHeadNew, self).__init__() self.training = False self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, class_dim, bias=True) def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BHD233/PaddleOCR2Pytorch
ClsHead
false
13,358
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
FFN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout] buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True) buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_5 return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_inner_hid': 4, 'd_model': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True) buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_5 return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_4, buf6 class FFNNew(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFNNew, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BHD233/PaddleOCR2Pytorch
FFN
false
13,359
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
LinearZeros
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dr/cdrlzpsdnaf5daayrtkicddem5cqnkmtu2cyqg5y26lqg3nvvxrr.py # Topologically Sorted Source Nodes: [mul, exp, mul_1], Original ATen: [aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %exp), kwargs = {}) triton_poi_fused_exp_mul_0 = async_compile.triton('triton_poi_fused_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = 3.0 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, exp, mul_1], Original ATen: [aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_exp_mul_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0) return (buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LinearZeros(nn.Linear): def __init__(self, in_channels, out_channels, logscale_factor=3): super().__init__(in_channels, out_channels) self.logscale_factor = logscale_factor self.register_parameter('logs', nn.Parameter(torch.zeros(out_channels)) ) self.weight.data.zero_() self.bias.data.zero_() def forward(self, input): output = super().forward(input) return output * torch.exp(self.logs * self.logscale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = 3.0 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_exp_mul_0[grid(256)](buf0, primals_4, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0 class LinearZerosNew(nn.Linear): def __init__(self, in_channels, out_channels, logscale_factor=3): super().__init__(in_channels, out_channels) self.logscale_factor = logscale_factor self.register_parameter('logs', nn.Parameter(torch.zeros(out_channels)) ) self.weight.data.zero_() self.bias.data.zero_() def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_4 = self.logs primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
BQZic/glow-pytorch
LinearZeros
false
13,360
[ "MIT" ]
479
4b43042326bbe644ccfda3c81a138375321808ed
https://github.com/BQZic/glow-pytorch/tree/4b43042326bbe644ccfda3c81a138375321808ed
Conv2dWithFastWeight
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_2, %primals_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_1, 16, grid=grid(16), stream=stream0) del primals_1 return (buf1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from typing import Tuple from typing import Union import torch.nn as nn import torch.nn.functional as F class Conv2dWithFastWeight(nn.Conv2d): def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size: 'Union[int, Tuple]', stride: 'Union[int, Tuple]'=1, padding: 'Union[int, Tuple, str]'=0, bias: 'bool'=True) ->None: super().__init__(in_channels, out_channels, kernel_size, stride= stride, padding=padding, bias=bias) self.weight.fast = None if self.bias is not None: self.bias.fast = None def forward(self, x: 'Tensor') ->Tensor: if self.bias is None: if self.weight.fast is not None: out = F.conv2d(x, self.weight.fast, None, stride=self. stride, padding=self.padding) else: out = super().forward(x) elif self.weight.fast is not None and self.bias.fast is not None: out = F.conv2d(x, self.weight.fast, self.bias.fast, stride=self .stride, padding=self.padding) else: out = super().forward(x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from typing import Tuple from typing import Union import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf1, primals_2, primals_3 class Conv2dWithFastWeightNew(nn.Conv2d): def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size: 'Union[int, Tuple]', stride: 'Union[int, Tuple]'=1, padding: 'Union[int, Tuple, str]'=0, bias: 'bool'=True) ->None: super().__init__(in_channels, out_channels, kernel_size, stride= stride, padding=padding, bias=bias) self.weight.fast = None if self.bias is not None: self.bias.fast = None def forward(self, input_0): primals_2 = self.weight primals_1 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BIGWangYuDong/mmfewshot
Conv2dWithFastWeight
false
13,361
[ "Apache-2.0" ]
376
dac097afc92df176bc2de76b7c90968584865197
https://github.com/BIGWangYuDong/mmfewshot/tree/dac097afc92df176bc2de76b7c90968584865197
WShift
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uz/cuzdojeecdnp6sj6qer5und3uv6oxkzgk2365i55gch5mqyktk3i.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] # Source node to ATen node mapping: # out => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class WShift(nn.Module): def __init__(self, style_dim): super().__init__() self.w_shift = nn.Parameter(torch.zeros(1, style_dim)) def forward(self, input): out = input + self.w_shift return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'style_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class WShiftNew(nn.Module): def __init__(self, style_dim): super().__init__() self.w_shift = nn.Parameter(torch.zeros(1, style_dim)) def forward(self, input_0): primals_1 = self.w_shift primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
AyushExel/GANSketching
WShift
false
13,362
[ "MIT" ]
598
c72524ac4425de898087af7a4c554b777a4e2218
https://github.com/AyushExel/GANSketching/tree/c72524ac4425de898087af7a4c554b777a4e2218
CTCHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ai/caiy5z5nrpk27bcwdhmejk63orle3ulxiwsuoewsfbsdh5jaa66y.py # Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # predicts_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 424000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6625 x3 = (xindex // 6625) x2 = (xindex // 26500) tmp0 = tl.load(in_ptr0 + (x0 + (6656*x3)), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (6656 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (13312 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (19968 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x0 + (6656*x3)), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4s/c4syvx6g4zy3bk4mn2ylv7tfly6d6e26bto63qn4lzuqsjyk7gyh.py # Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # predicts_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 424000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6625 x3 = (xindex // 6625) x2 = (xindex // 26500) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (6656*x3)), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (6656 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (13312 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (19968 + x0 + (26624*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x4), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (6625, 4), (4, 1)) assert_size_stride(primals_2, (6625, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 6625), (6656, 1), torch.float32) # Topologically Sorted Source Nodes: [predicts], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6625), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 6625), (106496, 26624, 6656, 1), torch.float32) # Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 424000, grid=grid(424000), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 6625), (106000, 26500, 6625, 1), torch.float32) # Topologically Sorted Source Nodes: [predicts_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 424000, grid=grid(424000), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6625, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6625, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CTCHead(nn.Module): def __init__(self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, **kwargs): super(CTCHead, self).__init__() if mid_channels is None: self.fc = nn.Linear(in_channels, out_channels, bias=True) else: self.fc1 = nn.Linear(in_channels, mid_channels, bias=True) self.fc2 = nn.Linear(mid_channels, out_channels, bias=True) self.out_channels = out_channels self.mid_channels = mid_channels def forward(self, x, labels=None): if self.mid_channels is None: predicts = self.fc(x) else: predicts = self.fc1(x) predicts = self.fc2(predicts) if not self.training: predicts = F.softmax(predicts, dim=2) return predicts def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 424000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6625 x3 = xindex // 6625 x2 = xindex // 26500 tmp0 = tl.load(in_ptr0 + (x0 + 6656 * x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + 26624 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (6656 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (13312 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (19968 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x0 + 6656 * x3), tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 424000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6625 x3 = xindex // 6625 x2 = xindex // 26500 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 6656 * x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + 26624 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (6656 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (13312 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (19968 + x0 + 26624 * x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x4, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (6625, 4), (4, 1)) assert_size_stride(primals_2, (6625,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 6625), (6656, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6625), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 6625), (106496, 26624, 6656, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(424000)](buf0, buf1, 424000, XBLOCK=512, num_warps=8, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 6625), (106000, 26500, 6625, 1), torch.float32) triton_poi_fused__softmax_1[grid(424000)](buf1, buf2, 424000, XBLOCK=512, num_warps=8, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2 class CTCHeadNew(nn.Module): def __init__(self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, **kwargs): super(CTCHeadNew, self).__init__() if mid_channels is None: self.fc = nn.Linear(in_channels, out_channels, bias=True) else: self.fc1 = nn.Linear(in_channels, mid_channels, bias=True) self.fc2 = nn.Linear(mid_channels, out_channels, bias=True) self.out_channels = out_channels self.mid_channels = mid_channels def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BHD233/PaddleOCR2Pytorch
CTCHead
false
13,363
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bt/cbtukfelygvwruykgqxvoito6trim7hi4gocn4mpohjjmw63qewu.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul # product_2 => add # weights => amax, exp, sub, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_mul_0 = async_compile.triton('triton_poi_fused__softmax_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + (x2), tmp19, xmask) tl.store(out_ptr1 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zz/czzjxm5452x7hgytt4wj5g5gsmoluemkcheo5nyv5rfsehlnlt6g.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul # product_2 => add # weights => amax, div, exp, sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_mul_1 = async_compile.triton('triton_poi_fused__softmax_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 16 x5 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32) buf5 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_add_mul_0.run(buf3, primals_7, buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] triton_poi_fused__softmax_add_mul_1.run(buf6, primals_7, buf4, buf5, 64, grid=grid(64), stream=stream0) del buf4 del buf5 del primals_7 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf8) return (reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), primals_8, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape [2] * out.shape[3]]) out = self.proj_fc(out) return out def get_inputs(): return [torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4]), torch.rand( [4, 4, 1, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_key': 4, 'd_value': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_add_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + x2, tmp19, xmask) tl.store(out_ptr1 + x2, tmp30, xmask) @triton.jit def triton_poi_fused__softmax_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 16 x5 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + x3, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 1, 4), (16, 4, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32) buf5 = empty_strided_cuda((4, 1, 4, 1), (4, 16, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_add_mul_0[grid(16)](buf3, primals_7, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0) del buf3 triton_poi_fused__softmax_add_mul_1[grid(64)](buf6, primals_7, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf4 del buf5 del primals_7 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf8) return reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf6, reinterpret_tensor(buf7, (16, 4), (4, 1), 0 ), primals_8, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) class MultiHeadAttentionNew(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttentionNew, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, input_0, input_1, input_2, input_3): primals_3 = self.q_fc.weight primals_5 = self.k_fc.weight primals_6 = self.v_fc.weight primals_7 = self.proj_fc.weight primals_1 = input_0 primals_2 = input_1 primals_4 = input_2 primals_8 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
BHD233/PaddleOCR2Pytorch
MultiHeadAttention
false
13,364
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
Encoding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yx/cyx5u6kg47bcb2a4mvrlkw5ynd42h4mj76hk2j6tveptehbkmic4.py # Topologically Sorted Source Nodes: [sub, pow_1, sum_1, scaled_l2_norm], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul] # Source node to ATen node mapping: # pow_1 => pow_1 # scaled_l2_norm => mul # sub => sub # sum_1 => sum_1 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %view_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sum_1), kwargs = {}) triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 16 x2 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (32 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (48 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tmp4 + tmp8 tmp12 = tmp10 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp9 + tmp13 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp14 + tmp18 tmp20 = tmp0 * tmp19 tl.store(out_ptr0 + (x4), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # assigment_weights => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # assigment_weights => div, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/36/c36bunrpokrzs5svt4e6kwmfyyitmjh7nivu5rc6sidx55znumrf.py # Topologically Sorted Source Nodes: [sub, mul_1, encoded_feat], Original ATen: [aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # encoded_feat => sum_3 # mul_1 => mul_1 # sub => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %view_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %sub), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_per_fused_mul_sub_sum_3 = async_compile.triton('triton_per_fused_mul_sub_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x1 = (xindex // 4) % 4 x2 = (xindex // 16) x0 = xindex % 4 x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (x1 + (4*r3) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + (16*x0) + (64*x2)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tl.store(out_ptr0 + (x5), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, sum_1, scaled_l2_norm], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [assigment_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf1, buf2, 256, grid=grid(256), stream=stream0) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul_1, encoded_feat], Original ATen: [aten.sub, aten.mul, aten.sum] triton_per_fused_mul_sub_sum_3.run(buf2, primals_1, primals_2, buf3, 64, 16, grid=grid(64), stream=stream0) del buf2 return (buf3, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class Encoding(nn.Module): """Encoding Layer: a learnable residual encoder. Input is of shape (batch_size, channels, height, width). Output is of shape (batch_size, num_codes, channels). Args: channels: dimension of the features or feature channels num_codes: number of code words """ def __init__(self, channels, num_codes): super(Encoding, self).__init__() self.channels, self.num_codes = channels, num_codes std = 1.0 / (num_codes * channels) ** 0.5 self.codewords = nn.Parameter(torch.empty(num_codes, channels, dtype=torch.float).uniform_(-std, std), requires_grad=True) self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float) .uniform_(-1, 0), requires_grad=True) @staticmethod def scaled_l2(x, codewords, scale): num_codes, channels = codewords.size() batch_size = x.size(0) reshaped_scale = scale.view((1, 1, num_codes)) expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1), num_codes, channels)) reshaped_codewords = codewords.view((1, 1, num_codes, channels)) scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords ).pow(2).sum(dim=3) return scaled_l2_norm @staticmethod def aggregate(assigment_weights, x, codewords): num_codes, channels = codewords.size() reshaped_codewords = codewords.view((1, 1, num_codes, channels)) batch_size = x.size(0) expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1), num_codes, channels)) encoded_feat = (assigment_weights.unsqueeze(3) * (expanded_x - reshaped_codewords)).sum(dim=1) return encoded_feat def forward(self, x): assert x.dim() == 4 and x.size(1) == self.channels batch_size = x.size(0) x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous() assigment_weights = F.softmax(self.scaled_l2(x, self.codewords, self.scale), dim=2) encoded_feat = self.aggregate(assigment_weights, x, self.codewords) return encoded_feat def __repr__(self): repr_str = self.__class__.__name__ repr_str += ( f'(Nx{self.channels}xHxW =>Nx{self.num_codes}x{self.channels})') return repr_str def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'num_codes': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 16 x2 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (32 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + (48 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tmp4 + tmp8 tmp12 = tmp10 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp9 + tmp13 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp14 + tmp18 tmp20 = tmp0 * tmp19 tl.store(out_ptr0 + x4, tmp20, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x1 = xindex // 4 % 4 x2 = xindex // 16 x0 = xindex % 4 x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (x1 + 4 * r3 + 64 * x2), xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + 16 * x0 + 64 * x2), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tl.store(out_ptr0 + x5, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0[grid(256)](primals_3, primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_2[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_per_fused_mul_sub_sum_3[grid(64)](buf2, primals_1, primals_2, buf3, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf2 return buf3, primals_1, primals_2, primals_3 class EncodingNew(nn.Module): """Encoding Layer: a learnable residual encoder. Input is of shape (batch_size, channels, height, width). Output is of shape (batch_size, num_codes, channels). Args: channels: dimension of the features or feature channels num_codes: number of code words """ def __init__(self, channels, num_codes): super(EncodingNew, self).__init__() self.channels, self.num_codes = channels, num_codes std = 1.0 / (num_codes * channels) ** 0.5 self.codewords = nn.Parameter(torch.empty(num_codes, channels, dtype=torch.float).uniform_(-std, std), requires_grad=True) self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float) .uniform_(-1, 0), requires_grad=True) @staticmethod def scaled_l2(x, codewords, scale): num_codes, channels = codewords.size() batch_size = x.size(0) reshaped_scale = scale.view((1, 1, num_codes)) expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1), num_codes, channels)) reshaped_codewords = codewords.view((1, 1, num_codes, channels)) scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords ).pow(2).sum(dim=3) return scaled_l2_norm @staticmethod def aggregate(assigment_weights, x, codewords): num_codes, channels = codewords.size() reshaped_codewords = codewords.view((1, 1, num_codes, channels)) batch_size = x.size(0) expanded_x = x.unsqueeze(2).expand((batch_size, x.size(1), num_codes, channels)) encoded_feat = (assigment_weights.unsqueeze(3) * (expanded_x - reshaped_codewords)).sum(dim=1) return encoded_feat def __repr__(self): repr_str = self.__class__.__name__ repr_str += ( f'(Nx{self.channels}xHxW =>Nx{self.num_codes}x{self.channels})') return repr_str def forward(self, input_0): primals_2 = self.codewords primals_3 = self.scale primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Atten4Vis/DemystifyLocalViT
Encoding
false
13,365
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
BertLayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dg/cdgw6x7nju4bzp2wyuwgeanbco7zcjis6yiusovvnpz6zw3yjd3l.py # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # sub => sub # u => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k3/ck3awyjmlyoxvkizg2opx6vtglv26uioox7nr33aabc2cmbcxgpr.py # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2, buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class BertLayerNormNew(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNormNew, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BIT-ENGD/eeqa
BertLayerNorm
false
13,366
[ "MIT" ]
142
2995abbaff1fb47131246a247ee7ed62aa94f4c3
https://github.com/BIT-ENGD/eeqa/tree/2995abbaff1fb47131246a247ee7ed62aa94f4c3
RelationCrossing
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/te/ctez6v53ld4k45ykiwq5ndlpz3jrny2atstdxadog7gcnit65abw.py # Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # dsttype_node_relation_attention => sum_1 # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %arg1_1), kwargs = {}) # %sum_1 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {}) triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2i/c2ir37xoljdhwkg75h2sbixyvepyluu4socgnd4wiw7oq57nugu4.py # Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax] # Source node to ATen node mapping: # dsttype_node_relation_attention_1 => amax, exp, sub # leaky_relu => gt, mul_1, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %mul_1), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_leaky_relu_1 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp7 = tmp6 > tmp1 tmp8 = tmp6 * tmp3 tmp9 = tl.where(tmp7, tmp6, tmp8) tmp11 = tmp10 > tmp1 tmp12 = tmp10 * tmp3 tmp13 = tl.where(tmp11, tmp10, tmp12) tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 > tmp1 tmp17 = tmp15 * tmp3 tmp18 = tl.where(tmp16, tmp15, tmp17) tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp21 = tmp20 > tmp1 tmp22 = tmp20 * tmp3 tmp23 = tl.where(tmp21, tmp20, tmp22) tmp24 = triton_helpers.maximum(tmp19, tmp23) tmp25 = tmp5 - tmp24 tmp26 = tl_math.exp(tmp25) tl.store(out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f5/cf5347orlkm5ylmh4iouw6qvowwebewwg66dnqrhzt7tg7a4irp5.py # Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # dsttype_node_relation_attention_1 => div, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/af/cafnizcuehobeophh3e6mmdetxkitfomc7vxb4m5zc4zqmm42u5i.py # Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum] # Source node to ATen node mapping: # dsttype_node_features_1 => sum_3 # dsttype_node_relation_attention_1 => div, sum_2 # mul_1 => mul_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [0]), kwargs = {}) triton_poi_fused__softmax_mul_sum_3 = async_compile.triton('triton_poi_fused__softmax_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (128 + x2), xmask) tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (192 + x2), xmask) tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax] triton_poi_fused__softmax_leaky_relu_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum] triton_poi_fused__softmax_mul_sum_3.run(arg0_1, buf2, buf3, 64, grid=grid(64), stream=stream0) del arg0_1 del buf2 return (reinterpret_tensor(buf3, (4, 16), (16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class RelationCrossing(nn.Module): def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int', dropout: 'float'=0.0, negative_slope: 'float'=0.2): """ Description ---------- Relation crossing layer Parameters ---------- in_feats : pair of ints input feature size out_feats : int output feature size num_heads : int number of heads in Multi-Head Attention dropout : float optional, dropout rate, defaults: 0.0 negative_slope : float optional, negative slope rate, defaults: 0.2 """ super(RelationCrossing, self).__init__() self._in_feats = in_feats self._out_feats = out_feats self._num_heads = num_heads self.dropout = nn.Dropout(dropout) self.leaky_relu = nn.LeakyReLU(negative_slope) def forward(self, dsttype_node_features: 'torch.Tensor', relations_crossing_attention_weight: 'nn.Parameter'): """ Parameters ---------- dsttype_node_features: a tensor of (dsttype_node_relations_num, num_dst_nodes, n_heads * hidden_dim) relations_crossing_attention_weight: Parameter the shape is (n_heads, hidden_dim) Returns: ---------- output_features: Tensor """ if len(dsttype_node_features) == 1: dsttype_node_features = dsttype_node_features.squeeze(dim=0) else: dsttype_node_features = dsttype_node_features.reshape( dsttype_node_features.shape[0], -1, self._num_heads, self. _out_feats) dsttype_node_relation_attention = (dsttype_node_features * relations_crossing_attention_weight).sum(dim=-1, keepdim=True) dsttype_node_relation_attention = F.softmax(self.leaky_relu( dsttype_node_relation_attention), dim=0) dsttype_node_features = (dsttype_node_features * dsttype_node_relation_attention).sum(dim=0) dsttype_node_features = self.dropout(dsttype_node_features) dsttype_node_features = dsttype_node_features.reshape(-1, self. _num_heads * self._out_feats) return dsttype_node_features def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_feats': 4, 'out_feats': 4, 'num_heads': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x0, tmp14, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp7 = tmp6 > tmp1 tmp8 = tmp6 * tmp3 tmp9 = tl.where(tmp7, tmp6, tmp8) tmp11 = tmp10 > tmp1 tmp12 = tmp10 * tmp3 tmp13 = tl.where(tmp11, tmp10, tmp12) tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 > tmp1 tmp17 = tmp15 * tmp3 tmp18 = tl.where(tmp16, tmp15, tmp17) tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp21 = tmp20 > tmp1 tmp22 = tmp20 * tmp3 tmp23 = tl.where(tmp21, tmp20, tmp22) tmp24 = triton_helpers.maximum(tmp19, tmp23) tmp25 = tmp5 - tmp24 tmp26 = tl_math.exp(tmp25) tl.store(out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (128 + x2), xmask) tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (192 + x2), xmask) tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(64)](arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_leaky_relu_1[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_2[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused__softmax_mul_sum_3[grid(64)](arg0_1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf2 return reinterpret_tensor(buf3, (4, 16), (16, 1), 0), class RelationCrossingNew(nn.Module): def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int', dropout: 'float'=0.0, negative_slope: 'float'=0.2): """ Description ---------- Relation crossing layer Parameters ---------- in_feats : pair of ints input feature size out_feats : int output feature size num_heads : int number of heads in Multi-Head Attention dropout : float optional, dropout rate, defaults: 0.0 negative_slope : float optional, negative slope rate, defaults: 0.2 """ super(RelationCrossingNew, self).__init__() self._in_feats = in_feats self._out_feats = out_feats self._num_heads = num_heads self.dropout = nn.Dropout(dropout) self.leaky_relu = nn.LeakyReLU(negative_slope) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BUPT-GAMMA/OpenHGNN
RelationCrossing
false
13,367
[ "Apache-2.0" ]
235
5f218dad4ed1415aa6d842bc20785c61e74e5405
https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405
GHMC
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/eu/ceuv7b3vtgnm54c77ljfgp5gdzt44um3527nmb7duufsy6ufr57k.py # Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum] # Source node to ATen node mapping: # float_3 => convert_element_type # sum_1 => sum_1 # valid => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) triton_per_fused__to_copy_gt_sum_0 = async_compile.triton('triton_per_fused__to_copy_gt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp2, None) tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yx/cyx33b4cuc5wetqcfqkvlznxkkeck5wuib3zqzten6pdyhb3nib2.py # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] # Source node to ATen node mapping: # weights => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_like_1 = async_compile.triton('triton_poi_fused_zeros_like_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o3/co3ohsiccha2jedxkbuuzgpfkttvcqovi7edh443hag7dzlqgnfb.py # Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs] # Source node to ATen node mapping: # g => abs_1 # sigmoid => sigmoid # sub => sub # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) triton_poi_fused_abs_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_abs_sigmoid_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum] stream0 = get_raw_stream(0) triton_per_fused__to_copy_gt_sum_0.run(arg2_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0) del arg2_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] triton_poi_fused_zeros_like_1.run(buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs] triton_poi_fused_abs_sigmoid_sub_2.run(arg0_1, arg1_1, buf3, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf1, arg1_1, buf2, buf3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights class GHMC(nn.Module): """GHM Classification Loss. Details of the theorem can be viewed in the paper `Gradient Harmonized Single-stage Detector <https://arxiv.org/abs/1811.05181>`_. Args: bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. use_sigmoid (bool): Can only be true for BCE based loss now. loss_weight (float): The weight of the total GHM-C loss. """ def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0): super(GHMC, self).__init__() self.bins = bins self.momentum = momentum edges = torch.arange(bins + 1).float() / bins self.register_buffer('edges', edges) self.edges[-1] += 1e-06 if momentum > 0: acc_sum = torch.zeros(bins) self.register_buffer('acc_sum', acc_sum) self.use_sigmoid = use_sigmoid if not self.use_sigmoid: raise NotImplementedError self.loss_weight = loss_weight def forward(self, pred, target, label_weight, *args, **kwargs): """Calculate the GHM-C loss. Args: pred (float tensor of size [batch_num, class_num]): The direct prediction of classification fc layer. target (float tensor of size [batch_num, class_num]): Binary class target for each sample. label_weight (float tensor of size [batch_num, class_num]): the value is 1 if the sample is valid and 0 if ignored. Returns: The gradient harmonized loss. """ if pred.dim() != target.dim(): target, label_weight = _expand_onehot_labels(target, label_weight, pred.size(-1)) target, label_weight = target.float(), label_weight.float() edges = self.edges mmt = self.momentum weights = torch.zeros_like(pred) g = torch.abs(pred.sigmoid().detach() - target) valid = label_weight > 0 tot = max(valid.float().sum().item(), 1.0) n = 0 for i in range(self.bins): inds = (g >= edges[i]) & (g < edges[i + 1]) & valid num_in_bin = inds.sum().item() if num_in_bin > 0: if mmt > 0: self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt ) * num_in_bin weights[inds] = tot / self.acc_sum[i] else: weights[inds] = tot / num_in_bin n += 1 if n > 0: weights = weights / n loss = F.binary_cross_entropy_with_logits(pred, target, weights, reduction='sum') / tot return loss * self.loss_weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp2, None) tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp6, None) @triton.jit def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_gt_sum_0[grid(1)](arg2_1, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del arg2_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_zeros_like_1[grid(256)](buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_abs_sigmoid_sub_2[grid(256)](arg0_1, arg1_1, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf1, arg1_1, buf2, buf3, buf0 def _expand_onehot_labels(labels, label_weights, target_shape, ignore_index): """Expand onehot labels to match the size of prediction.""" bin_labels = labels.new_zeros(target_shape) valid_mask = (labels >= 0) & (labels != ignore_index) inds = torch.nonzero(valid_mask, as_tuple=True) if inds[0].numel() > 0: if labels.dim() == 3: bin_labels[inds[0], labels[valid_mask], inds[1], inds[2]] = 1 else: bin_labels[inds[0], labels[valid_mask]] = 1 valid_mask = valid_mask.unsqueeze(1).expand(target_shape).float() if label_weights is None: bin_label_weights = valid_mask else: bin_label_weights = label_weights.unsqueeze(1).expand(target_shape) bin_label_weights *= valid_mask return bin_labels, bin_label_weights class GHMCNew(nn.Module): """GHM Classification Loss. Details of the theorem can be viewed in the paper `Gradient Harmonized Single-stage Detector <https://arxiv.org/abs/1811.05181>`_. Args: bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. use_sigmoid (bool): Can only be true for BCE based loss now. loss_weight (float): The weight of the total GHM-C loss. """ def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0): super(GHMCNew, self).__init__() self.bins = bins self.momentum = momentum edges = torch.arange(bins + 1).float() / bins self.register_buffer('edges', edges) self.edges[-1] += 1e-06 if momentum > 0: acc_sum = torch.zeros(bins) self.register_buffer('acc_sum', acc_sum) self.use_sigmoid = use_sigmoid if not self.use_sigmoid: raise NotImplementedError self.loss_weight = loss_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Atten4Vis/DemystifyLocalViT
GHMC
false
13,368
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
AvgReadout
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2c/c2caasuan6xkydnq2bvliamlyid6cl5fcz5kcz2mnyns45wtxqbs.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AvgReadout(nn.Module): """ Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices .. math:: \\begin{equation} \\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)} \\end{equation} """ def __init__(self): super(AvgReadout, self).__init__() def forward(self, seq): return torch.mean(seq, 0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class AvgReadoutNew(nn.Module): """ Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices .. math:: \\begin{equation} \\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)} \\end{equation} """ def __init__(self): super(AvgReadoutNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BUPT-GAMMA/OpenHGNN
AvgReadout
false
13,369
[ "Apache-2.0" ]
235
5f218dad4ed1415aa6d842bc20785c61e74e5405
https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405
GDL
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/my/cmy3ptjdxy4kr3n5om5yjayav3eie3vcmckqm4vaoj4x2xupeiqs.py # Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub] # Source node to ATen node mapping: # fn => mul_2 # fp => mul_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # tn => mul_3 # tp => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sub_3), kwargs = {}) triton_poi_fused_mul_rsub_0 = async_compile.triton('triton_poi_fused_mul_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = tmp0 * tmp4 tmp6 = tmp3 - tmp0 tmp7 = tmp6 * tmp1 tmp8 = tmp6 * tmp4 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) tl.store(out_ptr2 + (x0), tmp7, xmask) tl.store(out_ptr3 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_mul_rsub_0.run(arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: can be (, ) = no summation :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot tn = (1 - net_output) * (1 - y_onehot) if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tn = tn ** 2 if len(axes) > 0: tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) tn = sum_tensor(tn, axes, keepdim=False) return tp, fp, fn, tn class GDL(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, square=False, square_volumes=False): """ square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition) """ super(GDL, self).__init__() self.square_volumes = square_volumes self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, x, y, loss_mask=None): shp_x = x.shape shp_y = y.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if len(shp_x) != len(shp_y): y = y.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(x.shape, y.shape)]): y_onehot = y else: gt = y.long() y_onehot = torch.zeros(shp_x) if x.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) if self.apply_nonlin is not None: x = self.apply_nonlin(x) if not self.do_bg: x = x[:, 1:] y_onehot = y_onehot[:, 1:] tp, fp, fn, _ = get_tp_fp_fn_tn(x, y_onehot, axes, loss_mask, self. square) volumes = sum_tensor(y_onehot, axes) + 1e-06 if self.square_volumes: volumes = volumes ** 2 tp = tp / volumes fp = fp / volumes fn = fn / volumes if self.batch_dice: axis = 0 else: axis = 1 tp = tp.sum(axis, keepdim=False) fp = fp.sum(axis, keepdim=False) fn = fn.sum(axis, keepdim=False) dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth) dc = dc.mean() return -dc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np from torch import nn import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = tmp0 * tmp4 tmp6 = tmp3 - tmp0 tmp7 = tmp6 * tmp1 tmp8 = tmp6 * tmp4 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) tl.store(out_ptr2 + x0, tmp7, xmask) tl.store(out_ptr3 + x0, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_rsub_0[grid(256)](arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1, buf2, buf3 def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: can be (, ) = no summation :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot tn = (1 - net_output) * (1 - y_onehot) if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tn = tn ** 2 if len(axes) > 0: tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) tn = sum_tensor(tn, axes, keepdim=False) return tp, fp, fn, tn class GDLNew(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, square=False, square_volumes=False): """ square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition) """ super(GDLNew, self).__init__() self.square_volumes = square_volumes self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque
GDL
false
13,370
[ "MIT" ]
770
b5329035d9e32c8a27151cf2396eaf209396a334
https://github.com/BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque/tree/b5329035d9e32c8a27151cf2396eaf209396a334
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # logp => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jw/cjwpmepxdrhjkf3qqr4e6qwmehd4cbfk26molvzkvgaoyj3su3bt.py # Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] # Source node to ATen node mapping: # logp => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # mean => mean # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp25 = tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FocalLoss(nn.Module): def __init__(self, gamma=0, eps=1e-07): super(FocalLoss, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input, target): logp = self.ce(input, target) p = torch.exp(-logp) loss = (1 - p) ** self.gamma * logp return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1[grid (1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class FocalLossNew(nn.Module): def __init__(self, gamma=0, eps=1e-07): super(FocalLossNew, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BaoLocPham/hum2song
FocalLoss
false
13,371
[ "MIT" ]
108
706b7fdf838944e2aabe0ae331c0867cb67f6fbc
https://github.com/BaoLocPham/hum2song/tree/706b7fdf838944e2aabe0ae331c0867cb67f6fbc
Scale
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s3/cs3xfcsbv3q363t3gue76e5b2o6wfhbslxcdj5vsrheb24anhw4c.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Scale(nn.Module): """ A learnable scale parameter """ def __init__(self, scale=1.0): super(Scale, self).__init__() self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float)) def forward(self, x): return x * self.scale def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class ScaleNew(nn.Module): """ A learnable scale parameter """ def __init__(self, scale=1.0): super(ScaleNew, self).__init__() self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float)) def forward(self, input_0): primals_1 = self.scale primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
BUPT-PRIV/BalancedGroupSoftmax
Scale
false
13,372
[ "Apache-2.0" ]
333
90e04fd8ccecd2bc61bbe6053a741ae708da2794
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
BalancedL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/u6/cu6ipcdjut3ad56lbzon6ze3sumzrsa4berzrqmooidtonkrrxbp.py # Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # diff => abs_1 # log => log # loss => where # loss_1 => mean # loss_bbox => mul_6 # lt => lt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=5] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.02619784824562798), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 1.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 1.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 0.07859354473688394), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %sub_1, %sub_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = 19.085536923187664 tmp7 = tmp3 * tmp6 tmp8 = tmp7 + tmp4 tmp9 = 0.02619784824562798 tmp10 = tmp8 * tmp9 tmp11 = tmp7 * tmp4 tmp12 = tmp11 + tmp4 tmp13 = tl_math.log(tmp12) tmp14 = tmp10 * tmp13 tmp15 = 0.5 tmp16 = tmp3 * tmp15 tmp17 = tmp14 - tmp16 tmp18 = 1.5 tmp19 = tmp3 * tmp18 tmp20 = 0.07859354473688394 tmp21 = tmp19 + tmp20 tmp22 = tmp21 - tmp15 tmp23 = tl.where(tmp5, tmp17, tmp22) tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp27 = 256.0 tmp28 = tmp26 / tmp27 tmp29 = tmp28 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import functools import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='mean'): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) b = np.e ** (gamma / alpha) - 1 loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log( b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b - alpha * beta) return loss class BalancedL1Loss(nn.Module): """Balanced L1 Loss arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) """ def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean', loss_weight=1.0): super(BalancedL1Loss, self).__init__() self.alpha = alpha self.gamma = gamma self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = (reduction_override if reduction_override else self. reduction) loss_bbox = self.loss_weight * balanced_l1_loss(pred, target, weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import functools import numpy as np import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = 19.085536923187664 tmp7 = tmp3 * tmp6 tmp8 = tmp7 + tmp4 tmp9 = 0.02619784824562798 tmp10 = tmp8 * tmp9 tmp11 = tmp7 * tmp4 tmp12 = tmp11 + tmp4 tmp13 = tl_math.log(tmp12) tmp14 = tmp10 * tmp13 tmp15 = 0.5 tmp16 = tmp3 * tmp15 tmp17 = tmp14 - tmp16 tmp18 = 1.5 tmp19 = tmp3 * tmp18 tmp20 = 0.07859354473688394 tmp21 = tmp19 + tmp20 tmp22 = tmp21 - tmp15 tmp23 = tl.where(tmp5, tmp17, tmp22) tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp27 = 256.0 tmp28 = tmp26 / tmp27 tmp29 = tmp28 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='mean'): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) b = np.e ** (gamma / alpha) - 1 loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log( b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b - alpha * beta) return loss class BalancedL1LossNew(nn.Module): """Balanced L1 Loss arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) """ def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean', loss_weight=1.0): super(BalancedL1LossNew, self).__init__() self.alpha = alpha self.gamma = gamma self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BUPT-PRIV/BalancedGroupSoftmax
BalancedL1Loss
false
13,373
[ "Apache-2.0" ]
333
90e04fd8ccecd2bc61bbe6053a741ae708da2794
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
SmoothL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/t7/ct7n4vk2rjfplrvzzjcijiow2tdczppexhay5gcikb3dfjajcdzu.py # Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean] # Source node to ATen node mapping: # diff => abs_1 # loss => where # loss_1 => mean # loss_bbox => mul_2 # lt => lt # mul => mul # mul_1 => mul_1 # sub => sub # sub_1 => sub_1 # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=4] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %abs_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {}) triton_per_fused_abs_div_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_sub_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = 0.5 tmp7 = tmp3 * tmp6 tmp8 = tmp7 * tmp3 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp6 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = tmp16 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_div_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import functools import torch import torch.nn as nn import torch.nn.functional as F def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta ) return loss class SmoothL1Loss(nn.Module): def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1Loss, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = (reduction_override if reduction_override else self. reduction) loss_bbox = self.loss_weight * smooth_l1_loss(pred, target, weight, beta=self.beta, reduction=reduction, avg_factor=avg_factor, ** kwargs) return loss_bbox def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import functools import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp3 < tmp4 tmp6 = 0.5 tmp7 = tmp3 * tmp6 tmp8 = tmp7 * tmp3 tmp9 = tmp8 * tmp4 tmp10 = tmp3 - tmp6 tmp11 = tl.where(tmp5, tmp9, tmp10) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = tmp16 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_div_lt_mean_mul_sub_where_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def reduce_loss(loss, reduction): """Reduce loss as specified. Args: loss (Tensor): Elementwise loss tensor. reduction (str): Options are "none", "mean" and "sum". Return: Tensor: Reduced loss tensor. """ reduction_enum = F._Reduction.get_enum(reduction) if reduction_enum == 0: return loss elif reduction_enum == 1: return loss.mean() elif reduction_enum == 2: return loss.sum() def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None): """Apply element-wise weight and reduce loss. Args: loss (Tensor): Element-wise loss. weight (Tensor): Element-wise weights. reduction (str): Same as built-in losses of PyTorch. avg_factor (float): Avarage factor when computing the mean of losses. Returns: Tensor: Processed loss values. """ if weight is not None: loss = loss * weight if avg_factor is None: loss = reduce_loss(loss, reduction) elif reduction == 'mean': loss = loss.sum() / avg_factor elif reduction != 'none': raise ValueError('avg_factor can not be used with reduction="sum"') return loss def weighted_loss(loss_func): """Create a weighted version of a given loss function. To use this decorator, the loss function must have the signature like `loss_func(pred, target, **kwargs)`. The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like `loss_func(pred, target, weight=None, reduction='mean', avg_factor=None, **kwargs)`. :Example: >>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs() >>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1]) >>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000) """ @functools.wraps(loss_func) def wrapper(pred, target, weight=None, reduction='mean', avg_factor= None, **kwargs): loss = loss_func(pred, target, **kwargs) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss return wrapper @weighted_loss def smooth_l1_loss(pred, target, beta=1.0): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta ) return loss class SmoothL1LossNew(nn.Module): def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0): super(SmoothL1LossNew, self).__init__() self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BUPT-PRIV/BalancedGroupSoftmax
SmoothL1Loss
false
13,374
[ "Apache-2.0" ]
333
90e04fd8ccecd2bc61bbe6053a741ae708da2794
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
SoftDiceLossSquared
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/we/cwegurhvuxmzu2fllhgfcphsnfz7i27goz3qz7lybzkuuk7lvt47.py # Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add] # Source node to ATen node mapping: # denominator => add # intersect => mul # pow_1 => pow_1 # pow_2 => pow_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) triton_poi_fused_add_mul_pow_0 = async_compile.triton('triton_poi_fused_add_mul_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp1 * tmp1 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_0.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp class SoftDiceLossSquared(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0): """ squares the terms in the denominator as proposed by Milletari et al. """ super(SoftDiceLossSquared, self).__init__() self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, x, y, loss_mask=None): shp_x = x.shape shp_y = y.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) with torch.no_grad(): if len(shp_x) != len(shp_y): y = y.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(x.shape, y.shape)]): y_onehot = y else: y = y.long() y_onehot = torch.zeros(shp_x) if x.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, y, 1).float() intersect = x * y_onehot denominator = x ** 2 + y_onehot ** 2 intersect = sum_tensor(intersect, axes, False) + self.smooth denominator = sum_tensor(denominator, axes, False) + self.smooth dc = 2 * intersect / denominator if not self.do_bg: if self.batch_dice: dc = dc[1:] else: dc = dc[:, 1:] dc = dc.mean() return -dc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np from torch import nn import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tmp4 = tmp1 * tmp1 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_pow_0[grid(256)](arg0_1, arg1_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1 def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp class SoftDiceLossSquaredNew(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0): """ squares the terms in the denominator as proposed by Milletari et al. """ super(SoftDiceLossSquaredNew, self).__init__() self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque
SoftDiceLossSquared
false
13,375
[ "MIT" ]
770
b5329035d9e32c8a27151cf2396eaf209396a334
https://github.com/BRAIN-Lab-UNC/BrainExtraction-TissueSegmentation-Macaque/tree/b5329035d9e32c8a27151cf2396eaf209396a334
PPMConcat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cr/ccrgimd5zqak747hzrbdpprnae5dbx4vetggrn46afu3ejbaeqzr.py # Topologically Sorted Source Nodes: [ppm_out, concat_outs], Original ATen: [aten.mean, aten.cat] # Source node to ATen node mapping: # concat_outs => cat # ppm_out => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {}) triton_per_fused_cat_mean_0 = async_compile.triton('triton_per_fused_cat_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.store(out_ptr1 + (110*x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b7/cb7webixgun5kq7klyyw3pye6ybqszrjc476b25fx2hkpqtlyz4c.py # Topologically Sorted Source Nodes: [ppm_out_1, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] # Source node to ATen node mapping: # concat_outs => cat # ppm_out_1 => _adaptive_avg_pool2d # Graph fragment: # %_adaptive_avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [3, 3]), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {}) triton_poi_fused__adaptive_avg_pool2d_cat_1 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_1(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) % 3 x0 = xindex % 3 x2 = (xindex // 9) x5 = xindex x3 = xindex % 9 tmp0 = ((4*x1) // 3) tmp1 = 2 + ((4*x1) // 3) tmp2 = tmp0 < tmp1 tmp3 = ((4*x0) // 3) tmp4 = 2 + ((4*x0) // 3) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp6 & xmask, other=0.0) tmp8 = 1 + ((4*x0) // 3) tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp10 & xmask, other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + ((4*x1) // 3) tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp15 & xmask, other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + (4*((4*x1) // 3)) + (16*x2) + ((4*x0) // 3)), tmp18 & xmask, other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wp/cwp4azliwtvpgqegpgjubymmobqvhael5uz7meise5e3joe5bqu2.py # Topologically Sorted Source Nodes: [ppm_out_2, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] # Source node to ATen node mapping: # concat_outs => cat # ppm_out_2 => _adaptive_avg_pool2d_1 # Graph fragment: # %_adaptive_avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [6, 6]), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {}) triton_poi_fused__adaptive_avg_pool2d_cat_2 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_2(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x5 = xindex x3 = xindex % 36 tmp0 = ((2*x1) // 3) tmp1 = ((9 + (4*x1)) // 6) tmp2 = tmp0 < tmp1 tmp3 = ((2*x0) // 3) tmp4 = ((9 + (4*x0)) // 6) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + ((2*x0) // 3) tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + ((2*x1) // 3) tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + (4*((2*x1) // 3)) + (16*x2) + ((2*x0) // 3)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nd/cnd5jniex5euxalox74lnevxasjts2znoosbfhhqne7m2q47peko.py # Topologically Sorted Source Nodes: [ppm_out_3, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] # Source node to ATen node mapping: # concat_outs => cat # ppm_out_3 => _adaptive_avg_pool2d_2 # Graph fragment: # %_adaptive_avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [8, 8]), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3], 2), kwargs = {}) triton_poi_fused__adaptive_avg_pool2d_cat_3 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_3(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x5 = xindex x3 = xindex % 64 tmp0 = (x1 // 2) tmp1 = ((11 + (4*x1)) // 8) tmp2 = tmp0 < tmp1 tmp3 = (x0 // 2) tmp4 = ((11 + (4*x0)) // 8) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + (x0 // 2) tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + (x1 // 2) tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + (4*(x1 // 2)) + (16*x2) + (x0 // 2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + (110*x2)), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf8 = empty_strided_cuda((4, 4, 110), (440, 110, 1), torch.float32) buf4 = reinterpret_tensor(buf8, (4, 4, 1), (440, 110, 1), 0) # alias # Topologically Sorted Source Nodes: [ppm_out, concat_outs], Original ATen: [aten.mean, aten.cat] stream0 = get_raw_stream(0) triton_per_fused_cat_mean_0.run(arg0_1, buf4, 16, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf8, (4, 4, 9), (440, 110, 1), 1) # alias # Topologically Sorted Source Nodes: [ppm_out_1, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] triton_poi_fused__adaptive_avg_pool2d_cat_1.run(arg0_1, buf5, 144, grid=grid(144), stream=stream0) buf6 = reinterpret_tensor(buf8, (4, 4, 36), (440, 110, 1), 10) # alias # Topologically Sorted Source Nodes: [ppm_out_2, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] triton_poi_fused__adaptive_avg_pool2d_cat_2.run(arg0_1, buf6, 576, grid=grid(576), stream=stream0) buf7 = reinterpret_tensor(buf8, (4, 4, 64), (440, 110, 1), 46) # alias # Topologically Sorted Source Nodes: [ppm_out_3, concat_outs], Original ATen: [aten._adaptive_avg_pool2d, aten.cat] triton_poi_fused__adaptive_avg_pool2d_cat_3.run(arg0_1, buf7, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class PPMConcat(nn.ModuleList): """Pyramid Pooling Module that only concat the features of each layer. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. """ def __init__(self, pool_scales=(1, 3, 6, 8)): super(PPMConcat, self).__init__([nn.AdaptiveAvgPool2d(pool_scale) for pool_scale in pool_scales]) def forward(self, feats): """Forward function.""" ppm_outs = [] for ppm in self: ppm_out = ppm(feats) ppm_outs.append(ppm_out.view(*feats.shape[:2], -1)) concat_outs = torch.cat(ppm_outs, dim=2) return concat_outs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_cat_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.store(out_ptr1 + 110 * x0, tmp6, xmask) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_1(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 3 x0 = xindex % 3 x2 = xindex // 9 x3 = xindex % 9 tmp0 = 4 * x1 // 3 tmp1 = 2 + 4 * x1 // 3 tmp2 = tmp0 < tmp1 tmp3 = 4 * x0 // 3 tmp4 = 2 + 4 * x0 // 3 tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 // 3), tmp6 & xmask, other=0.0) tmp8 = 1 + 4 * x0 // 3 tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 // 3), tmp10 & xmask, other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + 4 * x1 // 3 tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 // 3), tmp15 & xmask, other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + 4 * (4 * x1 // 3) + 16 * x2 + 4 * x0 // 3), tmp18 & xmask, other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_2(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x3 = xindex % 36 tmp0 = 2 * x1 // 3 tmp1 = (9 + 4 * x1) // 6 tmp2 = tmp0 < tmp1 tmp3 = 2 * x0 // 3 tmp4 = (9 + 4 * x0) // 6 tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 // 3), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + 2 * x0 // 3 tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 // 3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + 2 * x1 // 3 tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 // 3), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + 4 * (2 * x1 // 3) + 16 * x2 + 2 * x0 // 3), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_cat_3(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x3 = xindex % 64 tmp0 = x1 // 2 tmp1 = (11 + 4 * x1) // 8 tmp2 = tmp0 < tmp1 tmp3 = x0 // 2 tmp4 = (11 + 4 * x0) // 8 tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (4 * (x1 // 2) + 16 * x2 + x0 // 2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = 1 + x0 // 2 tmp9 = tmp8 < tmp4 tmp10 = tmp2 & tmp9 tmp11 = tl.load(in_ptr0 + (1 + 4 * (x1 // 2) + 16 * x2 + x0 // 2), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 + tmp7 tmp13 = 1 + x1 // 2 tmp14 = tmp13 < tmp1 tmp15 = tmp14 & tmp5 tmp16 = tl.load(in_ptr0 + (4 + 4 * (x1 // 2) + 16 * x2 + x0 // 2), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp16 + tmp12 tmp18 = tmp14 & tmp9 tmp19 = tl.load(in_ptr0 + (5 + 4 * (x1 // 2) + 16 * x2 + x0 // 2), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 + tmp17 tmp21 = 1.0 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp6, tmp21, tmp22) tmp24 = tl.where(tmp10, tmp21, tmp22) tmp25 = tmp24 + tmp23 tmp26 = tl.where(tmp15, tmp21, tmp22) tmp27 = tmp26 + tmp25 tmp28 = tl.where(tmp18, tmp21, tmp22) tmp29 = tmp28 + tmp27 tmp30 = tmp20 / tmp29 tl.store(out_ptr1 + (x3 + 110 * x2), tmp30, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf8 = empty_strided_cuda((4, 4, 110), (440, 110, 1), torch.float32) buf4 = reinterpret_tensor(buf8, (4, 4, 1), (440, 110, 1), 0) get_raw_stream(0) triton_per_fused_cat_mean_0[grid(16)](arg0_1, buf4, 16, 16, XBLOCK= 1, num_warps=2, num_stages=1) buf5 = reinterpret_tensor(buf8, (4, 4, 9), (440, 110, 1), 1) triton_poi_fused__adaptive_avg_pool2d_cat_1[grid(144)](arg0_1, buf5, 144, XBLOCK=128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf8, (4, 4, 36), (440, 110, 1), 10) triton_poi_fused__adaptive_avg_pool2d_cat_2[grid(576)](arg0_1, buf6, 576, XBLOCK=128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf8, (4, 4, 64), (440, 110, 1), 46) triton_poi_fused__adaptive_avg_pool2d_cat_3[grid(1024)](arg0_1, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf8, class PPMConcatNew(nn.ModuleList): """Pyramid Pooling Module that only concat the features of each layer. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. """ def __init__(self, pool_scales=(1, 3, 6, 8)): super(PPMConcatNew, self).__init__([nn.AdaptiveAvgPool2d(pool_scale ) for pool_scale in pool_scales]) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Atten4Vis/DemystifyLocalViT
PPMConcat
false
13,376
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/n3/cn3h43fi4m7oq2vwlktxfhxi3dzck4gnc765fyme47rufsuxazkg.py # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] # Source node to ATen node mapping: # product => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2s3zo6qtbodb6bdwv46ozxj4nxxymp76igm7emvdafvrj3673sn.py # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] # Source node to ATen node mapping: # product => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yw/cyw3ff4nmszw3dpfuipofodyezjcpjoru35h7fhkaosfnlrctm2g.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul_2 # product_2 => add_2 # weights => amax, exp, sub_1, sum_1 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_mul_4 = async_compile.triton('triton_poi_fused__softmax_add_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + (x2), tmp19, xmask) tl.store(out_ptr1 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4j/c4js4wnrmajokobx5l4yjjeu36aktrpkep2mzo6qtwttwlqodwbm.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul_2 # product_2 => add_2 # weights => amax, div, exp, sub_1 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_mul_5 = async_compile.triton('triton_poi_fused__softmax_add_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zi/czic6s5idip57syewxigjtom43flziklldd4ea2qpsxjorxgbunq.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_3 # Graph fragment: # %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %primals_3), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf4, buf7, 64, 4, grid=grid(64, 4), stream=stream0) buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] triton_poi_fused__softmax_add_mul_4.run(buf8, primals_7, buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] triton_poi_fused__softmax_add_mul_5.run(buf11, primals_7, buf9, buf10, 256, grid=grid(256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.native_dropout] buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf5, buf15, 256, grid=grid(256), stream=stream0) buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf16, buf17, 256, grid=grid(256), stream=stream0) del buf16 buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout] buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf20 = buf19[0] buf21 = buf19[1] del buf19 buf22 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf22, primals_3, 64, grid=grid(64), stream=stream0) buf23 = buf1; del buf1 # reuse buf24 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(buf22, buf23, buf24, 16, grid=grid(16), stream=stream0) buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf22, buf23, buf24, primals_9, primals_10, buf25, 64, grid=grid(64), stream=stream0) del primals_10 buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf27, primals_12, buf39, 64, grid=grid(64), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout] buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_14 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.native_dropout] buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf33 = buf32[0] buf34 = buf32[1] del buf32 buf35 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf35, buf22, 64, grid=grid(64), stream=stream0) buf36 = buf24; del buf24 # reuse buf37 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(buf35, buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0); del buf31 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf35, buf36, buf37, primals_15, primals_16, buf38, 64, grid=grid(64), stream=stream0) del buf36 del buf37 del primals_16 return (buf38, primals_3, primals_9, primals_15, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), buf34, buf35, primals_13, buf39, primals_11, primals_8, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6, primals_5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Lambda(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x): return self.func(x) class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape [2] * out.shape[3]]) out = self.proj_fc(out) return out class LambdaXY(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x, y): return self.func(x, y) class PrePostProcessLayer(nn.Module): """ PrePostProcessLayer """ def __init__(self, process_cmd, d_model, dropout_rate): super(PrePostProcessLayer, self).__init__() self.process_cmd = process_cmd self.functors = nn.ModuleList() cur_a_len = 0 cur_n_len = 0 cur_d_len = 0 for cmd in self.process_cmd: if cmd == 'a': self.functors.add_module('add_res_connect_{}'.format( cur_a_len), LambdaXY(lambda x, y: x + y if y is not None else x)) cur_a_len += 1 elif cmd == 'n': layerNorm = torch.nn.LayerNorm(normalized_shape=d_model, elementwise_affine=True, eps=1e-05) self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm ) cur_n_len += 1 elif cmd == 'd': self.functors.add_module('add_drop_{}'.format(cur_d_len), Lambda(lambda x: F.dropout(x, p=dropout_rate) if dropout_rate else x)) cur_d_len += 1 def forward(self, x, residual=None): for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors) ): if cmd == 'a': x = functor(x, residual) else: x = functor(x) return x class EncoderLayer(nn.Module): """ EncoderLayer """ def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderLayer, self).__init__() self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, attention_dropout) self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.ffn = FFN(d_inner_hid, d_model, relu_dropout) self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): attn_output = self.self_attn(self.preprocesser1(enc_input), None, None, attn_bias) attn_output = self.postprocesser1(attn_output, enc_input) ffn_output = self.ffn(self.preprocesser2(attn_output)) ffn_output = self.postprocesser2(ffn_output, attn_output) return ffn_output class Encoder(nn.Module): """ encoder """ def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(Encoder, self).__init__() self.encoder_layers = nn.ModuleList() for i in range(n_layer): encoderLayer = EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) self.encoder_layers.add_module('layer_%d' % i, encoderLayer) self.processer = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): for encoder_layer in self.encoder_layers: enc_output = encoder_layer(enc_input, attn_bias) enc_input = enc_output enc_output = self.processer(enc_output) return enc_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_layer': 1, 'n_head': 4, 'd_key': 4, 'd_value': 4, 'd_model': 4, 'd_inner_hid': 4, 'prepostprocess_dropout': 0.5, 'attention_dropout': 0.5, 'relu_dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + x2, tmp19, xmask) tl.store(out_ptr1 + x2, tmp30, xmask) @triton.jit def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_clone_3[grid(64, 4)](buf4, buf7, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0) del buf4 extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_mul_4[grid(64)](buf8, primals_7, buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf8 triton_poi_fused__softmax_add_mul_5[grid(256)](buf11, primals_7, buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf5, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16 ) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf16, buf17, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf16 buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18) buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf20 = buf19[0] buf21 = buf19[1] del buf19 buf22 = buf20 del buf20 triton_poi_fused_add_6[grid(64)](buf22, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf23 = buf1 del buf1 buf24 = buf0 del buf0 triton_poi_fused_native_layer_norm_0[grid(16)](buf22, buf23, buf24, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0) del buf18 triton_poi_fused_native_layer_norm_1[grid(64)](buf22, buf23, buf24, primals_9, primals_10, buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_10 buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf27, primals_12, buf39, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0) del buf27 extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_14 buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf33 = buf32[0] buf34 = buf32[1] del buf32 buf35 = buf33 del buf33 triton_poi_fused_add_6[grid(64)](buf35, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) buf36 = buf24 del buf24 buf37 = buf23 del buf23 triton_poi_fused_native_layer_norm_0[grid(16)](buf35, buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0) del buf31 triton_poi_fused_native_layer_norm_1[grid(64)](buf35, buf36, buf37, primals_15, primals_16, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf36 del buf37 del primals_16 return (buf38, primals_3, primals_9, primals_15, reinterpret_tensor( buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0 ), buf34, buf35, primals_13, buf39, primals_11, primals_8, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6, primals_5, primals_4) class Lambda(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x): return self.func(x) class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape [2] * out.shape[3]]) out = self.proj_fc(out) return out class LambdaXY(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x, y): return self.func(x, y) class PrePostProcessLayer(nn.Module): """ PrePostProcessLayer """ def __init__(self, process_cmd, d_model, dropout_rate): super(PrePostProcessLayer, self).__init__() self.process_cmd = process_cmd self.functors = nn.ModuleList() cur_a_len = 0 cur_n_len = 0 cur_d_len = 0 for cmd in self.process_cmd: if cmd == 'a': self.functors.add_module('add_res_connect_{}'.format( cur_a_len), LambdaXY(lambda x, y: x + y if y is not None else x)) cur_a_len += 1 elif cmd == 'n': layerNorm = torch.nn.LayerNorm(normalized_shape=d_model, elementwise_affine=True, eps=1e-05) self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm ) cur_n_len += 1 elif cmd == 'd': self.functors.add_module('add_drop_{}'.format(cur_d_len), Lambda(lambda x: F.dropout(x, p=dropout_rate) if dropout_rate else x)) cur_d_len += 1 def forward(self, x, residual=None): for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors) ): if cmd == 'a': x = functor(x, residual) else: x = functor(x) return x class EncoderLayer(nn.Module): """ EncoderLayer """ def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderLayer, self).__init__() self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, attention_dropout) self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.ffn = FFN(d_inner_hid, d_model, relu_dropout) self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): attn_output = self.self_attn(self.preprocesser1(enc_input), None, None, attn_bias) attn_output = self.postprocesser1(attn_output, enc_input) ffn_output = self.ffn(self.preprocesser2(attn_output)) ffn_output = self.postprocesser2(ffn_output, attn_output) return ffn_output class EncoderNew(nn.Module): """ encoder """ def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderNew, self).__init__() self.encoder_layers = nn.ModuleList() for i in range(n_layer): encoderLayer = EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) self.encoder_layers.add_module('layer_%d' % i, encoderLayer) self.processer = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) def forward(self, input_0, input_1): primals_1 = (self.encoder_layers.layer_0.preprocesser1.functors. layer_norm_0.weight) primals_2 = (self.encoder_layers.layer_0.preprocesser1.functors. layer_norm_0.bias) primals_4 = self.encoder_layers.layer_0.self_attn.q_fc.weight primals_5 = self.encoder_layers.layer_0.self_attn.k_fc.weight primals_6 = self.encoder_layers.layer_0.self_attn.v_fc.weight primals_8 = self.encoder_layers.layer_0.self_attn.proj_fc.weight primals_9 = (self.encoder_layers.layer_0.preprocesser2.functors. layer_norm_0.weight) primals_10 = (self.encoder_layers.layer_0.preprocesser2.functors. layer_norm_0.bias) primals_11 = self.encoder_layers.layer_0.ffn.fc1.weight primals_12 = self.encoder_layers.layer_0.ffn.fc1.bias primals_13 = self.encoder_layers.layer_0.ffn.fc2.weight primals_14 = self.encoder_layers.layer_0.ffn.fc2.bias primals_15 = self.processer.functors.layer_norm_0.weight primals_16 = self.processer.functors.layer_norm_0.bias primals_3 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return output[0]
BHD233/PaddleOCR2Pytorch
Encoder
false
13,377
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
SEModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.mean] # Source node to ATen node mapping: # outputs => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [outputs_1, outputs_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # outputs_1 => convolution # outputs_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hc/chcuw27vv75itefu6xswbdhopf2pq6oaj4bww4whelczhqtkghqr.py # Topologically Sorted Source Nodes: [outputs_3, add, relu6, outputs_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # outputs_3 => convolution_1 # outputs_4 => div # relu6 => clamp_max, clamp_min # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_add_convolution_div_hardtanh_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rh/crhdgkbcu2rbqzaxws3536qfrpjhmp6d6zhyebzqejxvceodywdi.py # Topologically Sorted Source Nodes: [outputs_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] # Source node to ATen node mapping: # add => add # outputs_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_add_convolution_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [outputs_1, outputs_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [outputs_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs_3, add, relu6, outputs_4, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul] triton_poi_fused_add_convolution_div_hardtanh_mul_2.run(primals_1, buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [outputs_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward] triton_poi_fused_add_convolution_hardtanh_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0) del buf4 del primals_5 return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def hardsigmoid(x): return F.relu6(x + 3.0, inplace=True) / 6.0 class SEModule(nn.Module): def __init__(self, channel, reduction=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0, bias=True) self.conv2 = nn.Conv2d(in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=True ) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) outputs = hardsigmoid(outputs) return torch.mul(inputs, outputs) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_div_hardtanh_mul_2[grid(256)]( primals_1, buf4, primals_5, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_hardtanh_backward_3[grid(16)](buf4, primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 del primals_5 return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6 def hardsigmoid(x): return F.relu6(x + 3.0, inplace=True) / 6.0 class SEModuleNew(nn.Module): def __init__(self, channel, reduction=4): super(SEModuleNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=channel, out_channels=channel // reduction, kernel_size=1, stride=1, padding=0, bias=True) self.conv2 = nn.Conv2d(in_channels=channel // reduction, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=True ) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BHD233/PaddleOCR2Pytorch
SEModule
false
13,378
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5z/c5zy7julai2lhuinuwjgyl62nx7cyws6ni5poe5jzp7qn532rcgh.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_2 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf10, primals_1, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim class MultiheadAttention(nn.Module): """A warpper for torch.nn.MultiheadAttention. This module implements MultiheadAttention with residual connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float): A Dropout layer on attn_output_weights. Default 0.0. """ def __init__(self, embed_dims, num_heads, dropout=0.0): super(MultiheadAttention, self).__init__() assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout) self.dropout = nn.Dropout(dropout) def forward(self, x, key=None, value=None, residual=None, query_pos= None, key_pos=None, attn_mask=None, key_padding_mask=None): """Forward function for `MultiheadAttention`. Args: x (Tensor): The input query with shape [num_query, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. key (Tensor): The key tensor with shape [num_key, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `query` will be used. value (Tensor): The value tensor with same shape as `key`. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `key` will be used. residual (Tensor): The tensor used for addition, with the same shape as `x`. Default None. If None, `x` will be used. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. Default None. If not None, it will be added to `x` before forward function. key_pos (Tensor): The positional encoding for `key`, with the same shape as `key`. Default None. If not None, it will be added to `key` before forward function. If None, and `query_pos` has the same shape as `key`, then `query_pos` will be used for `key_pos`. attn_mask (Tensor): ByteTensor mask with shape [num_query, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. key_padding_mask (Tensor): ByteTensor with shape [bs, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ query = x if key is None: key = query if value is None: value = key if residual is None: residual = x if key_pos is None: if query_pos is not None and key is not None: if query_pos.shape == key.shape: key_pos = query_pos if query_pos is not None: query = query + query_pos if key_pos is not None: key = key + key_pos out = self.attn(query, key, value=value, attn_mask=attn_mask, key_padding_mask=key_padding_mask)[0] return residual + self.dropout(out) def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(embed_dims={self.embed_dims}, ' repr_str += f'num_heads={self.num_heads}, ' repr_str += f'dropout={self.dropout})' return repr_str def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embed_dims': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._C import torch.serialization from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_2 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_add_4[grid(16)](buf10, primals_1, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0) class MultiheadAttentionNew(nn.Module): """A warpper for torch.nn.MultiheadAttention. This module implements MultiheadAttention with residual connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float): A Dropout layer on attn_output_weights. Default 0.0. """ def __init__(self, embed_dims, num_heads, dropout=0.0): super(MultiheadAttentionNew, self).__init__() assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout) self.dropout = nn.Dropout(dropout) def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(embed_dims={self.embed_dims}, ' repr_str += f'num_heads={self.num_heads}, ' repr_str += f'dropout={self.dropout})' return repr_str def forward(self, input_0): primals_2 = self.attn.in_proj_weight primals_3 = self.attn.in_proj_bias primals_1 = self.attn.out_proj.weight primals_5 = self.attn.out_proj.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Atten4Vis/DemystifyLocalViT
MultiheadAttention
false
13,379
[ "MIT" ]
64
2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
https://github.com/Atten4Vis/DemystifyLocalViT/tree/2e2327caec6d56ae2c8aa861b32bb62f3cdb786e
MetricCalcLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pz/cpz6a7zfdl7vz4ybgvsjbp7xvkg4dgyjzkkmvmfagirjg5cukeeh.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MetricCalcLayer(nn.Module): """ Description ----------- Calculate metric in equation 3 of paper. Parameters ---------- nhid : int The dimension of mapped features in the graph generating procedure. """ def __init__(self, nhid): super().__init__() self.weight = nn.Parameter(torch.FloatTensor(1, nhid)) nn.init.xavier_uniform_(self.weight) def forward(self, h): """ Parameters ---------- h : tensor The result of the Hadamard product in equation 3 of paper. """ return h * self.weight def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nhid': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class MetricCalcLayerNew(nn.Module): """ Description ----------- Calculate metric in equation 3 of paper. Parameters ---------- nhid : int The dimension of mapped features in the graph generating procedure. """ def __init__(self, nhid): super().__init__() self.weight = nn.Parameter(torch.FloatTensor(1, nhid)) nn.init.xavier_uniform_(self.weight) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
BUPT-GAMMA/OpenHGNN
MetricCalcLayer
false
13,380
[ "Apache-2.0" ]
235
5f218dad4ed1415aa6d842bc20785c61e74e5405
https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # add => add # x => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del buf3 del primals_6 return (buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter class GraphConvolution(nn.Module): """ Description ----------- The downstream GCN layer. """ def __init__(self, in_features, out_features, bias=True): def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) reset_parameters(self) def forward(self, inputs, adj): """ Parameters ---------- inputs : tensor The feature matrix. adj : tensor The adjacent matrix. """ support = torch.mm(inputs, self.weight) output = torch.mm(adj, support) if self.bias is not None: return output + self.bias else: return output class GCN(nn.Module): """ Description ----------- The downstream GCN model. """ def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): """ Parameters ---------- x : tensor The feature matrix. adj : tensor The adjacent matrix. """ x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK= 16, num_warps=1, num_stages=1) del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del buf3 del primals_6 return buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GraphConvolution(nn.Module): """ Description ----------- The downstream GCN layer. """ def __init__(self, in_features, out_features, bias=True): def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) reset_parameters(self) def forward(self, inputs, adj): """ Parameters ---------- inputs : tensor The feature matrix. adj : tensor The adjacent matrix. """ support = torch.mm(inputs, self.weight) output = torch.mm(adj, support) if self.bias is not None: return output + self.bias else: return output class GCNNew(nn.Module): """ Description ----------- The downstream GCN model. """ def __init__(self, nfeat, nhid, nclass, dropout): super(GCNNew, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_4 = self.gc1.bias primals_2 = self.gc2.weight primals_6 = self.gc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
BUPT-GAMMA/OpenHGNN
GCN
false
13,381
[ "Apache-2.0" ]
235
5f218dad4ed1415aa6d842bc20785c61e74e5405
https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405
ScoreCap
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/za/czaizrxepsjwum46f5wjjnkukgwbslz6g3hqdk3kbhdi3m42uypn.py # Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clip => clamp_max # Graph fragment: # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 4), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clip], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn import torch.optim class ScoreCap(nn.Module): def __init__(self, cap: 'float'): super().__init__() self.cap = cap def forward(self, input): return torch.clip(input, max=self.cap) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'cap': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = triton_helpers.minimum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ScoreCapNew(nn.Module): def __init__(self, cap: 'float'): super().__init__() self.cap = cap def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BerenLuthien/ReAgent
ScoreCap
false
13,382
[ "BSD-3-Clause" ]
1,156
52f666670a7fa03206812ef48949f6b934d400f7
https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7
Conv2dZeros
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zv/czvhqogqibwnm23q44xn6gzvpm2ac5f4wseb2e7zgfnmpvynwgoy.py # Topologically Sorted Source Nodes: [output, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # mul_1 => mul_1 # output => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {}) triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf2, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class _ActNorm(nn.Module): """ Activation Normalization Initialize the bias and scale with a given minibatch, so that the output per-channel have zero mean and unit variance for that. After initialization, `bias` and `logs` will be trained as parameters. """ def __init__(self, num_features, scale=1.0): super().__init__() size = [1, num_features, 1, 1] self.register_parameter('bias', nn.Parameter(torch.zeros(*size))) self.register_parameter('logs', nn.Parameter(torch.zeros(*size))) self.num_features = num_features self.scale = float(scale) self.inited = False def _check_input_dim(self, input): return NotImplemented def initialize_parameters(self, input): self._check_input_dim(input) if not self.training: return assert input.device == self.bias.device with torch.no_grad(): bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True ) * -1.0 vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True) logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-06)) self.bias.data.copy_(bias.data) self.logs.data.copy_(logs.data) self.inited = True def _center(self, input, reverse=False): if not reverse: return input + self.bias else: return input - self.bias def _scale(self, input, logdet=None, reverse=False): logs = self.logs if not reverse: input = input * torch.exp(logs) else: input = input * torch.exp(-logs) if logdet is not None: """ logs is log_std of `mean of channels` so we need to multiply pixels """ dlogdet = thops.sum(logs) * thops.pixels(input) if reverse: dlogdet *= -1 logdet = logdet + dlogdet return input, logdet def forward(self, input, logdet=None, reverse=False): if not self.inited: self.initialize_parameters(input) self._check_input_dim(input) if not reverse: input = self._center(input, reverse) input, logdet = self._scale(input, logdet, reverse) else: input, logdet = self._scale(input, logdet, reverse) input = self._center(input, reverse) return input, logdet class ActNorm2d(_ActNorm): def __init__(self, num_features, scale=1.0): super().__init__(num_features, scale) def _check_input_dim(self, input): assert len(input.size()) == 4 assert input.size(1 ) == self.num_features, '[ActNorm]: input should be in shape as `BCHW`, channels should be {} rather than {}'.format( self.num_features, input.size()) class Conv2d(nn.Conv2d): pad_dict = {'same': lambda kernel, stride: [(((k - 1) * s + 1) // 2) for k, s in zip(kernel, stride)], 'valid': lambda kernel, stride: [(0) for _ in kernel]} @staticmethod def get_padding(padding, kernel_size, stride): if isinstance(padding, str): if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size] if isinstance(stride, int): stride = [stride, stride] padding = padding.lower() try: padding = Conv2d.pad_dict[padding](kernel_size, stride) except KeyError: raise ValueError('{} is not supported'.format(padding)) return padding def __init__(self, in_channels, out_channels, kernel_size=[3, 3], stride=[1, 1], padding='same', do_actnorm=True, weight_std=0.05): padding = Conv2d.get_padding(padding, kernel_size, stride) super().__init__(in_channels, out_channels, kernel_size, stride, padding, bias=not do_actnorm) self.weight.data.normal_(mean=0.0, std=weight_std) if not do_actnorm: self.bias.data.zero_() else: self.actnorm = ActNorm2d(out_channels) self.do_actnorm = do_actnorm def forward(self, input): x = super().forward(input) if self.do_actnorm: x, _ = self.actnorm(x) return x class Conv2dZeros(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size=[3, 3], stride=[1, 1], padding='same', logscale_factor=3): padding = Conv2d.get_padding(padding, kernel_size, stride) super().__init__(in_channels, out_channels, kernel_size, stride, padding) self.logscale_factor = logscale_factor self.register_parameter('logs', nn.Parameter(torch.zeros( out_channels, 1, 1))) self.weight.data.zero_() self.bias.data.zero_() def forward(self, input): output = super().forward(input) return output * torch.exp(self.logs * self.logscale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0[grid(256)](buf1, primals_2, primals_4, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf2, primals_1, primals_3, primals_4, buf1 class _ActNorm(nn.Module): """ Activation Normalization Initialize the bias and scale with a given minibatch, so that the output per-channel have zero mean and unit variance for that. After initialization, `bias` and `logs` will be trained as parameters. """ def __init__(self, num_features, scale=1.0): super().__init__() size = [1, num_features, 1, 1] self.register_parameter('bias', nn.Parameter(torch.zeros(*size))) self.register_parameter('logs', nn.Parameter(torch.zeros(*size))) self.num_features = num_features self.scale = float(scale) self.inited = False def _check_input_dim(self, input): return NotImplemented def initialize_parameters(self, input): self._check_input_dim(input) if not self.training: return assert input.device == self.bias.device with torch.no_grad(): bias = thops.mean(input.clone(), dim=[0, 2, 3], keepdim=True ) * -1.0 vars = thops.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True) logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-06)) self.bias.data.copy_(bias.data) self.logs.data.copy_(logs.data) self.inited = True def _center(self, input, reverse=False): if not reverse: return input + self.bias else: return input - self.bias def _scale(self, input, logdet=None, reverse=False): logs = self.logs if not reverse: input = input * torch.exp(logs) else: input = input * torch.exp(-logs) if logdet is not None: """ logs is log_std of `mean of channels` so we need to multiply pixels """ dlogdet = thops.sum(logs) * thops.pixels(input) if reverse: dlogdet *= -1 logdet = logdet + dlogdet return input, logdet def forward(self, input, logdet=None, reverse=False): if not self.inited: self.initialize_parameters(input) self._check_input_dim(input) if not reverse: input = self._center(input, reverse) input, logdet = self._scale(input, logdet, reverse) else: input, logdet = self._scale(input, logdet, reverse) input = self._center(input, reverse) return input, logdet class ActNorm2d(_ActNorm): def __init__(self, num_features, scale=1.0): super().__init__(num_features, scale) def _check_input_dim(self, input): assert len(input.size()) == 4 assert input.size(1 ) == self.num_features, '[ActNorm]: input should be in shape as `BCHW`, channels should be {} rather than {}'.format( self.num_features, input.size()) class Conv2d(nn.Conv2d): pad_dict = {'same': lambda kernel, stride: [(((k - 1) * s + 1) // 2) for k, s in zip(kernel, stride)], 'valid': lambda kernel, stride: [(0) for _ in kernel]} @staticmethod def get_padding(padding, kernel_size, stride): if isinstance(padding, str): if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size] if isinstance(stride, int): stride = [stride, stride] padding = padding.lower() try: padding = Conv2d.pad_dict[padding](kernel_size, stride) except KeyError: raise ValueError('{} is not supported'.format(padding)) return padding def __init__(self, in_channels, out_channels, kernel_size=[3, 3], stride=[1, 1], padding='same', do_actnorm=True, weight_std=0.05): padding = Conv2d.get_padding(padding, kernel_size, stride) super().__init__(in_channels, out_channels, kernel_size, stride, padding, bias=not do_actnorm) self.weight.data.normal_(mean=0.0, std=weight_std) if not do_actnorm: self.bias.data.zero_() else: self.actnorm = ActNorm2d(out_channels) self.do_actnorm = do_actnorm def forward(self, input): x = super().forward(input) if self.do_actnorm: x, _ = self.actnorm(x) return x class Conv2dZerosNew(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size=[3, 3], stride=[1, 1], padding='same', logscale_factor=3): padding = Conv2d.get_padding(padding, kernel_size, stride) super().__init__(in_channels, out_channels, kernel_size, stride, padding) self.logscale_factor = logscale_factor self.register_parameter('logs', nn.Parameter(torch.zeros( out_channels, 1, 1))) self.weight.data.zero_() self.bias.data.zero_() def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_4 = self.logs primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
BQZic/glow-pytorch
Conv2dZeros
false
13,383
[ "MIT" ]
479
4b43042326bbe644ccfda3c81a138375321808ed
https://github.com/BQZic/glow-pytorch/tree/4b43042326bbe644ccfda3c81a138375321808ed
Embedder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xz/cxz7i3qbiizfbbzvas22bbwy5nxzvmtfdg5vhhiye56dk4hdonst.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mul] # Source node to ATen node mapping: # output => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn import torch.nn import torch.optim class Embedder(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.dim_in = dim_in self.dim_out = dim_out self.linear = nn.Linear(self.dim_in, self.dim_out) def forward(self, x): output = self.linear(x) * math.sqrt(self.dim_out) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class EmbedderNew(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.dim_in = dim_in self.dim_out = dim_out self.linear = nn.Linear(self.dim_in, self.dim_out) def forward(self, input_0): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BerenLuthien/ReAgent
Embedder
false
13,384
[ "BSD-3-Clause" ]
1,156
52f666670a7fa03206812ef48949f6b934d400f7
https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7
ConvWS2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ww/cwww2apcubf5chosrvnjwezswzhrp5km6tznagvysldlndvyv5qa.py # Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # std => sqrt, var # sub => sub # weight => div # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, 1e-05), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) triton_per_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = tmp0 - tmp20 tmp25 = 1e-05 tmp26 = tmp23 + tmp25 tmp27 = tmp24 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp23, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp27, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_std_sub_0.run(buf1, buf5, primals_1, buf6, 4, 64, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf8, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf8, primals_1, primals_3, buf1, buf5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, eps=1e-05): c_in = weight.size(0) weight_flat = weight.view(c_in, -1) mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1) std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1) weight = (weight - mean) / (std + eps) return F.conv2d(input, weight, bias, stride, padding, dilation, groups) class ConvWS2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, eps=1e-05): super(ConvWS2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.eps = eps def forward(self, x): return conv_ws_2d(x, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups, self.eps) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = tmp0 - tmp20 tmp25 = 1e-05 tmp26 = tmp23 + tmp25 tmp27 = tmp24 / tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp23, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp27, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_std_sub_0[grid(4)](buf1, buf5, primals_1, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_1[grid(16)](buf8, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf8, primals_1, primals_3, buf1, buf5, buf6 def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, eps=1e-05): c_in = weight.size(0) weight_flat = weight.view(c_in, -1) mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1) std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1) weight = (weight - mean) / (std + eps) return F.conv2d(input, weight, bias, stride, padding, dilation, groups) class ConvWS2dNew(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, eps=1e-05): super(ConvWS2dNew, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.eps = eps def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BUPT-PRIV/BalancedGroupSoftmax
ConvWS2d
false
13,385
[ "Apache-2.0" ]
333
90e04fd8ccecd2bc61bbe6053a741ae708da2794
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
GeLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6s/c6shmuvjmq6zc4ifvdsynorwri47ra63qxa7jg3e7p6lw6xlqj5q.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] # Source node to ATen node mapping: # add => add # erf => erf # mul => mul # mul_1 => mul_1 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class GeLU(nn.Module): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ def __init__(self): super().__init__() def forward(self, x): return gelu(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class GeLUNew(nn.Module): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BigRedT/gpv-1
GeLU
false
13,386
[ "Apache-2.0" ]
45
6a0c2173b44961cb492d00f94864c461aa77641d
https://github.com/BigRedT/gpv-1/tree/6a0c2173b44961cb492d00f94864c461aa77641d
ModuloMapIDList
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ln/clnui2qdwrmy7ay6oc5iefngkbx5t3jxibzv5sg3njmui3ca5mfb.py # Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder] # Source node to ATen node mapping: # remainder => remainder # Graph fragment: # %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%arg0_1, 4), kwargs = {}) triton_poi_fused_remainder_0 = async_compile.triton('triton_poi_fused_remainder_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_remainder_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if (tmp2).dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if (tmp1).dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [remainder], Original ATen: [aten.remainder] stream0 = get_raw_stream(0) triton_poi_fused_remainder_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import abc import torch import torch.nn import torch.optim class MapIDList(torch.nn.Module): @abc.abstractmethod def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor: pass class ModuloMapIDList(MapIDList): def __init__(self, modulo: 'int'): super().__init__() self.modulo = modulo def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor: return torch.remainder(raw_values, self.modulo) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'modulo': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import abc import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_remainder_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 % tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp2 != tmp3 tmp5 = libdevice.signbit(tmp2) if tmp2.dtype is tl.float32 else tmp2 < 0 tmp6 = libdevice.signbit(tmp1) if tmp1.dtype is tl.float32 else tmp1 < 0 tmp7 = tmp5 != tmp6 tmp8 = tmp4 & tmp7 tmp9 = tmp2 + tmp1 tmp10 = tl.where(tmp8, tmp9, tmp2) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_remainder_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class MapIDList(torch.nn.Module): @abc.abstractmethod def forward(self, raw_values: 'torch.Tensor') ->torch.Tensor: pass class ModuloMapIDListNew(MapIDList): def __init__(self, modulo: 'int'): super().__init__() self.modulo = modulo def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BerenLuthien/ReAgent
ModuloMapIDList
false
13,387
[ "BSD-3-Clause" ]
1,156
52f666670a7fa03206812ef48949f6b934d400f7
https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.data def uniform(size, tensor): stdv = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-stdv, stdv) class Discriminator(nn.Module): def __init__(self, hidden_dim): super(Discriminator, self).__init__() self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) self.reset_parameters() def reset_parameters(self): size = self.weight.size(0) uniform(size, self.weight) def forward(self, x, summary): x = torch.matmul(x, torch.matmul(self.weight, summary)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( primals_3, (16, 4, 4), (16, 1, 4), 0) def uniform(size, tensor): stdv = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-stdv, stdv) class DiscriminatorNew(nn.Module): def __init__(self, hidden_dim): super(DiscriminatorNew, self).__init__() self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) self.reset_parameters() def reset_parameters(self): size = self.weight.size(0) uniform(size, self.weight) def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
Bawaw/pytorch_geometric
Discriminator
false
13,388
[ "MIT" ]
62
868548d4396fc66e39b08e2ff19091a367ddac13
https://github.com/Bawaw/pytorch_geometric/tree/868548d4396fc66e39b08e2ff19091a367ddac13
Concat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, arg1_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn import torch.optim class Concat(nn.Module): def forward(self, state: 'torch.Tensor', action: 'torch.Tensor'): return torch.cat((state, action), dim=-1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](arg0_1, arg1_1, buf0, 512, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class ConcatNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BerenLuthien/ReAgent
Concat
false
13,389
[ "BSD-3-Clause" ]
1,156
52f666670a7fa03206812ef48949f6b934d400f7
https://github.com/BerenLuthien/ReAgent/tree/52f666670a7fa03206812ef48949f6b934d400f7
MsgNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dv/cdvohkptuslet5o4k7ir3iwxhauwqpaue5iwojpfdtbzbkod67k6.py # Topologically Sorted Source Nodes: [msg, x_norm, mul, msg_1], Original ATen: [aten.div, aten.linalg_vector_norm, aten.mul] # Source node to ATen node mapping: # msg => div # msg_1 => mul_1 # mul => mul # x_norm => pow_3, pow_4, sum_2 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg2_1), kwargs = {}) triton_poi_fused_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (0)) tmp30 = tl.broadcast_to(tmp29, [XBLOCK]) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp16 * tmp16 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp24 tmp26 = tmp23 + tmp25 tmp27 = libdevice.sqrt(tmp26) tmp28 = tmp15 * tmp27 tmp31 = tmp28 * tmp30 tl.store(in_out_ptr0 + (x3), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [msg, x_norm, mul, msg_1], Original ATen: [aten.div, aten.linalg_vector_norm, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_linalg_vector_norm_mul_0.run(buf1, arg0_1, arg1_1, arg2_1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class MsgNorm(torch.nn.Module): def __init__(self, learn_msg_scale=False): super(MsgNorm, self).__init__() self.msg_scale = torch.nn.Parameter(torch.Tensor([1.0]), requires_grad=learn_msg_scale) def forward(self, x, msg, p=2): msg = F.normalize(msg, p=p, dim=1) x_norm = x.norm(p=p, dim=1, keepdim=True) msg = msg * x_norm * self.msg_scale return msg def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_linalg_vector_norm_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + 0) tmp30 = tl.broadcast_to(tmp29, [XBLOCK]) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp16 * tmp16 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp24 tmp26 = tmp23 + tmp25 tmp27 = libdevice.sqrt(tmp26) tmp28 = tmp15 * tmp27 tmp31 = tmp28 * tmp30 tl.store(in_out_ptr0 + x3, tmp31, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_div_linalg_vector_norm_mul_0[grid(256)](buf1, arg0_1, arg1_1, arg2_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class MsgNormNew(torch.nn.Module): def __init__(self, learn_msg_scale=False): super(MsgNormNew, self).__init__() self.msg_scale = torch.nn.Parameter(torch.Tensor([1.0]), requires_grad=learn_msg_scale) def forward(self, input_0, input_1): arg2_1 = self.msg_scale arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Basvanstein/nasbench301
MsgNorm
false
13,390
[ "Apache-2.0" ]
55
2984dec45c760d47762f50efe39b71e9d1ac22e0
https://github.com/Basvanstein/nasbench301/tree/2984dec45c760d47762f50efe39b71e9d1ac22e0
DepthWiseSeperableConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DepthWiseSeperableConv(nn.Module): def __init__(self, in_dim, out_dim, *args, **kwargs): super().__init__() if 'groups' in kwargs: del kwargs['groups'] self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, ** kwargs) self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(16)](buf3, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class DepthWiseSeperableConvNew(nn.Module): def __init__(self, in_dim, out_dim, *args, **kwargs): super().__init__() if 'groups' in kwargs: del kwargs['groups'] self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, ** kwargs) self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward(self, input_0): primals_1 = self.depthwise.weight primals_2 = self.depthwise.bias primals_4 = self.pointwise.weight primals_5 = self.pointwise.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BishmoyPaul/lama
DepthWiseSeperableConv
false
13,391
[ "Apache-2.0" ]
2,133
c7f5af9c167a15e2b0b741b1419237de52c4af05
https://github.com/BishmoyPaul/lama/tree/c7f5af9c167a15e2b0b741b1419237de52c4af05
Zero
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zi/cziatn4srpsymxab7n67k7jt34egxdol3kpyktgeck2cxwbklbyh.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Zero(nn.Module): def __init__(self): super(Zero, self).__init__() def forward(self, x): return x * 0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ZeroNew(nn.Module): def __init__(self): super(ZeroNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BayesWatch/pytorch-prunes
Zero
false
13,392
[ "MIT" ]
143
bc85a5c52865a2daf515ad4d3c26dcab88e3d941
https://github.com/BayesWatch/pytorch-prunes/tree/bc85a5c52865a2daf515ad4d3c26dcab88e3d941
EncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/n3/cn3h43fi4m7oq2vwlktxfhxi3dzck4gnc765fyme47rufsuxazkg.py # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] # Source node to ATen node mapping: # product => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2s3zo6qtbodb6bdwv46ozxj4nxxymp76igm7emvdafvrj3673sn.py # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] # Source node to ATen node mapping: # product => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yw/cyw3ff4nmszw3dpfuipofodyezjcpjoru35h7fhkaosfnlrctm2g.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul_2 # product_2 => add_2 # weights => amax, exp, sub_1, sum_1 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_mul_4 = async_compile.triton('triton_poi_fused__softmax_add_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + (x2), tmp19, xmask) tl.store(out_ptr1 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4j/c4js4wnrmajokobx5l4yjjeu36aktrpkep2mzo6qtwttwlqodwbm.py # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] # Source node to ATen node mapping: # product_1 => mul_2 # product_2 => add_2 # weights => amax, div, exp, sub_1 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 0.5), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_2, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_mul_5 = async_compile.triton('triton_poi_fused__softmax_add_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_mul_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zi/czic6s5idip57syewxigjtom43flziklldd4ea2qpsxjorxgbunq.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_3 # Graph fragment: # %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, %primals_3), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [product], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf4, buf7, 64, 4, grid=grid(64, 4), stream=stream0) buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] triton_poi_fused__softmax_add_mul_4.run(buf8, primals_7, buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [product_1, product_2, weights], Original ATen: [aten.mul, aten.add, aten._softmax] triton_poi_fused__softmax_add_mul_5.run(buf11, primals_7, buf9, buf10, 256, grid=grid(256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [weights_1], Original ATen: [aten.native_dropout] buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf5, buf15, 256, grid=grid(256), stream=stream0) buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf16, buf17, 256, grid=grid(256), stream=stream0) del buf16 buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout] buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf20 = buf19[0] buf21 = buf19[1] del buf19 buf22 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf22, primals_3, 64, grid=grid(64), stream=stream0) buf23 = buf1; del buf1 # reuse buf24 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(buf22, buf23, buf24, 16, grid=grid(16), stream=stream0) buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf22, buf23, buf24, primals_9, primals_10, buf25, 64, grid=grid(64), stream=stream0) del buf23 del buf24 del primals_10 buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse buf36 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_7.run(buf27, primals_12, buf36, 64, grid=grid(64), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [hidden_1, hidden_2], Original ATen: [aten.relu, aten.native_dropout] buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_14 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.native_dropout] buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True) del buf31 buf33 = buf32[0] buf34 = buf32[1] del buf32 buf35 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf35, buf22, 64, grid=grid(64), stream=stream0) return (buf35, primals_3, primals_9, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), buf34, primals_13, buf36, primals_11, primals_8, reinterpret_tensor(buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), primals_6, primals_5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Lambda(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x): return self.func(x) class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape [2] * out.shape[3]]) out = self.proj_fc(out) return out class LambdaXY(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x, y): return self.func(x, y) class PrePostProcessLayer(nn.Module): """ PrePostProcessLayer """ def __init__(self, process_cmd, d_model, dropout_rate): super(PrePostProcessLayer, self).__init__() self.process_cmd = process_cmd self.functors = nn.ModuleList() cur_a_len = 0 cur_n_len = 0 cur_d_len = 0 for cmd in self.process_cmd: if cmd == 'a': self.functors.add_module('add_res_connect_{}'.format( cur_a_len), LambdaXY(lambda x, y: x + y if y is not None else x)) cur_a_len += 1 elif cmd == 'n': layerNorm = torch.nn.LayerNorm(normalized_shape=d_model, elementwise_affine=True, eps=1e-05) self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm ) cur_n_len += 1 elif cmd == 'd': self.functors.add_module('add_drop_{}'.format(cur_d_len), Lambda(lambda x: F.dropout(x, p=dropout_rate) if dropout_rate else x)) cur_d_len += 1 def forward(self, x, residual=None): for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors) ): if cmd == 'a': x = functor(x, residual) else: x = functor(x) return x class EncoderLayer(nn.Module): """ EncoderLayer """ def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderLayer, self).__init__() self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, attention_dropout) self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.ffn = FFN(d_inner_hid, d_model, relu_dropout) self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): attn_output = self.self_attn(self.preprocesser1(enc_input), None, None, attn_bias) attn_output = self.postprocesser1(attn_output, enc_input) ffn_output = self.ffn(self.preprocesser2(attn_output)) ffn_output = self.postprocesser2(ffn_output, attn_output) return ffn_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_head': 4, 'd_key': 4, 'd_value': 4, 'd_model': 4, 'd_inner_hid': 4, 'prepostprocess_dropout': 0.5, 'attention_dropout': 0.5, 'relu_dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_add_mul_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp5 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.maximum(tmp4, tmp8) tmp11 = tmp10 * tmp1 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp9, tmp13) tmp16 = tmp15 * tmp1 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp14, tmp18) tmp20 = tmp4 - tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = tmp8 - tmp19 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp19 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp18 - tmp19 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tl.store(out_ptr0 + x2, tmp19, xmask) tl.store(out_ptr1 + x2, tmp30, xmask) @triton.jit def triton_poi_fused__softmax_add_mul_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 16), (16, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_clone_3[grid(64, 4)](buf4, buf7, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0) del buf4 extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_mul_4[grid(64)](buf8, primals_7, buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf8 triton_poi_fused__softmax_add_mul_5[grid(256)](buf11, primals_7, buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf12 = torch.ops.aten.native_dropout.default(buf11, 0.5, True) buf13 = buf12[0] buf14 = buf12[1] del buf12 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf5, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) buf16 = reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 4, 1), 0), out=buf16 ) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf16, buf17, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf16 buf18 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf17, (16, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), out=buf18) buf19 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf18, (4, 4, 4), (16, 4, 1), 0), 0.5, True) buf20 = buf19[0] buf21 = buf19[1] del buf19 buf22 = buf20 del buf20 triton_poi_fused_add_6[grid(64)](buf22, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf23 = buf1 del buf1 buf24 = buf0 del buf0 triton_poi_fused_native_layer_norm_0[grid(16)](buf22, buf23, buf24, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0) del buf18 triton_poi_fused_native_layer_norm_1[grid(64)](buf22, buf23, buf24, primals_9, primals_10, buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf23 del buf24 del primals_10 buf26 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 buf36 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_7[grid(64)](buf27, primals_12, buf36, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf28 = torch.ops.aten.native_dropout.default(buf27, 0.5, True) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = reinterpret_tensor(buf27, (16, 4), (4, 1), 0) del buf27 extern_kernels.addmm(primals_14, reinterpret_tensor(buf29, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_14 buf32 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf31, (4, 4, 4), (16, 4, 1), 0), 0.5, True) del buf31 buf33 = buf32[0] buf34 = buf32[1] del buf32 buf35 = buf33 del buf33 triton_poi_fused_add_6[grid(64)](buf35, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf35, primals_3, primals_9, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), buf11, buf14, reinterpret_tensor(buf17, (16, 16), (16, 1), 0 ), buf21, buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0 ), buf30, reinterpret_tensor(buf29, (16, 4), (4, 1), 0 ), buf34, primals_13, buf36, primals_11, primals_8, reinterpret_tensor( buf13, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0 ), primals_6, primals_5, primals_4 class Lambda(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x): return self.func(x) class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features= d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features= d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features= d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self .d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and 'static_k' not in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape [2] * out.shape[3]]) out = self.proj_fc(out) return out class LambdaXY(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x, y): return self.func(x, y) class PrePostProcessLayer(nn.Module): """ PrePostProcessLayer """ def __init__(self, process_cmd, d_model, dropout_rate): super(PrePostProcessLayer, self).__init__() self.process_cmd = process_cmd self.functors = nn.ModuleList() cur_a_len = 0 cur_n_len = 0 cur_d_len = 0 for cmd in self.process_cmd: if cmd == 'a': self.functors.add_module('add_res_connect_{}'.format( cur_a_len), LambdaXY(lambda x, y: x + y if y is not None else x)) cur_a_len += 1 elif cmd == 'n': layerNorm = torch.nn.LayerNorm(normalized_shape=d_model, elementwise_affine=True, eps=1e-05) self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm ) cur_n_len += 1 elif cmd == 'd': self.functors.add_module('add_drop_{}'.format(cur_d_len), Lambda(lambda x: F.dropout(x, p=dropout_rate) if dropout_rate else x)) cur_d_len += 1 def forward(self, x, residual=None): for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors) ): if cmd == 'a': x = functor(x, residual) else: x = functor(x) return x class EncoderLayerNew(nn.Module): """ EncoderLayer """ def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderLayerNew, self).__init__() self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, attention_dropout) self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.ffn = FFN(d_inner_hid, d_model, relu_dropout) self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) def forward(self, input_0, input_1): primals_1 = self.preprocesser1.functors.layer_norm_0.weight primals_2 = self.preprocesser1.functors.layer_norm_0.bias primals_4 = self.self_attn.q_fc.weight primals_5 = self.self_attn.k_fc.weight primals_6 = self.self_attn.v_fc.weight primals_8 = self.self_attn.proj_fc.weight primals_9 = self.preprocesser2.functors.layer_norm_0.weight primals_10 = self.preprocesser2.functors.layer_norm_0.bias primals_11 = self.ffn.fc1.weight primals_12 = self.ffn.fc1.bias primals_13 = self.ffn.fc2.weight primals_14 = self.ffn.fc2.bias primals_3 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
BHD233/PaddleOCR2Pytorch
EncoderLayer
false
13,393
[ "Apache-2.0" ]
364
f114069b3e2669c6adf0adf9596756205f184c9c
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
Normalize
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dz/cdzlfn35yag6jtz5ni2o3wxs6zz4qa5ljfjpsrkhqfmlbh3qhae3.py # Topologically Sorted Source Nodes: [pow_1, sum_1, norm, out], Original ATen: [aten.pow, aten.sum, aten.div] # Source node to ATen node mapping: # norm => pow_2 # out => div # pow_1 => pow_1 # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_div_pow_sum_0 = async_compile.triton('triton_poi_fused_div_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, norm, out], Original ATen: [aten.pow, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_pow_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Normalize(nn.Module): def __init__(self, power=2): super(Normalize, self).__init__() self.power = power def forward(self, x): norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power) out = x.div(norm) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_pow_sum_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalizeNew(nn.Module): def __init__(self, power=2): super(NormalizeNew, self).__init__() self.power = power def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Bhaskers-Blu-Org2/metric-transfer.pytorch
Normalize
false
13,394
[ "MIT" ]
51
b0ae8ed6e6f62357100d799defbb61a78c831a87
https://github.com/Bhaskers-Blu-Org2/metric-transfer.pytorch/tree/b0ae8ed6e6f62357100d799defbb61a78c831a87
AvgPoolPad
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pr/cprzlfpjjqlj6tudvbc455jxno35xlnta4wgmkbc6uo5zmcxii4s.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d] # Source node to ATen node mapping: # x => constant_pad_nd # x_1 => avg_pool2d # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], False, False), kwargs = {}) triton_poi_fused_avg_pool2d_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) % 3 x0 = xindex % 3 x2 = (xindex // 9) x4 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = (-2) + (2*x1) tmp12 = tmp11 >= tmp1 tmp13 = (-2) + (2*x0) tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2*x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = tmp29 + tmp19 tmp31 = 1 + (2*x0) tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = tmp40 + tmp30 tmp42 = 2*x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tmp51 + tmp41 tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = tmp58 + tmp52 tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = tmp65 + tmp59 tmp67 = 1 + (2*x1) tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = tmp76 + tmp66 tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tmp83 + tmp77 tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tmp90 + tmp84 tmp92 = (((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) tmp93 = tmp91 / tmp92 tl.store(out_ptr0 + (x4), tmp93, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_constant_pad_nd_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed from torch import optim as optim class AvgPoolPad(nn.Module): def __init__(self, stride=2, padding=1): super(AvgPoolPad, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.AvgPool2d(3, stride=stride, padding=padding, count_include_pad=False) def forward(self, x): x = self.pad(x) x = self.pool(x) x = x[:, :, 1:, 1:] return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed from torch import optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 3 x0 = xindex % 3 x2 = xindex // 9 x4 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = -2 + 2 * x1 tmp12 = tmp11 >= tmp1 tmp13 = -2 + 2 * x0 tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2 * x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = tmp29 + tmp19 tmp31 = 1 + 2 * x0 tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = tmp40 + tmp30 tmp42 = 2 * x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tmp51 + tmp41 tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = tmp58 + tmp52 tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = tmp65 + tmp59 tmp67 = 1 + 2 * x1 tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = tmp76 + tmp66 tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tmp83 + tmp77 tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tmp90 + tmp84 tmp92 = (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * ( 0 * (0 >= -1 + 2 * x1) + (-1 + 2 * x1) * (-1 + 2 * x1 > 0)) + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x1) + ( -1 + 2 * x1) * (-1 + 2 * x1 > 0)) * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) tmp93 = tmp91 / tmp92 tl.store(out_ptr0 + x4, tmp93, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_constant_pad_nd_0[grid(144)](arg0_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), class AvgPoolPadNew(nn.Module): def __init__(self, stride=2, padding=1): super(AvgPoolPadNew, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.AvgPool2d(3, stride=stride, padding=padding, count_include_pad=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BarneyQiao/CondenseNetV2
AvgPoolPad
false
13,395
[ "MIT" ]
80
c771957cb8fe466d0ecbafe9060e4c342a33fc4d
https://github.com/BarneyQiao/CondenseNetV2/tree/c771957cb8fe466d0ecbafe9060e4c342a33fc4d
HighwayLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] # Source node to ATen node mapping: # gate_output => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ln/clnagoyz3cauqnx3uxib3ikp6vd4zabtsvlhtc24rayt3qg4yaom.py # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add] # Source node to ATen node mapping: # add => add # carry_part => mul_1 # gate_output => div, sum_1 # sub => sub_1 # transform_output => relu # transformation_part => mul # type_as => full_default # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %div), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1 = async_compile.triton('triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x3), xmask) tmp15 = tl.load(in_ptr2 + (x3), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add] triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1.run(buf4, buf2, buf0, primals_3, 256, grid=grid(256), stream=stream0) del buf2 return (buf4, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class HighwayLayer(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, x): transform_output = self.highway_transform_activation(self. highway_transform(x)) gate_output = self.highway_gate_activation(self.highway_gate(x)) transformation_part = torch.mul(transform_output, gate_output) carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output ) - gate_output, x) return torch.add(transformation_part, carry_part) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + x3, xmask) tmp15 = tl.load(in_ptr2 + x3, xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3 del buf3 triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1[grid(256)](buf4, buf2, buf0, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf4, primals_3, buf0, buf1 class HighwayLayerNew(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, input_0): primals_1 = self.highway_transform.weight primals_2 = self.highway_transform.bias primals_4 = self.highway_gate.weight primals_5 = self.highway_gate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Ayansam1152/translate
HighwayLayer
false
13,396
[ "BSD-3-Clause" ]
748
33d397fc25fb1072abd2975c77c602a2d031c6c4
https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4
GeLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3v/c3vxe4labx22axljvqnpfvh4p4urhfykzepqmzyxdeaf6uj4elja.py # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # tanh => tanh # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %arg0_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7978845608), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.044715 tmp4 = tmp0 * tmp3 tmp5 = tmp4 * tmp0 tmp6 = tmp5 * tmp0 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class GeLU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + F.tanh(0.7978845608 * (x + 0.044715 * x * x * x)) ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.044715 tmp4 = tmp0 * tmp3 tmp5 = tmp4 * tmp0 tmp6 = tmp5 * tmp0 tmp7 = tmp0 + tmp6 tmp8 = 0.7978845608 tmp9 = tmp7 * tmp8 tmp10 = libdevice.tanh(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GeLUNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Blind-Aid/sentiment-discovery
GeLU
false
13,397
[ "BSD-3-Clause" ]
1,093
081c7c855e00864b52e97cac0b0e097cc86d9731
https://github.com/Blind-Aid/sentiment-discovery/tree/081c7c855e00864b52e97cac0b0e097cc86d9731
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11) return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators def combine_heads(X): """ Combine heads (the inverse of split heads): 1) Transpose X from (batch size, nheads, sequence length, d_head) to (batch size, sequence length, nheads, d_head) 2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model) Inputs: X : [batch size * nheads, sequence length, d_head] nheads : integer d_head : integer Outputs: [batch_size, seq_len, d_model] """ X = X.transpose(1, 2) nheads, d_head = X.shape[-2:] return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head]) def create_src_lengths_mask(batch_size, src_lengths): max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) return (src_indices < src_lengths).int().detach() def apply_masks(scores, batch_size, unseen_mask, src_lengths): seq_len = scores.shape[-1] sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int() if unseen_mask: sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0 ).unsqueeze(0).int() if src_lengths is not None: src_lengths_mask = create_src_lengths_mask(batch_size=batch_size, src_lengths=src_lengths).unsqueeze(-2) sequence_mask = sequence_mask & src_lengths_mask sequence_mask = sequence_mask.unsqueeze(1) scores = scores.masked_fill(sequence_mask == 0, -np.inf) return scores def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None ): """ Scaled Dot Product Attention Implements equation: Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V Inputs: query : [batch size, nheads, sequence length, d_k] key : [batch size, nheads, sequence length, d_k] value : [batch size, nheads, sequence length, d_v] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Outputs: attn: [batch size, sequence length, d_v] Note that in this implementation d_q = d_k = d_v = dim """ d_k = query.shape[-1] scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k) if unseen_mask or src_lengths is not None: scores = apply_masks(scores=scores, batch_size=query.shape[0], unseen_mask=unseen_mask, src_lengths=src_lengths) p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn def split_heads(X, nheads): """ Split heads: 1) Split (reshape) last dimension (size d_model) into nheads, d_head 2) Transpose X from (batch size, sequence length, nheads, d_head) to (batch size, nheads, sequence length, d_head) Inputs: X : [batch size, sequence length, nheads * d_head] nheads : integer Outputs: [batch size, nheads, sequence length, d_head] """ last_dim = X.shape[-1] assert last_dim % nheads == 0 X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads] ) return X_last_dim_split.transpose(1, 2) class MultiheadAttention(nn.Module): """ Multiheaded Scaled Dot Product Attention Implements equation: MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) Similarly to the above, d_k = d_v = d_model / h Inputs init: nheads : integer # of attention heads d_model : model dimensionality d_head : dimensionality of a single head forward: query : [batch size, sequence length, d_model] key: [batch size, sequence length, d_model] value: [batch size, sequence length, d_model] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Output result : [batch_size, sequence length, d_model] """ def __init__(self, nheads, d_model): """Take in model size and number of heads.""" super(MultiheadAttention, self).__init__() assert d_model % nheads == 0 self.d_head = d_model // nheads self.nheads = nheads self.Q_fc = nn.Linear(d_model, d_model, bias=False) self.K_fc = nn.Linear(d_model, d_model, bias=False) self.V_fc = nn.Linear(d_model, d_model, bias=False) self.output_fc = nn.Linear(d_model, d_model, bias=False) self.attn = None def forward(self, query, key, value, unseen_mask=False, src_lengths=None): query = split_heads(self.Q_fc(query), self.nheads) key = split_heads(self.K_fc(key), self.nheads) value = split_heads(self.V_fc(value), self.nheads) x, self.attn = scaled_dot_prod_attn(query=query, key=key, value= value, unseen_mask=unseen_mask, src_lengths=src_lengths) x = combine_heads(x) return self.output_fc(x) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'nheads': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import numpy as np import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11) return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0 ), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) def combine_heads(X): """ Combine heads (the inverse of split heads): 1) Transpose X from (batch size, nheads, sequence length, d_head) to (batch size, sequence length, nheads, d_head) 2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model) Inputs: X : [batch size * nheads, sequence length, d_head] nheads : integer d_head : integer Outputs: [batch_size, seq_len, d_model] """ X = X.transpose(1, 2) nheads, d_head = X.shape[-2:] return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head]) def create_src_lengths_mask(batch_size, src_lengths): max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) return (src_indices < src_lengths).int().detach() def apply_masks(scores, batch_size, unseen_mask, src_lengths): seq_len = scores.shape[-1] sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int() if unseen_mask: sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0 ).unsqueeze(0).int() if src_lengths is not None: src_lengths_mask = create_src_lengths_mask(batch_size=batch_size, src_lengths=src_lengths).unsqueeze(-2) sequence_mask = sequence_mask & src_lengths_mask sequence_mask = sequence_mask.unsqueeze(1) scores = scores.masked_fill(sequence_mask == 0, -np.inf) return scores def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None ): """ Scaled Dot Product Attention Implements equation: Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V Inputs: query : [batch size, nheads, sequence length, d_k] key : [batch size, nheads, sequence length, d_k] value : [batch size, nheads, sequence length, d_v] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Outputs: attn: [batch size, sequence length, d_v] Note that in this implementation d_q = d_k = d_v = dim """ d_k = query.shape[-1] scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k) if unseen_mask or src_lengths is not None: scores = apply_masks(scores=scores, batch_size=query.shape[0], unseen_mask=unseen_mask, src_lengths=src_lengths) p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn def split_heads(X, nheads): """ Split heads: 1) Split (reshape) last dimension (size d_model) into nheads, d_head 2) Transpose X from (batch size, sequence length, nheads, d_head) to (batch size, nheads, sequence length, d_head) Inputs: X : [batch size, sequence length, nheads * d_head] nheads : integer Outputs: [batch size, nheads, sequence length, d_head] """ last_dim = X.shape[-1] assert last_dim % nheads == 0 X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads] ) return X_last_dim_split.transpose(1, 2) class MultiheadAttentionNew(nn.Module): """ Multiheaded Scaled Dot Product Attention Implements equation: MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) Similarly to the above, d_k = d_v = d_model / h Inputs init: nheads : integer # of attention heads d_model : model dimensionality d_head : dimensionality of a single head forward: query : [batch size, sequence length, d_model] key: [batch size, sequence length, d_model] value: [batch size, sequence length, d_model] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Output result : [batch_size, sequence length, d_model] """ def __init__(self, nheads, d_model): """Take in model size and number of heads.""" super(MultiheadAttentionNew, self).__init__() assert d_model % nheads == 0 self.d_head = d_model // nheads self.nheads = nheads self.Q_fc = nn.Linear(d_model, d_model, bias=False) self.K_fc = nn.Linear(d_model, d_model, bias=False) self.V_fc = nn.Linear(d_model, d_model, bias=False) self.output_fc = nn.Linear(d_model, d_model, bias=False) self.attn = None def forward(self, input_0, input_1, input_2): primals_1 = self.Q_fc.weight primals_3 = self.K_fc.weight primals_5 = self.V_fc.weight primals_7 = self.output_fc.weight primals_2 = input_0 primals_4 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Ayansam1152/translate
MultiheadAttention
false
13,398
[ "BSD-3-Clause" ]
748
33d397fc25fb1072abd2975c77c602a2d031c6c4
https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4
SmoothL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/se/csenie6vr4xcnsc7ooahfyond2cbphy2ravggs4ys5dlllmstgur.py # Topologically Sorted Source Nodes: [sub, n, cond, pow_1, mul, truediv, sub_1, loss, mean], Original ATen: [aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div, aten.where, aten.mean] # Source node to ATen node mapping: # cond => lt # loss => where # mean => mean # mul => mul # n => abs_1 # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.1111111111111111), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.1111111111111111), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.05555555555555555), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {}) triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.1111111111111111 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = 9.0 tmp10 = tmp8 * tmp9 tmp11 = 0.05555555555555555 tmp12 = tmp3 - tmp11 tmp13 = tl.where(tmp5, tmp10, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, n, cond, pow_1, mul, truediv, sub_1, loss, mean], Original ATen: [aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div, aten.where, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data def smooth_l1_loss(input, target, beta=1.0 / 9, size_average=True): """ very similar to the smooth_l1_loss from pytorch, but with the extra beta parameter """ n = torch.abs(input - target) cond = n < beta loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta) if size_average: return loss.mean() return loss.sum() class SmoothL1Loss(torch.nn.Module): def __init__(self, beta=1.0 / 9): super(SmoothL1Loss, self).__init__() self.beta = beta def forward(self, input, target, size_average=True): return smooth_l1_loss(input, target, self.beta, size_average) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.1111111111111111 tmp5 = tmp3 < tmp4 tmp6 = tmp3 * tmp3 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = 9.0 tmp10 = tmp8 * tmp9 tmp11 = 0.05555555555555555 tmp12 = tmp3 - tmp11 tmp13 = tl.where(tmp5, tmp10, tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_div_lt_mean_mul_pow_sub_where_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def smooth_l1_loss(input, target, beta=1.0 / 9, size_average=True): """ very similar to the smooth_l1_loss from pytorch, but with the extra beta parameter """ n = torch.abs(input - target) cond = n < beta loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta) if size_average: return loss.mean() return loss.sum() class SmoothL1LossNew(torch.nn.Module): def __init__(self, beta=1.0 / 9): super(SmoothL1LossNew, self).__init__() self.beta = beta def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BorisLestsov/retinamask
SmoothL1Loss
false
13,399
[ "MIT" ]
706
265a65f018c64220bcea946d306fc7b07a692b16
https://github.com/BorisLestsov/retinamask/tree/265a65f018c64220bcea946d306fc7b07a692b16
WordPredictor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dp/cdpfrqskwwuqnfeupok3qgc45wzitvxhdnpcf5uabibiblorlnoa.py # Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add] # Source node to ATen node mapping: # add => add # hidden => relu # max_1 => max_1 # mean_hidden => mean # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu, [0]), kwargs = {}) # %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%relu, 0), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %getitem), kwargs = {}) triton_poi_fused_add_max_mean_relu_0 = async_compile.triton('triton_poi_fused_add_max_mean_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_mean_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x2), xmask) tmp23 = tl.load(in_ptr0 + (32 + x2), xmask) tmp40 = tl.load(in_ptr0 + (48 + x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 > tmp7 tmp9 = tmp4 == tmp7 tmp10 = tmp4 != tmp4 tmp11 = tmp7 != tmp7 tmp12 = tmp10 > tmp11 tmp13 = tmp8 | tmp12 tmp14 = tmp10 & tmp11 tmp15 = tmp9 | tmp14 tmp16 = tl.full([1], 0, tl.int64) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp16 < tmp17 tmp19 = tmp15 & tmp18 tmp20 = tmp13 | tmp19 tmp21 = tl.where(tmp20, tmp4, tmp7) tmp22 = tl.where(tmp20, tmp16, tmp17) tmp24 = tmp23 + tmp1 tmp25 = triton_helpers.maximum(tmp3, tmp24) tmp26 = tmp21 > tmp25 tmp27 = tmp21 == tmp25 tmp28 = tmp21 != tmp21 tmp29 = tmp25 != tmp25 tmp30 = tmp28 > tmp29 tmp31 = tmp26 | tmp30 tmp32 = tmp28 & tmp29 tmp33 = tmp27 | tmp32 tmp34 = tl.full([1], 2, tl.int64) tmp35 = tmp22 < tmp34 tmp36 = tmp33 & tmp35 tmp37 = tmp31 | tmp36 tmp38 = tl.where(tmp37, tmp21, tmp25) tmp39 = tl.where(tmp37, tmp22, tmp34) tmp41 = tmp40 + tmp1 tmp42 = triton_helpers.maximum(tmp3, tmp41) tmp43 = tmp38 > tmp42 tmp44 = tmp38 == tmp42 tmp45 = tmp38 != tmp38 tmp46 = tmp42 != tmp42 tmp47 = tmp45 > tmp46 tmp48 = tmp43 | tmp47 tmp49 = tmp45 & tmp46 tmp50 = tmp44 | tmp49 tmp51 = tl.full([1], 3, tl.int64) tmp52 = tmp39 < tmp51 tmp53 = tmp50 & tmp52 tmp54 = tmp48 | tmp53 tmp55 = tl.where(tmp54, tmp38, tmp42) tmp56 = tl.where(tmp54, tmp39, tmp51) tmp57 = tmp4 + tmp7 tmp58 = tmp57 + tmp25 tmp59 = tmp58 + tmp42 tmp60 = 4.0 tmp61 = tmp59 / tmp60 tmp62 = triton_helpers.maximum(tmp4, tmp7) tmp63 = triton_helpers.maximum(tmp62, tmp25) tmp64 = triton_helpers.maximum(tmp63, tmp42) tmp65 = tmp61 + tmp64 tl.store(out_ptr0 + (x2), tmp56, xmask) tl.store(out_ptr1 + (x2), tmp65, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/i3/ci32bshm7vv6yycmhvqgk6df7gy4rk2dkcyol7iwwj7ttakuvnhx.py # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_max_mean_relu_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del primals_3 return (buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class WordPredictor(nn.Module): def __init__(self, encoder_output_dim, hidden_dim, output_dim, topk_labels_per_source_token=None, use_self_attention=False): super().__init__() self.encoder_output_dim = encoder_output_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.topk_labels_per_source_token = topk_labels_per_source_token self.use_self_attention = use_self_attention if self.use_self_attention: self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim) self.attn_layer = nn.Linear(2 * encoder_output_dim, 1) self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) else: self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def forward(self, encoder_output): encoder_hiddens, *_ = encoder_output assert encoder_hiddens.dim() if self.use_self_attention: init_state = self._get_init_state(encoder_hiddens) attn_scores = self._attention(encoder_hiddens, init_state) attned_state = (encoder_hiddens * attn_scores).sum(0) pred_input = torch.cat([init_state, attned_state], 1) pred_hidden = F.relu(self.hidden_layer(pred_input)) logits = self.output_layer(pred_hidden) else: hidden = F.relu(self.hidden_layer(encoder_hiddens)) mean_hidden = torch.mean(hidden, 0) max_hidden = torch.max(hidden, 0)[0] logits = self.output_layer(mean_hidden + max_hidden) return logits def _get_init_state(self, encoder_hiddens): x = torch.mean(encoder_hiddens, 0) x = F.relu(self.init_layer(x)) return x def _attention(self, encoder_hiddens, init_state): init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens) attn_input = torch.cat([init_state, encoder_hiddens], 2) attn_scores = F.relu(self.attn_layer(attn_input)) attn_scores = F.softmax(attn_scores, 0) return attn_scores def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output if log_probs: return F.log_softmax(logits, dim=1) else: return F.softmax(logits, dim=1) def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs: 'bool'): """ Get self.topk_labels_per_source_token top predicted words for vocab reduction (per source token). """ assert isinstance(self.topk_labels_per_source_token, int ) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None' k = src_tokens.size(1) * self.topk_labels_per_source_token probs = self.get_normalized_probs(net_output, log_probs) _, topk_indices = torch.topk(probs, k, dim=1) return topk_indices def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'encoder_output_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x2), xmask) tmp23 = tl.load(in_ptr0 + (32 + x2), xmask) tmp40 = tl.load(in_ptr0 + (48 + x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 > tmp7 tmp9 = tmp4 == tmp7 tmp10 = tmp4 != tmp4 tmp11 = tmp7 != tmp7 tmp12 = tmp10 > tmp11 tmp13 = tmp8 | tmp12 tmp14 = tmp10 & tmp11 tmp15 = tmp9 | tmp14 tmp16 = tl.full([1], 0, tl.int64) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp16 < tmp17 tmp19 = tmp15 & tmp18 tmp20 = tmp13 | tmp19 tmp21 = tl.where(tmp20, tmp4, tmp7) tmp22 = tl.where(tmp20, tmp16, tmp17) tmp24 = tmp23 + tmp1 tmp25 = triton_helpers.maximum(tmp3, tmp24) tmp26 = tmp21 > tmp25 tmp27 = tmp21 == tmp25 tmp28 = tmp21 != tmp21 tmp29 = tmp25 != tmp25 tmp30 = tmp28 > tmp29 tmp31 = tmp26 | tmp30 tmp32 = tmp28 & tmp29 tmp33 = tmp27 | tmp32 tmp34 = tl.full([1], 2, tl.int64) tmp35 = tmp22 < tmp34 tmp36 = tmp33 & tmp35 tmp37 = tmp31 | tmp36 tmp38 = tl.where(tmp37, tmp21, tmp25) tmp39 = tl.where(tmp37, tmp22, tmp34) tmp41 = tmp40 + tmp1 tmp42 = triton_helpers.maximum(tmp3, tmp41) tmp43 = tmp38 > tmp42 tmp44 = tmp38 == tmp42 tmp45 = tmp38 != tmp38 tmp46 = tmp42 != tmp42 tmp47 = tmp45 > tmp46 tmp48 = tmp43 | tmp47 tmp49 = tmp45 & tmp46 tmp50 = tmp44 | tmp49 tmp51 = tl.full([1], 3, tl.int64) tmp52 = tmp39 < tmp51 tmp53 = tmp50 & tmp52 tmp54 = tmp48 | tmp53 tl.where(tmp54, tmp38, tmp42) tmp56 = tl.where(tmp54, tmp39, tmp51) tmp57 = tmp4 + tmp7 tmp58 = tmp57 + tmp25 tmp59 = tmp58 + tmp42 tmp60 = 4.0 tmp61 = tmp59 / tmp60 tmp62 = triton_helpers.maximum(tmp4, tmp7) tmp63 = triton_helpers.maximum(tmp62, tmp25) tmp64 = triton_helpers.maximum(tmp63, tmp42) tmp65 = tmp61 + tmp64 tl.store(out_ptr0 + x2, tmp56, xmask) tl.store(out_ptr1 + x2, tmp65, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_max_mean_relu_0[grid(16)](buf0, primals_3, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf0, primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_3 return buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0 ), buf4 class WordPredictorNew(nn.Module): def __init__(self, encoder_output_dim, hidden_dim, output_dim, topk_labels_per_source_token=None, use_self_attention=False): super().__init__() self.encoder_output_dim = encoder_output_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.topk_labels_per_source_token = topk_labels_per_source_token self.use_self_attention = use_self_attention if self.use_self_attention: self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim) self.attn_layer = nn.Linear(2 * encoder_output_dim, 1) self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) else: self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def _get_init_state(self, encoder_hiddens): x = torch.mean(encoder_hiddens, 0) x = F.relu(self.init_layer(x)) return x def _attention(self, encoder_hiddens, init_state): init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens) attn_input = torch.cat([init_state, encoder_hiddens], 2) attn_scores = F.relu(self.attn_layer(attn_input)) attn_scores = F.softmax(attn_scores, 0) return attn_scores def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output if log_probs: return F.log_softmax(logits, dim=1) else: return F.softmax(logits, dim=1) def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs: 'bool'): """ Get self.topk_labels_per_source_token top predicted words for vocab reduction (per source token). """ assert isinstance(self.topk_labels_per_source_token, int ) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None' k = src_tokens.size(1) * self.topk_labels_per_source_token probs = self.get_normalized_probs(net_output, log_probs) _, topk_indices = torch.topk(probs, k, dim=1) return topk_indices def forward(self, input_0): primals_2 = self.hidden_layer.weight primals_3 = self.hidden_layer.bias primals_4 = self.output_layer.weight primals_5 = self.output_layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Ayansam1152/translate
WordPredictor
false
13,400
[ "BSD-3-Clause" ]
748
33d397fc25fb1072abd2975c77c602a2d031c6c4
https://github.com/Ayansam1152/translate/tree/33d397fc25fb1072abd2975c77c602a2d031c6c4
ReconstructionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ns/cnsfro2m3yop7hctt3gzvfo72pqdjpjyciiysmo6j2eroh6wibzp.py # Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # L => pow_1 # L_1 => sum_1 # L_2 => sum_2 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [-1]), kwargs = {}) triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (16*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr1 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr1 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp48 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr1 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp59 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp63 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp69 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp73 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp25 = tmp23 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tmp22 + tmp26 tmp30 = tmp28 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp27 + tmp31 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tmp32 + tmp36 tmp38 = tmp18 + tmp37 tmp41 = tmp39 - tmp40 tmp42 = tmp41 * tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp42 + tmp46 tmp50 = tmp48 - tmp49 tmp51 = tmp50 * tmp50 tmp52 = tmp47 + tmp51 tmp55 = tmp53 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp52 + tmp56 tmp58 = tmp38 + tmp57 tmp61 = tmp59 - tmp60 tmp62 = tmp61 * tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp62 + tmp66 tmp70 = tmp68 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tmp67 + tmp71 tmp75 = tmp73 - tmp74 tmp76 = tmp75 * tmp75 tmp77 = tmp72 + tmp76 tmp78 = tmp58 + tmp77 tl.store(out_ptr0 + (x0), tmp78, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ek/cekiz6m3gkht2yp3ztmcbsd3p5puikacrotgfo47gez257wxla3s.py # Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean] # Source node to ATen node mapping: # L_3 => sum_3 # mean => mean # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_2, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {}) triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sub_sum_0.run(arg0_1, arg1_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean] triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 4, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from functools import reduce import torch.nn as nn class BaseModule(nn.Module): """ Implements the basic module. All other modules inherit from this one """ def load_w(self, checkpoint_path): """ Loads a checkpoint into the state_dict. :param checkpoint_path: the checkpoint file to be loaded. """ self.load_state_dict(torch.load(checkpoint_path)) def __repr__(self): """ String representation """ good_old = super(BaseModule, self).__repr__() addition = 'Total number of parameters: {:,}'.format(self.n_parameters) return good_old + '\n' + addition def __call__(self, *args, **kwargs): return super(BaseModule, self).__call__(*args, **kwargs) @property def n_parameters(self): """ Number of parameters of the model. """ n_parameters = 0 for p in self.parameters(): if hasattr(p, 'mask'): n_parameters += torch.sum(p.mask).item() else: n_parameters += reduce(mul, p.shape) return int(n_parameters) class ReconstructionLoss(BaseModule): """ Implements the reconstruction loss. """ def __init__(self): """ Class constructor. """ super(ReconstructionLoss, self).__init__() def forward(self, x, x_r): """ Forward propagation. :param x: the batch of input samples. :param x_r: the batch of reconstructions. :return: the mean reconstruction loss (averaged along the batch axis). """ L = torch.pow(x - x_r, 2) while L.dim() > 1: L = torch.sum(L, dim=-1) return torch.mean(L) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from functools import reduce import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 16 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr1 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr1 + (2 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr1 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr1 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr1 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp39 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp40 = tl.load(in_ptr1 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp43 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr1 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp48 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp49 = tl.load(in_ptr1 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp53 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp54 = tl.load(in_ptr1 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp59 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp60 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp63 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp64 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp68 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp69 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp73 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp74 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp25 = tmp23 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tmp22 + tmp26 tmp30 = tmp28 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp27 + tmp31 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tmp32 + tmp36 tmp38 = tmp18 + tmp37 tmp41 = tmp39 - tmp40 tmp42 = tmp41 * tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp42 + tmp46 tmp50 = tmp48 - tmp49 tmp51 = tmp50 * tmp50 tmp52 = tmp47 + tmp51 tmp55 = tmp53 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp52 + tmp56 tmp58 = tmp38 + tmp57 tmp61 = tmp59 - tmp60 tmp62 = tmp61 * tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp62 + tmp66 tmp70 = tmp68 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tmp67 + tmp71 tmp75 = tmp73 - tmp74 tmp76 = tmp75 * tmp75 tmp77 = tmp72 + tmp76 tmp78 = tmp58 + tmp77 tl.store(out_ptr0 + x0, tmp78, xmask) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sub_sum_0[grid(16)](arg0_1, arg1_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class BaseModule(nn.Module): """ Implements the basic module. All other modules inherit from this one """ def load_w(self, checkpoint_path): """ Loads a checkpoint into the state_dict. :param checkpoint_path: the checkpoint file to be loaded. """ self.load_state_dict(torch.load(checkpoint_path)) def __repr__(self): """ String representation """ good_old = super(BaseModule, self).__repr__() addition = 'Total number of parameters: {:,}'.format(self.n_parameters) return good_old + '\n' + addition def __call__(self, *args, **kwargs): return super(BaseModule, self).__call__(*args, **kwargs) @property def n_parameters(self): """ Number of parameters of the model. """ n_parameters = 0 for p in self.parameters(): if hasattr(p, 'mask'): n_parameters += torch.sum(p.mask).item() else: n_parameters += reduce(mul, p.shape) return int(n_parameters) class ReconstructionLossNew(BaseModule): """ Implements the reconstruction loss. """ def __init__(self): """ Class constructor. """ super(ReconstructionLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BotanAtomic/anomaly-detection
ReconstructionLoss
false
13,401
[ "MIT" ]
179
6617880f19a4955d70a34a3bbee83f157eb087f8
https://github.com/BotanAtomic/anomaly-detection/tree/6617880f19a4955d70a34a3bbee83f157eb087f8
FixedNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/z5/cz5zglsuqu64oprbcsbv6je4qz5apmadf2sjhicjw4ja6k6tsae4.py # Topologically Sorted Source Nodes: [norm_x, mul, add, x_normed], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # norm_x => pow_1, pow_2, sum_1 # x_normed => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-12), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 0.5 tmp14 = tmp12 * tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm_x, mul, add, x_normed], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_linalg_vector_norm_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FixedNorm(nn.Module): def __init__(self, d): super().__init__() self.dd = d ** (-1.0 / 2) def forward(self, x): norm_x = x.norm(2, dim=-1, keepdim=True) x_normed = x / (norm_x * self.dd + 1e-12) return x_normed def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 0.5 tmp14 = tmp12 * tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_linalg_vector_norm_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class FixedNormNew(nn.Module): def __init__(self, d): super().__init__() self.dd = d ** (-1.0 / 2) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
BlinkDL/RWKV-LM
FixedNorm
false
13,402
[ "BSD-2-Clause" ]
102
b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab
https://github.com/BlinkDL/RWKV-LM/tree/b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab
SelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/53/c534yhxg3gcpe74fxg5vgh2zmrismhpnspaukp2nr5jcyadmosai.py # Topologically Sorted Source Nodes: [tanh, sp], Original ATen: [aten.tanh, aten.mean] # Source node to ATen node mapping: # sp => mean # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%tanh, [0]), kwargs = {}) triton_poi_fused_mean_tanh_0 = async_compile.triton('triton_poi_fused_mean_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr0 + (16 + x0), xmask) tmp5 = tl.load(in_ptr0 + (32 + x0), xmask) tmp8 = tl.load(in_ptr0 + (48 + x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 + tmp3 tmp6 = libdevice.tanh(tmp5) tmp7 = tmp4 + tmp6 tmp9 = libdevice.tanh(tmp8) tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/d4/cd4rvrh74ex7ol3xa56xcbrgzovkiqoqca3q4phmsmzkxgygw3ef.py # Topologically Sorted Source Nodes: [beta_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # beta_1 => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view_8, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_8, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dj/cdjsz44cxzios7lyxeig4rn47kawm5xlpu2hpajyli2udygtysrw.py # Topologically Sorted Source Nodes: [mul, z, mul_1, z_1, mul_2, z_2, mul_3, z_3], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # z => add # z_1 => add_1 # z_2 => add_2 # z_3 => add_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %select_7), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select_9), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %select_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {}) triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp7 = tl.load(in_ptr3 + (0)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp13 = tl.load(in_ptr0 + (64 + x0), xmask) tmp14 = tl.load(in_ptr1 + (1)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (128 + x0), xmask) tmp22 = tl.load(in_ptr1 + (2)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (192 + x0), xmask) tmp30 = tl.load(in_ptr1 + (3)) tmp31 = tl.broadcast_to(tmp30, [XBLOCK]) tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp5) tmp9 = tmp6 / tmp8 tmp10 = tmp0 * tmp9 tmp11 = 0.0 tmp12 = tmp10 + tmp11 tmp16 = tmp15 - tmp4 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 / tmp8 tmp19 = tmp13 * tmp18 tmp20 = tmp12 + tmp19 tmp24 = tmp23 - tmp4 tmp25 = tl_math.exp(tmp24) tmp26 = tmp25 / tmp8 tmp27 = tmp21 * tmp26 tmp28 = tmp20 + tmp27 tmp32 = tmp31 - tmp4 tmp33 = tl_math.exp(tmp32) tmp34 = tmp33 / tmp8 tmp35 = tmp29 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 64), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 128), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 192), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, sp], Original ATen: [aten.tanh, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_tanh_0.run(buf0, buf4, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((1, 16), (16, 1), torch.float32) buf5 = reinterpret_tensor(buf12, (1, 4), (16, 1), 0) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.mm(primals_1, reinterpret_tensor(buf4, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_1, sp_1], Original ATen: [aten.tanh, aten.mean] triton_poi_fused_mean_tanh_0.run(buf1, buf6, 16, grid=grid(16), stream=stream0) buf7 = reinterpret_tensor(buf12, (1, 4), (16, 1), 4) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.mm(primals_1, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_2, sp_2], Original ATen: [aten.tanh, aten.mean] triton_poi_fused_mean_tanh_0.run(buf2, buf8, 16, grid=grid(16), stream=stream0) buf9 = reinterpret_tensor(buf12, (1, 4), (16, 1), 8) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.mm(primals_1, reinterpret_tensor(buf8, (4, 4), (1, 4), 0), out=buf9) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_3, sp_3], Original ATen: [aten.tanh, aten.mean] triton_poi_fused_mean_tanh_0.run(buf3, buf10, 16, grid=grid(16), stream=stream0) buf11 = reinterpret_tensor(buf12, (1, 4), (16, 1), 12) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.mm(primals_1, reinterpret_tensor(buf10, (4, 4), (1, 4), 0), out=buf11) buf13 = empty_strided_cuda((1, ), (1, ), torch.float32) buf14 = empty_strided_cuda((1, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [beta_1], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf12, buf13, buf14, 1, 16, grid=grid(1), stream=stream0) buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, z, mul_1, z_1, mul_2, z_2, mul_3, z_3], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(primals_2, buf12, buf13, buf14, buf15, 64, grid=grid(64), stream=stream0) return (buf15, primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192), buf0, buf1, buf2, buf3, buf12, buf13, buf14, buf10, buf8, buf6, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def init_drop(dropout): if dropout > 0: return nn.Dropout(dropout) else: return lambda x: x class SelfAttention(nn.Module): def __init__(self, hidden_dim, attn_drop, txt): """ Description ----------- This part is used to calculate type-level attention and semantic-level attention, and utilize them to generate :math:`z^{sc}` and :math:`z^{mp}`. .. math:: w_{n}&=\\frac{1}{|V|}\\sum\\limits_{i\\in V} \\textbf{a}^\\top \\cdot \\tanh\\left(\\textbf{W}h_i^{n}+\\textbf{b}\\right) \\\\ \\beta_{n}&=\\frac{\\exp\\left(w_{n}\\right)}{\\sum_{i=1}^M\\exp\\left(w_{i}\\right)} \\\\ z &= \\sum_{n=1}^M \\beta_{n}\\cdot h^{n} Parameters ---------- txt : str A str to identify view, MP or SC Returns ------- z : matrix The fused embedding matrix """ super(SelfAttention, self).__init__() self.fc = nn.Linear(hidden_dim, hidden_dim, bias=True) nn.init.xavier_normal_(self.fc.weight, gain=1.414) self.tanh = nn.Tanh() self.att = nn.Parameter(torch.empty(size=(1, hidden_dim)), requires_grad=True) nn.init.xavier_normal_(self.att.data, gain=1.414) self.softmax = nn.Softmax(dim=0) self.attn_drop = init_drop(attn_drop) self.txt = txt def forward(self, embeds): beta = [] attn_curr = self.attn_drop(self.att) for embed in embeds: sp = self.tanh(self.fc(embed)).mean(dim=0) beta.append(attn_curr.matmul(sp.t())) beta = torch.cat(beta, dim=-1).view(-1) beta = self.softmax(beta) None z = 0 for i in range(len(embeds)): z += embeds[i] * beta[i] return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_dim': 4, 'attn_drop': 0.5, 'txt': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr0 + (16 + x0), xmask) tmp5 = tl.load(in_ptr0 + (32 + x0), xmask) tmp8 = tl.load(in_ptr0 + (48 + x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 + tmp3 tmp6 = libdevice.tanh(tmp5) tmp7 = tmp4 + tmp6 tmp9 = libdevice.tanh(tmp8) tmp10 = tmp7 + tmp9 tmp11 = 4.0 tmp12 = tmp10 / tmp11 tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None) @triton.jit def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp7 = tl.load(in_ptr3 + 0) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp13 = tl.load(in_ptr0 + (64 + x0), xmask) tmp14 = tl.load(in_ptr1 + 1) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (128 + x0), xmask) tmp22 = tl.load(in_ptr1 + 2) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (192 + x0), xmask) tmp30 = tl.load(in_ptr1 + 3) tmp31 = tl.broadcast_to(tmp30, [XBLOCK]) tmp5 = tmp2 - tmp4 tmp6 = tl_math.exp(tmp5) tmp9 = tmp6 / tmp8 tmp10 = tmp0 * tmp9 tmp11 = 0.0 tmp12 = tmp10 + tmp11 tmp16 = tmp15 - tmp4 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 / tmp8 tmp19 = tmp13 * tmp18 tmp20 = tmp12 + tmp19 tmp24 = tmp23 - tmp4 tmp25 = tl_math.exp(tmp24) tmp26 = tmp25 / tmp8 tmp27 = tmp21 * tmp26 tmp28 = tmp20 + tmp27 tmp32 = tmp31 - tmp4 tmp33 = tl_math.exp(tmp32) tmp34 = tmp33 / tmp8 tmp35 = tmp29 * tmp34 tmp36 = tmp28 + tmp35 tl.store(out_ptr0 + x0, tmp36, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 64), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 128), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 192), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_tanh_0[grid(16)](buf0, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((1, 16), (16, 1), torch.float32) buf5 = reinterpret_tensor(buf12, (1, 4), (16, 1), 0) extern_kernels.mm(primals_1, reinterpret_tensor(buf4, (4, 4), (1, 4 ), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_tanh_0[grid(16)](buf1, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf12, (1, 4), (16, 1), 4) extern_kernels.mm(primals_1, reinterpret_tensor(buf6, (4, 4), (1, 4 ), 0), out=buf7) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_tanh_0[grid(16)](buf2, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf12, (1, 4), (16, 1), 8) extern_kernels.mm(primals_1, reinterpret_tensor(buf8, (4, 4), (1, 4 ), 0), out=buf9) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_tanh_0[grid(16)](buf3, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf12, (1, 4), (16, 1), 12) extern_kernels.mm(primals_1, reinterpret_tensor(buf10, (4, 4), (1, 4), 0), out=buf11) buf13 = empty_strided_cuda((1,), (1,), torch.float32) buf14 = empty_strided_cuda((1,), (1,), torch.float32) triton_per_fused__softmax_1[grid(1)](buf12, buf13, buf14, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_2[grid(64)](primals_2, buf12, buf13, buf14, buf15, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf15, primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192 ), buf0, buf1, buf2, buf3, buf12, buf13, buf14, buf10, buf8, buf6, buf4 def init_drop(dropout): if dropout > 0: return nn.Dropout(dropout) else: return lambda x: x class SelfAttentionNew(nn.Module): def __init__(self, hidden_dim, attn_drop, txt): """ Description ----------- This part is used to calculate type-level attention and semantic-level attention, and utilize them to generate :math:`z^{sc}` and :math:`z^{mp}`. .. math:: w_{n}&=\\frac{1}{|V|}\\sum\\limits_{i\\in V} \\textbf{a}^\\top \\cdot \\tanh\\left(\\textbf{W}h_i^{n}+\\textbf{b}\\right) \\\\ \\beta_{n}&=\\frac{\\exp\\left(w_{n}\\right)}{\\sum_{i=1}^M\\exp\\left(w_{i}\\right)} \\\\ z &= \\sum_{n=1}^M \\beta_{n}\\cdot h^{n} Parameters ---------- txt : str A str to identify view, MP or SC Returns ------- z : matrix The fused embedding matrix """ super(SelfAttentionNew, self).__init__() self.fc = nn.Linear(hidden_dim, hidden_dim, bias=True) nn.init.xavier_normal_(self.fc.weight, gain=1.414) self.tanh = nn.Tanh() self.att = nn.Parameter(torch.empty(size=(1, hidden_dim)), requires_grad=True) nn.init.xavier_normal_(self.att.data, gain=1.414) self.softmax = nn.Softmax(dim=0) self.attn_drop = init_drop(attn_drop) self.txt = txt def forward(self, input_0): primals_1 = self.att primals_3 = self.fc.weight primals_4 = self.fc.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
BUPT-GAMMA/OpenHGNN
SelfAttention
false
13,403
[ "Apache-2.0" ]
235
5f218dad4ed1415aa6d842bc20785c61e74e5405
https://github.com/BUPT-GAMMA/OpenHGNN/tree/5f218dad4ed1415aa6d842bc20785c61e74e5405
HouseHolderFlow
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fu/cfui2mven43hhlvyvmrv2f4i7tlirm2mffanlifihc4yxcujsv3y.py # Topologically Sorted Source Nodes: [mul_1, truediv, z_new], Original ATen: [aten.mul, aten.div, aten.sub] # Source node to ATen node mapping: # mul_1 => mul_1 # truediv => div # z_new => sub # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %expand), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %div), kwargs = {}) triton_poi_fused_div_mul_sub_0 = async_compile.triton('triton_poi_fused_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = 2.0 tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = tmp3 / tmp14 tmp16 = tmp0 - tmp15 tl.store(in_out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [vvT], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg0_1, (4, 1, 4), (4, 4, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf0, reinterpret_tensor(arg1_1, (4, 4, 1), (4, 1, 1), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [mul_1, truediv, z_new], Original ATen: [aten.mul, aten.div, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_sub_0.run(buf2, arg1_1, arg0_1, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class HouseHolderFlow(nn.Module): def forward(self, v, z): """ :param v: batch_size (B) x latent_size (L) :param z: batch_size (B) x latent_size (L) :return: z_new = z - 2* v v_T / norm(v,2) * z """ vvT = torch.bmm(v.unsqueeze(2), v.unsqueeze(1)) vvTz = torch.bmm(vvT, z.unsqueeze(2)).squeeze(2) norm_sq = torch.sum(v * v, 1).unsqueeze(1) norm_sq = norm_sq.expand(norm_sq.size(0), v.size(1)) z_new = z - 2 * vvTz / norm_sq return z_new def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = 2.0 tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = tmp3 / tmp14 tmp16 = tmp0 - tmp15 tl.store(in_out_ptr0 + x2, tmp16, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg0_1, (4, 1, 4), (4, 4, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf0, reinterpret_tensor(arg1_1, (4, 4, 1), (4, 1, 1), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_div_mul_sub_0[grid(16)](buf2, arg1_1, arg0_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf2, class HouseHolderFlowNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BratChar/variational-item-response-theory-public
HouseHolderFlow
false
13,404
[ "MIT" ]
52
12862157e99506a0ed7018f1b8a485d4e61fb5bf
https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hc/chcvgm3sfysnmktc2gfu6wuvzistmmcdmnswrsruagvhi7yf2qi6.py # Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mul => mul # std => var # sub => sub # x => div # x_1 => add_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {}) triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp28 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-05 tmp25 = tmp23 + tmp24 tmp26 = tmp0 - tmp20 tmp27 = tmp26 / tmp25 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf3 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = buf0; del buf0 # reuse buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_std_sub_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 return (buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-05, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp28 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-05 tmp25 = tmp23 + tmp24 tmp26 = tmp0 - tmp20 tmp27 = tmp26 / tmp25 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf3 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = buf0 del buf0 buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_std_sub_0[grid(4)](buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf5 class LayerNormNew(nn.Module): def __init__(self, num_features, eps=1e-05, affine=True): super(LayerNormNew, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Boyiliee/PONO
LayerNorm
false
13,405
[ "MIT" ]
133
b9108e8bf8ba0228635532ba5bdc973b7393d045
https://github.com/Boyiliee/PONO/tree/b9108e8bf8ba0228635532ba5bdc973b7393d045
ItemInferenceNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wi/cwibqvrnbfx7xhnfzzckhfwxbmmaeepyx4l2irzdxw23feqjr3lp.py # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # long => convert_element_type # Graph fragment: # %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%squeeze, torch.int64), kwargs = {}) triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2e/c2e4nfp52zmurk7ex2ep3mryrqdejop45i2wrjnw5y6jlqjwwz62.py # Topologically Sorted Source Nodes: [mu, logvar], Original ATen: [aten.embedding] # Source node to ATen node mapping: # logvar => embedding_1 # mu => embedding # Graph fragment: # %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %convert_element_type), kwargs = {}) # %embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_3, %convert_element_type), kwargs = {}) triton_poi_fused_embedding_1 = async_compile.triton('triton_poi_fused_embedding_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_embedding_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp7 = tl.load(in_ptr2 + (x0 + (4*tmp4)), xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, logvar], Original ATen: [aten.embedding] triton_poi_fused_embedding_1.run(buf0, primals_2, primals_3, buf1, buf2, 1024, grid=grid(1024), stream=stream0) del primals_2 del primals_3 return (buf1, buf2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class ItemInferenceNetwork(nn.Module): def __init__(self, num_item, item_feat_dim): super().__init__() self.mu_lookup = nn.Embedding(num_item, item_feat_dim) self.logvar_lookup = nn.Embedding(num_item, item_feat_dim) def forward(self, item_index): item_index = item_index.squeeze(1) mu = self.mu_lookup(item_index.long()) logvar = self.logvar_lookup(item_index.long()) return mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_item': 4, 'item_feat_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_embedding_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp7 = tl.load(in_ptr2 + (x0 + 4 * tmp4), xmask) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_0[grid(256)](primals_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_embedding_1[grid(1024)](buf0, primals_2, primals_3, buf1, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf1, buf2, buf0 class ItemInferenceNetworkNew(nn.Module): def __init__(self, num_item, item_feat_dim): super().__init__() self.mu_lookup = nn.Embedding(num_item, item_feat_dim) self.logvar_lookup = nn.Embedding(num_item, item_feat_dim) def forward(self, input_0): primals_2 = self.mu_lookup.weight primals_3 = self.logvar_lookup.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
BratChar/variational-item-response-theory-public
ItemInferenceNetwork
false
13,406
[ "MIT" ]
52
12862157e99506a0ed7018f1b8a485d4e61fb5bf
https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf
TargetContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7l/c7lf5woemwxcoeo376uvq4tswpw24vydykzmrhtxemqtbvcbg3gw.py # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %add_tensor), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_out_ptr0 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp6 = tmp4 + tmp5 tmp7 = tmp3 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, buf1, buf4, primals_7, 16, grid=grid(16), stream=stream0) del primals_7 return (buf5, primals_3, buf0, buf1, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class TargetContextGate(nn.Module): """Apply the context gate only to the target context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(TargetContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh(z * target + source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_out_ptr0 + x2, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp6 = tmp4 + tmp5 tmp7 = tmp3 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = buf2 del buf2 triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, buf1, buf4, primals_7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_7 return buf5, primals_3, buf0, buf1, buf3, buf4, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class TargetContextGateNew(nn.Module): """Apply the context gate only to the target context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(TargetContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
BradLin0819/kg2text
TargetContextGate
false
13,407
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
ContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/x7/cx7xziu4lpr42gzh3hblzhyhhr2agimvsluvyrub77hqbwauajw5.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # z => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_1, primals_2, buf4, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 del primals_9 return (buf2, buf3, buf5, primals_3, buf0, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) del primals_4 buf2 = buf1 del buf1 triton_poi_fused_sigmoid_1[grid(16)](buf2, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_2[grid(32)](primals_1, primals_2, buf4, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 del primals_9 return buf2, buf3, buf5, primals_3, buf0, buf2, buf4 class ContextGateNew(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGateNew, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, input_0, input_1, input_2): primals_4 = self.gate.weight primals_5 = self.gate.bias primals_1 = self.source_proj.weight primals_7 = self.source_proj.bias primals_8 = self.target_proj.weight primals_9 = self.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2]
BradLin0819/kg2text
ContextGate
false
13,408
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
DenseSAGEConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yf/cyfz6srx4443jhi7lgfjbfu3ehgnaqfqo3rj5tlqazzc5tiz24ql.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.add] # Source node to ATen node mapping: # adj => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %expand), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = x1 tmp2 = x0 tmp3 = tmp1 == tmp2 tmp4 = 1.0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2g/c2gow746iojnl6yugujjn3non5klwrqsxgmhc4ib5irxlfwbv7ap.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lb/clbw2sp4wu7io3zuw5as2fbn27we4tverl434cs7noplq3gyshrf.py # Topologically Sorted Source Nodes: [sum_1, out_1], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # out_1 => div # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %sum_1), kwargs = {}) triton_poi_fused_div_sum_2 = async_compile.triton('triton_poi_fused_div_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uz/cuzvezpdln3rubwurbnkmv43r4ee3bomupctxovgoebdll43j7ei.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.linalg_vector_norm, aten.clamp_min] # Source node to ATen node mapping: # out_3 => add_1 # out_4 => clamp_min, pow_1, pow_2, sum_2 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-12), kwargs = {}) triton_poi_fused_add_clamp_min_linalg_vector_norm_3 = async_compile.triton('triton_poi_fused_add_clamp_min_linalg_vector_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_min_linalg_vector_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_min_linalg_vector_norm_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2)) tmp13 = tl.broadcast_to(tmp12, [XBLOCK]) tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3)) tmp19 = tl.broadcast_to(tmp18, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tmp3 * tmp3 tmp8 = tmp5 + tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp11 + tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp17 + tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = triton_helpers.maximum(tmp23, tmp24) tl.store(out_ptr0 + (x0), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v7/cv7oi477z57e4xbimwteapee62e32snn6tf2qbinkhztc2zy6aim.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # out_3 => add_1 # out_4 => div_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_4), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %expand_3), kwargs = {}) triton_poi_fused_add_div_4 = async_compile.triton('triton_poi_fused_add_div_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf1, 256, grid=grid(256), stream=stream0) del primals_1 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [sum_1, out_1], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_2.run(buf3, buf0, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_3, out=buf4) del primals_3 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.linalg_vector_norm, aten.clamp_min] triton_poi_fused_add_clamp_min_linalg_vector_norm_3.run(buf4, primals_4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_4.run(buf4, primals_4, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (buf6, primals_4, buf4, reinterpret_tensor(buf3, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F import torch.utils.data from torch.nn import Parameter def uniform(size, tensor): stdv = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-stdv, stdv) class DenseSAGEConv(torch.nn.Module): """See :class:`torch_geometric.nn.conv.sage_conv.SAGEConv`. :rtype: :class:`Tensor` """ def __init__(self, in_channels, out_channels, normalize=True, bias=True): super(DenseSAGEConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.normalize = normalize self.weight = Parameter(torch.Tensor(self.in_channels, out_channels)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): uniform(self.in_channels, self.weight) uniform(self.in_channels, self.bias) def forward(self, x, adj, mask=None, add_loop=True): """ Args: x (Tensor): Node feature tensor :math:`\\mathbf{X} \\in \\mathbb{R}^{B \\times N \\times F}`, with batch-size :math:`B`, (maximum) number of nodes :math:`N` for each graph, and feature dimension :math:`F`. adj (Tensor): Adjacency tensor :math:`\\mathbf{A} \\in \\mathbb{R}^{B \\times N \\times N}`. mask (ByteTensor, optional): Mask matrix :math:`\\mathbf{M} \\in {\\{ 0, 1 \\}}^{B \\times N}` indicating the valid nodes for each graph. (default: :obj:`None`) add_loop (bool, optional): If set to :obj:`False`, the layer will not automatically add self-loops to the adjacency matrices. (default: :obj:`True`) """ x = x.unsqueeze(0) if x.dim() == 2 else x adj = adj.unsqueeze(0) if adj.dim() == 2 else adj B, N, _ = x.size() if add_loop: eye = torch.eye(N, dtype=adj.dtype, device=adj.device) adj = adj + eye.unsqueeze(0).expand_as(adj) out = torch.matmul(adj, x) out = out / adj.sum(dim=-1, keepdim=True) out = torch.matmul(out, self.weight) if self.bias is not None: out = out + self.bias if self.normalize: out = F.normalize(out, p=2, dim=-1) if mask is not None: mask = mask.view(B, N, 1) out = out * mask return out def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self. in_channels, self.out_channels) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import torch.utils.data from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = x1 tmp2 = x0 tmp3 = tmp1 == tmp2 tmp4 = 1.0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_div_sum_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(in_out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_min_linalg_vector_norm_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + 1) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + 2) tmp13 = tl.broadcast_to(tmp12, [XBLOCK]) tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr1 + 3) tmp19 = tl.broadcast_to(tmp18, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tmp3 * tmp3 tmp8 = tmp5 + tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp4 + tmp9 tmp14 = tmp11 + tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp10 + tmp15 tmp20 = tmp17 + tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = triton_helpers.maximum(tmp23, tmp24) tl.store(out_ptr0 + x0, tmp25, xmask) @triton.jit def triton_poi_fused_add_div_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](primals_1, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_1 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_div_sum_2[grid(256)](buf3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0) del buf0 extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_3, out=buf4) del primals_3 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_add_clamp_min_linalg_vector_norm_3[grid(64)](buf4, primals_4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf1 del buf1 triton_poi_fused_add_div_4[grid(256)](buf4, primals_4, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 return buf6, primals_4, buf4, reinterpret_tensor(buf3, (4, 64), (1, 4), 0) def uniform(size, tensor): stdv = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-stdv, stdv) class DenseSAGEConvNew(torch.nn.Module): """See :class:`torch_geometric.nn.conv.sage_conv.SAGEConv`. :rtype: :class:`Tensor` """ def __init__(self, in_channels, out_channels, normalize=True, bias=True): super(DenseSAGEConvNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.normalize = normalize self.weight = Parameter(torch.Tensor(self.in_channels, out_channels)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): uniform(self.in_channels, self.weight) uniform(self.in_channels, self.bias) def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self. in_channels, self.out_channels) def forward(self, input_0, input_1): primals_3 = self.weight primals_4 = self.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Bawaw/pytorch_geometric
DenseSAGEConv
false
13,409
[ "MIT" ]
62
868548d4396fc66e39b08e2ff19091a367ddac13
https://github.com/Bawaw/pytorch_geometric/tree/868548d4396fc66e39b08e2ff19091a367ddac13
AverageAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/75/c75w3rgnfmm4c7hp5div65urlkb5kzh2656pt75swmio7vzn3vp3.py # Topologically Sorted Source Nodes: [ones, triangle, mask], Original ATen: [aten.ones, aten.tril, aten.mul] # Source node to ATen node mapping: # mask => mul_1 # ones => full_default # triangle => full_default_1, le, sub, where # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub, 0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %full_default, %full_default_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_mul_ones_tril_0 = async_compile.triton('triton_poi_fused_mul_ones_tril_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_ones_tril_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_ones_tril_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 + ((-1)*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = 1 + x1 tmp7 = tmp6.to(tl.float32) tmp8 = tmp3 / tmp7 tmp9 = tmp5 * tmp8 tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ha/chavpwdtejkyqus2olvrr56v6fhdolpm5dx6l26ahmwfvz664fnv.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %bmm], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bj/cbjkk5x2yiy67l3q4l7ooe5u7plvwkualpweocfe25rsydr62zek.py # Topologically Sorted Source Nodes: [sigmoid, mul_1, sigmoid_1, mul_2, gating_outputs_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.sigmoid_backward] # Source node to ATen node mapping: # gating_outputs_1 => add_1 # mul_1 => mul_2 # mul_2 => mul_3 # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %bmm), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_2), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x2), xmask) tmp6 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tmp8 = tmp6 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp11 = tmp9 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = 1.0 tmp14 = tmp13 - tmp9 tmp15 = tmp9 * tmp14 tmp16 = tmp13 - tmp3 tmp17 = tmp3 * tmp16 tl.store(out_ptr0 + (x2), tmp12, xmask) tl.store(out_ptr1 + (x2), tmp15, xmask) tl.store(out_ptr2 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 8), (8, 1)) assert_size_stride(primals_3, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [ones, triangle, mask], Original ATen: [aten.ones, aten.tril, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_ones_tril_0.run(buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [average_outputs], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0), primals_1, out=buf1) del buf0 buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, buf1, buf2, 128, grid=grid(128), stream=stream0) buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (16, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 8), (1, 8), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul_1, sigmoid_1, mul_2, gating_outputs_1], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.sigmoid_backward] triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2.run(buf3, primals_3, primals_1, buf1, buf4, buf5, buf6, 64, grid=grid(64), stream=stream0) del buf3 del primals_3 return (buf4, buf1, primals_1, buf1, reinterpret_tensor(buf2, (16, 8), (8, 1), 0), buf5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class PositionwiseFeedForward(nn.Module): """ A two-layer Feed-Forward-Network with residual layer norm. Args: d_model (int): the size of input for the first-layer of the FFN. d_ff (int): the hidden layer size of the second-layer of the FNN. dropout (float): dropout probability in :math:`[0, 1)`. """ def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) self.dropout_1 = nn.Dropout(dropout) self.relu = nn.ReLU() self.dropout_2 = nn.Dropout(dropout) def forward(self, x): """Layer definition. Args: x: ``(batch_size, input_len, model_dim)`` Returns: (FloatTensor): Output ``(batch_size, input_len, model_dim)``. """ inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x)))) output = self.dropout_2(self.w_2(inter)) return output + x def update_dropout(self, dropout): self.dropout_1.p = dropout self.dropout_2.p = dropout class AverageAttention(nn.Module): """ Average Attention module from "Accelerating Neural Transformer via an Average Attention Network" :cite:`DBLP:journals/corr/abs-1805-00631`. Args: model_dim (int): the dimension of keys/values/queries, must be divisible by head_count dropout (float): dropout parameter """ def __init__(self, model_dim, dropout=0.1, aan_useffn=False): self.model_dim = model_dim self.aan_useffn = aan_useffn super(AverageAttention, self).__init__() if aan_useffn: self.average_layer = PositionwiseFeedForward(model_dim, model_dim, dropout) self.gating_layer = nn.Linear(model_dim * 2, model_dim * 2) def cumulative_average_mask(self, batch_size, inputs_len, device): """ Builds the mask to compute the cumulative average as described in :cite:`DBLP:journals/corr/abs-1805-00631` -- Figure 3 Args: batch_size (int): batch size inputs_len (int): length of the inputs Returns: (FloatTensor): * A Tensor of shape ``(batch_size, input_len, input_len)`` """ triangle = torch.tril(torch.ones(inputs_len, inputs_len, dtype= torch.float, device=device)) weights = torch.ones(1, inputs_len, dtype=torch.float, device=device ) / torch.arange(1, inputs_len + 1, dtype=torch.float, device= device) mask = triangle * weights.transpose(0, 1) return mask.unsqueeze(0).expand(batch_size, inputs_len, inputs_len) def cumulative_average(self, inputs, mask_or_step, layer_cache=None, step=None): """ Computes the cumulative average as described in :cite:`DBLP:journals/corr/abs-1805-00631` -- Equations (1) (5) (6) Args: inputs (FloatTensor): sequence to average ``(batch_size, input_len, dimension)`` mask_or_step: if cache is set, this is assumed to be the current step of the dynamic decoding. Otherwise, it is the mask matrix used to compute the cumulative average. layer_cache: a dictionary containing the cumulative average of the previous step. Returns: a tensor of the same shape and type as ``inputs``. """ if layer_cache is not None: step = mask_or_step average_attention = (inputs + step * layer_cache['prev_g']) / (step + 1) layer_cache['prev_g'] = average_attention return average_attention else: mask = mask_or_step return torch.matmul(mask, inputs) def forward(self, inputs, mask=None, layer_cache=None, step=None): """ Args: inputs (FloatTensor): ``(batch_size, input_len, model_dim)`` Returns: (FloatTensor, FloatTensor): * gating_outputs ``(batch_size, input_len, model_dim)`` * average_outputs average attention ``(batch_size, input_len, model_dim)`` """ batch_size = inputs.size(0) inputs_len = inputs.size(1) average_outputs = self.cumulative_average(inputs, self. cumulative_average_mask(batch_size, inputs_len, inputs.device) if layer_cache is None else step, layer_cache=layer_cache) if self.aan_useffn: average_outputs = self.average_layer(average_outputs) gating_outputs = self.gating_layer(torch.cat((inputs, average_outputs), -1)) input_gate, forget_gate = torch.chunk(gating_outputs, 2, dim=2) gating_outputs = torch.sigmoid(input_gate) * inputs + torch.sigmoid( forget_gate) * average_outputs return gating_outputs, average_outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'model_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_ones_tril_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 + -1 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = 1 + x1 tmp7 = tmp6.to(tl.float32) tmp8 = tmp3 / tmp7 tmp9 = tmp5 * tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x2, xmask) tmp6 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tmp8 = tmp6 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp11 = tmp9 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = 1.0 tmp14 = tmp13 - tmp9 tmp15 = tmp9 * tmp14 tmp16 = tmp13 - tmp3 tmp17 = tmp3 * tmp16 tl.store(out_ptr0 + x2, tmp12, xmask) tl.store(out_ptr1 + x2, tmp15, xmask) tl.store(out_ptr2 + x2, tmp17, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 8), (8, 1)) assert_size_stride(primals_3, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_ones_tril_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0 ), primals_1, out=buf1) del buf0 buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_1[grid(128)](primals_1, buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 8), (1, 8), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_2[grid(64)](buf3, primals_3, primals_1, buf1, buf4, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 del primals_3 return buf4, buf1, primals_1, buf1, reinterpret_tensor(buf2, (16, 8), ( 8, 1), 0), buf5, buf6 class PositionwiseFeedForward(nn.Module): """ A two-layer Feed-Forward-Network with residual layer norm. Args: d_model (int): the size of input for the first-layer of the FFN. d_ff (int): the hidden layer size of the second-layer of the FNN. dropout (float): dropout probability in :math:`[0, 1)`. """ def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) self.dropout_1 = nn.Dropout(dropout) self.relu = nn.ReLU() self.dropout_2 = nn.Dropout(dropout) def forward(self, x): """Layer definition. Args: x: ``(batch_size, input_len, model_dim)`` Returns: (FloatTensor): Output ``(batch_size, input_len, model_dim)``. """ inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x)))) output = self.dropout_2(self.w_2(inter)) return output + x def update_dropout(self, dropout): self.dropout_1.p = dropout self.dropout_2.p = dropout class AverageAttentionNew(nn.Module): """ Average Attention module from "Accelerating Neural Transformer via an Average Attention Network" :cite:`DBLP:journals/corr/abs-1805-00631`. Args: model_dim (int): the dimension of keys/values/queries, must be divisible by head_count dropout (float): dropout parameter """ def __init__(self, model_dim, dropout=0.1, aan_useffn=False): self.model_dim = model_dim self.aan_useffn = aan_useffn super(AverageAttentionNew, self).__init__() if aan_useffn: self.average_layer = PositionwiseFeedForward(model_dim, model_dim, dropout) self.gating_layer = nn.Linear(model_dim * 2, model_dim * 2) def cumulative_average_mask(self, batch_size, inputs_len, device): """ Builds the mask to compute the cumulative average as described in :cite:`DBLP:journals/corr/abs-1805-00631` -- Figure 3 Args: batch_size (int): batch size inputs_len (int): length of the inputs Returns: (FloatTensor): * A Tensor of shape ``(batch_size, input_len, input_len)`` """ triangle = torch.tril(torch.ones(inputs_len, inputs_len, dtype= torch.float, device=device)) weights = torch.ones(1, inputs_len, dtype=torch.float, device=device ) / torch.arange(1, inputs_len + 1, dtype=torch.float, device= device) mask = triangle * weights.transpose(0, 1) return mask.unsqueeze(0).expand(batch_size, inputs_len, inputs_len) def cumulative_average(self, inputs, mask_or_step, layer_cache=None, step=None): """ Computes the cumulative average as described in :cite:`DBLP:journals/corr/abs-1805-00631` -- Equations (1) (5) (6) Args: inputs (FloatTensor): sequence to average ``(batch_size, input_len, dimension)`` mask_or_step: if cache is set, this is assumed to be the current step of the dynamic decoding. Otherwise, it is the mask matrix used to compute the cumulative average. layer_cache: a dictionary containing the cumulative average of the previous step. Returns: a tensor of the same shape and type as ``inputs``. """ if layer_cache is not None: step = mask_or_step average_attention = (inputs + step * layer_cache['prev_g']) / (step + 1) layer_cache['prev_g'] = average_attention return average_attention else: mask = mask_or_step return torch.matmul(mask, inputs) def forward(self, input_0): primals_2 = self.gating_layer.weight primals_3 = self.gating_layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
BradLin0819/kg2text
AverageAttention
false
13,410
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
PONO
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pf/cpf4xkwj7b5z2r36riunmn3xtrbgh6xyhyc6laareb453wryzdiy.py # Topologically Sorted Source Nodes: [mean, var, add, std], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # mean => mean # std => sqrt # var => var # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1, [1]), kwargs = {correction: 1, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mean_sqrt_var_0 = async_compile.triton('triton_poi_fused_add_mean_sqrt_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_sqrt_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hl/chlskxwc5bfk2hl32it5jifadeo3qcigki3gn3enapfsa4uhfkk6.py # Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.div] # Source node to ATen node mapping: # sub => sub # x => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var, add, std], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_sqrt_var_0.run(arg0_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.div] triton_poi_fused_div_sub_1.run(arg0_1, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PONO(nn.Module): def __init__(self, input_size=None, return_stats=False, affine=False, eps=1e-05): super(PONO, self).__init__() self.return_stats = return_stats self.input_size = input_size self.eps = eps self.affine = affine if affine: self.beta = nn.Parameter(torch.zeros(1, 1, *input_size)) self.gamma = nn.Parameter(torch.ones(1, 1, *input_size)) else: self.beta, self.gamma = None, None def forward(self, x): mean = x.mean(dim=1, keepdim=True) std = (x.var(dim=1, keepdim=True) + self.eps).sqrt() x = (x - mean) / std if self.affine: x = x * self.gamma + self.beta return x, mean, std def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_sqrt_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_sqrt_var_0[grid(64)](arg0_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_sub_1[grid(256)](arg0_1, buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf2, buf0, buf1 class PONONew(nn.Module): def __init__(self, input_size=None, return_stats=False, affine=False, eps=1e-05): super(PONONew, self).__init__() self.return_stats = return_stats self.input_size = input_size self.eps = eps self.affine = affine if affine: self.beta = nn.Parameter(torch.zeros(1, 1, *input_size)) self.gamma = nn.Parameter(torch.ones(1, 1, *input_size)) else: self.beta, self.gamma = None, None def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1], output[2]
Boyiliee/PONO
PONO
false
13,411
[ "MIT" ]
133
b9108e8bf8ba0228635532ba5bdc973b7393d045
https://github.com/Boyiliee/PONO/tree/b9108e8bf8ba0228635532ba5bdc973b7393d045
SELayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool2d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3p/c3pvtte4adxbodvqq4iab6zximg555lpk2lopxwzpt4fva4eetqt.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # y_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SELayer(nn.Module): def __init__(self, in_channels, reduction): super().__init__() mid_channels = in_channels // reduction self.fc1 = nn.Linear(in_channels, mid_channels) self.fc2 = nn.Linear(mid_channels, in_channels) def forward(self, x): n_batches, n_channels, _, _ = x.size() y = F.adaptive_avg_pool2d(x, output_size=1).view(n_batches, n_channels) y = F.relu(self.fc1(y), inplace=True) y = F.sigmoid(self.fc2(y)).view(n_batches, n_channels, 1, 1) return x * y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'reduction': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](primals_1, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0 ), buf3, buf4, primals_4 class SELayerNew(nn.Module): def __init__(self, in_channels, reduction): super().__init__() mid_channels = in_channels // reduction self.fc1 = nn.Linear(in_channels, mid_channels) self.fc2 = nn.Linear(mid_channels, in_channels) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BrandonHanx/pytorch_image_classification
SELayer
false
13,412
[ "MIT" ]
1,114
13f037c442f251c5cd938672245b39df157f1c98
https://github.com/BrandonHanx/pytorch_image_classification/tree/13f037c442f251c5cd938672245b39df157f1c98
SourceContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6s/c6s456zdtwmlik5mrlyh27gyo7fuehy7vzu5kdq6caawwt6hjyvr.py # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor, %mul), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), out=buf4) del primals_8 buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, primals_9, buf1, buf2, 16, grid=grid(16), stream=stream0) del primals_9 return (buf5, primals_3, buf0, buf1, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGate(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh(target + z * source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8 ), 0), out=buf4) del primals_8 buf5 = buf4 del buf4 triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, primals_9, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 return buf5, primals_3, buf0, buf1, buf2, buf3, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGateNew(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
BradLin0819/kg2text
SourceContextGate
false
13,413
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
KL_loss_softmax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3w/c3wv3ushivzru26snkabczkcghoctmzpyj4rqh5rompyw6zmabff.py # Topologically Sorted Source Nodes: [KL_loss, img_prob, loss], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum] # Source node to ATen node mapping: # KL_loss => eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub, where, where_1 # img_prob => log # loss => sum_1 # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg1_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) triton_per_fused_log_mul_sub_sum_xlogy_0 = async_compile.triton('triton_per_fused_log_mul_sub_sum_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mul_sub_sum_xlogy_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_mul_sub_sum_xlogy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float("nan") tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tl_math.log(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [KL_loss, img_prob, loss], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_log_mul_sub_sum_xlogy_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.init class KL_loss_softmax(nn.Module): """ Compute KL_divergence between all prediction score (already sum=1, omit softmax function) """ def __init__(self): super(KL_loss_softmax, self).__init__() self.KL_loss = nn.KLDivLoss(reduce=False) def forward(self, im, s): img_prob = torch.log(im) s_prob = s KL_loss = self.KL_loss(img_prob, s_prob) loss = KL_loss.sum() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_mul_sub_sum_xlogy_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float('nan') tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tl_math.log(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 - tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_log_mul_sub_sum_xlogy_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class KL_loss_softmaxNew(nn.Module): """ Compute KL_divergence between all prediction score (already sum=1, omit softmax function) """ def __init__(self): super(KL_loss_softmaxNew, self).__init__() self.KL_loss = nn.KLDivLoss(reduce=False) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BruceW91/CVSE
KL_loss_softmax
false
13,414
[ "MIT" ]
152
20fa1ff50d1dcb4a7b3799071fa78038e52db804
https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804
GlobalAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] # Source node to ATen node mapping: # align_vectors => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] # Source node to ATen node mapping: # align_vectors => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f5/cf5pnuv5il7avsmzck3quom7r6zvcfuulsdwpzlv2epzfmcgqgwb.py # Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn_h_2 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + (x3), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u4/cu4fypgfipklcxtitafatnyqdaatx5tws6qfndqotcy4qivcph6d.py # Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # align_vectors_2 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm] extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [c], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf2, buf7, 64, grid=grid(64), stream=stream0) del buf2 return (buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class GlobalAttention(nn.Module): """ Global attention takes a matrix and a query vector. It then computes a parameterized convex combination of the matrix based on the input query. Constructs a unit mapping a query `q` of size `dim` and a source matrix `H` of size `n x dim`, to an output of size `dim`. .. mermaid:: graph BT A[Query] subgraph RNN C[H 1] D[H 2] E[H N] end F[Attn] G[Output] A --> F C --> F D --> F E --> F C -.-> G D -.-> G E -.-> G F --> G All models compute the output as :math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where :math:`a_j` is the softmax of a score function. Then then apply a projection layer to [q, c]. However they differ on how they compute the attention score. * Luong Attention (dot, general): * dot: :math:`\\text{score}(H_j,q) = H_j^T q` * general: :math:`\\text{score}(H_j, q) = H_j^T W_a q` * Bahdanau Attention (mlp): * :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)` Args: dim (int): dimensionality of query and key coverage (bool): use coverage term attn_type (str): type of attention to use, options [dot,general,mlp] attn_func (str): attention function to use, options [softmax,sparsemax] """ def __init__(self, dim, coverage=False, attn_type='dot', attn_func= 'softmax'): super(GlobalAttention, self).__init__() self.dim = dim assert attn_type in ['dot', 'general', 'mlp' ], 'Please select a valid attention type (got {:s}).'.format( attn_type) self.attn_type = attn_type assert attn_func in ['softmax', 'sparsemax' ], 'Please select a valid attention function.' self.attn_func = attn_func if self.attn_type == 'general': self.linear_in = nn.Linear(dim, dim, bias=False) elif self.attn_type == 'mlp': self.linear_context = nn.Linear(dim, dim, bias=False) self.linear_query = nn.Linear(dim, dim, bias=True) self.v = nn.Linear(dim, 1, bias=False) out_bias = self.attn_type == 'mlp' self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias) if coverage: self.linear_cover = nn.Linear(1, dim, bias=False) def score(self, h_t, h_s): """ Args: h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)`` h_s (FloatTensor): sequence of sources ``(batch, src_len, dim`` Returns: FloatTensor: raw attention scores (unnormalized) for each src index ``(batch, tgt_len, src_len)`` """ src_batch, src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(self.dim, src_dim) if self.attn_type in ['general', 'dot']: if self.attn_type == 'general': h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t_ = self.linear_in(h_t_) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) else: dim = self.dim wq = self.linear_query(h_t.view(-1, dim)) wq = wq.view(tgt_batch, tgt_len, 1, dim) wq = wq.expand(tgt_batch, tgt_len, src_len, dim) uh = self.linear_context(h_s.contiguous().view(-1, dim)) uh = uh.view(src_batch, 1, src_len, dim) uh = uh.expand(src_batch, tgt_len, src_len, dim) wquh = torch.tanh(wq + uh) return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len) def forward(self, source, memory_bank, memory_lengths=None, coverage=None): """ Args: source (FloatTensor): query vectors ``(batch, tgt_len, dim)`` memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)`` memory_lengths (LongTensor): the source context lengths ``(batch,)`` coverage (FloatTensor): None (not supported yet) Returns: (FloatTensor, FloatTensor): * Computed vector ``(tgt_len, batch, dim)`` * Attention distribtutions for each query ``(tgt_len, batch, src_len)`` """ if source.dim() == 2: one_step = True source = source.unsqueeze(1) else: one_step = False batch, source_l, dim = memory_bank.size() batch_, target_l, dim_ = source.size() aeq(batch, batch_) aeq(dim, dim_) aeq(self.dim, dim) if coverage is not None: batch_, source_l_ = coverage.size() aeq(batch, batch_) aeq(source_l, source_l_) if coverage is not None: cover = coverage.view(-1).unsqueeze(1) memory_bank += self.linear_cover(cover).view_as(memory_bank) memory_bank = torch.tanh(memory_bank) align = self.score(source, memory_bank) if memory_lengths is not None: mask = sequence_mask(memory_lengths, max_len=align.size(-1)) mask = mask.unsqueeze(1) align.masked_fill_(~mask, -float('inf')) if self.attn_func == 'softmax': align_vectors = F.softmax(align.view(batch * target_l, source_l ), -1) else: align_vectors = sparsemax(align.view(batch * target_l, source_l ), -1) align_vectors = align_vectors.view(batch, target_l, source_l) c = torch.bmm(align_vectors, memory_bank) concat_c = torch.cat([c, source], 2).view(batch * target_l, dim * 2) attn_h = self.linear_out(concat_c).view(batch, target_l, dim) if self.attn_type in ['general', 'dot']: attn_h = torch.tanh(attn_h) if one_step: attn_h = attn_h.squeeze(1) align_vectors = align_vectors.squeeze(1) batch_, dim_ = attn_h.size() aeq(batch, batch_) aeq(dim, dim_) batch_, source_l_ = align_vectors.size() aeq(batch, batch_) aeq(source_l, source_l_) else: attn_h = attn_h.transpose(0, 1).contiguous() align_vectors = align_vectors.transpose(0, 1).contiguous() target_l_, batch_, dim_ = attn_h.size() aeq(target_l, target_l_) aeq(batch, batch_) aeq(dim, dim_) target_l_, batch_, source_l_ = align_vectors.size() aeq(target_l, target_l_) aeq(batch, batch_) aeq(source_l, source_l_) return attn_h, align_vectors def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + x3, tmp1, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0) del buf3 extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(64)](buf2, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 return buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5 def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class GlobalAttentionNew(nn.Module): """ Global attention takes a matrix and a query vector. It then computes a parameterized convex combination of the matrix based on the input query. Constructs a unit mapping a query `q` of size `dim` and a source matrix `H` of size `n x dim`, to an output of size `dim`. .. mermaid:: graph BT A[Query] subgraph RNN C[H 1] D[H 2] E[H N] end F[Attn] G[Output] A --> F C --> F D --> F E --> F C -.-> G D -.-> G E -.-> G F --> G All models compute the output as :math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where :math:`a_j` is the softmax of a score function. Then then apply a projection layer to [q, c]. However they differ on how they compute the attention score. * Luong Attention (dot, general): * dot: :math:`\\text{score}(H_j,q) = H_j^T q` * general: :math:`\\text{score}(H_j, q) = H_j^T W_a q` * Bahdanau Attention (mlp): * :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)` Args: dim (int): dimensionality of query and key coverage (bool): use coverage term attn_type (str): type of attention to use, options [dot,general,mlp] attn_func (str): attention function to use, options [softmax,sparsemax] """ def __init__(self, dim, coverage=False, attn_type='dot', attn_func= 'softmax'): super(GlobalAttentionNew, self).__init__() self.dim = dim assert attn_type in ['dot', 'general', 'mlp' ], 'Please select a valid attention type (got {:s}).'.format( attn_type) self.attn_type = attn_type assert attn_func in ['softmax', 'sparsemax' ], 'Please select a valid attention function.' self.attn_func = attn_func if self.attn_type == 'general': self.linear_in = nn.Linear(dim, dim, bias=False) elif self.attn_type == 'mlp': self.linear_context = nn.Linear(dim, dim, bias=False) self.linear_query = nn.Linear(dim, dim, bias=True) self.v = nn.Linear(dim, 1, bias=False) out_bias = self.attn_type == 'mlp' self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias) if coverage: self.linear_cover = nn.Linear(1, dim, bias=False) def score(self, h_t, h_s): """ Args: h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)`` h_s (FloatTensor): sequence of sources ``(batch, src_len, dim`` Returns: FloatTensor: raw attention scores (unnormalized) for each src index ``(batch, tgt_len, src_len)`` """ src_batch, src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(self.dim, src_dim) if self.attn_type in ['general', 'dot']: if self.attn_type == 'general': h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t_ = self.linear_in(h_t_) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) else: dim = self.dim wq = self.linear_query(h_t.view(-1, dim)) wq = wq.view(tgt_batch, tgt_len, 1, dim) wq = wq.expand(tgt_batch, tgt_len, src_len, dim) uh = self.linear_context(h_s.contiguous().view(-1, dim)) uh = uh.view(src_batch, 1, src_len, dim) uh = uh.expand(src_batch, tgt_len, src_len, dim) wquh = torch.tanh(wq + uh) return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len) def forward(self, input_0, input_1): primals_3 = self.linear_out.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
BradLin0819/kg2text
GlobalAttention
false
13,415
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
resblock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] # Source node to ATen node mapping: # out => maximum # Graph fragment: # %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {}) # %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x3 = xindex % 64 x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x4), tmp7, xmask) tl.store(out_ptr2 + (x4), tmp8, xmask) tl.store(out_ptr3 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ab/cabrxc3mztaftcghxljcdmadm37r6mu5llu27nn63cpiczdivfe4.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt] # Source node to ATen node mapping: # out_1 => maximum_1 # out_2 => add # Graph fragment: # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%maximum_1, %primals_1), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) triton_poi_fused_add_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_add_eq_gt_lt_maximum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*i1', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x3 = xindex % 64 x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x4), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp8 = tmp6 + tmp7 tmp9 = tmp2 == tmp5 tmp10 = tmp2 > tmp5 tmp11 = tmp2 < tmp5 tl.store(out_ptr0 + (x4), tmp8, xmask) tl.store(out_ptr1 + (x4), tmp9, xmask) tl.store(out_ptr2 + (x4), tmp10, xmask) tl.store(out_ptr3 + (x4), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] stream0 = get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_3, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf0 del primals_3 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.maximum, aten.add, aten.eq, aten.gt, aten.lt] triton_poi_fused_add_eq_gt_lt_maximum_1.run(buf2, primals_5, primals_1, buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf2 del primals_5 return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) class resblock(nn.Module): def __init__(self, in_channels, out_channels): super(resblock, self).__init__() self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.conv2 = mfm(out_channels, out_channels, kernel_size=3, stride= 1, padding=1) def forward(self, x): res = x out = self.conv1(x) out = self.conv2(out) out = out + res return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp8, xmask) tl.store(out_ptr3 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_add_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x4, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp8 = tmp6 + tmp7 tmp9 = tmp2 == tmp5 tmp10 = tmp2 > tmp5 tmp11 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp8, xmask) tl.store(out_ptr1 + x4, tmp9, xmask) tl.store(out_ptr2 + x4, tmp10, xmask) tl.store(out_ptr3 + x4, tmp11, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_3, buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_eq_gt_lt_maximum_1[grid(256)](buf2, primals_5, primals_1, buf3, buf4, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del primals_5 return (buf3, primals_1, primals_2, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9) class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) class resblockNew(nn.Module): def __init__(self, in_channels, out_channels): super(resblockNew, self).__init__() self.conv1 = mfm(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.conv2 = mfm(out_channels, out_channels, kernel_size=3, stride= 1, padding=1) def forward(self, input_0): primals_2 = self.conv1.filter.weight primals_3 = self.conv1.filter.bias primals_4 = self.conv2.filter.weight primals_5 = self.conv2.filter.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BradyFU/DVG
resblock
false
13,416
[ "MIT" ]
102
53fd50cdc51d783b33394726b8f8a2b2216f157b
https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b
mfm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] # Source node to ATen node mapping: # max_1 => maximum # Graph fragment: # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x3 = xindex % 64 x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x4), tmp7, xmask) tl.store(out_ptr2 + (x4), tmp8, xmask) tl.store(out_ptr3 + (x4), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] stream0 = get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_2, buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf1, primals_1, primals_3, buf2, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp8, xmask) tl.store(out_ptr3 + x4, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2, buf1, buf2, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf1, primals_1, primals_3, buf2, buf3, buf4 class mfmNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfmNew, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, input_0): primals_1 = self.filter.weight primals_2 = self.filter.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BradyFU/DVG
mfm
false
13,417
[ "MIT" ]
102
53fd50cdc51d783b33394726b8f8a2b2216f157b
https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b
LR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5p/c5pq5ihkqog6yst24r6r2rrf5qe3nsxkwwpixhsiqjqc6rcatvet.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LR(torch.nn.Module): def __init__(self, input_size, output_size): super(LR, self).__init__() self.lr = torch.ones(input_size) self.lr = torch.nn.Parameter(self.lr) def forward(self, grad): return self.lr * grad def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class LRNew(torch.nn.Module): def __init__(self, input_size, output_size): super(LRNew, self).__init__() self.lr = torch.ones(input_size) self.lr = torch.nn.Parameter(self.lr) def forward(self, input_0): primals_1 = self.lr primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Brikwerk/learn2learn
LR
false
13,418
[ "MIT" ]
1,774
7997c13c26ec627d13ce77ba98427260df78ada8
https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8
BothContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_tensor => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/42/c42q6xmrtx4mk6cvsm764oigvfmjedisa43isepa27ioqcfzfgtm.py # Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # sub => sub # tanh => tanh # z => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %addmm_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh] triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, buf4, buf2, buf5, 16, grid=grid(16), stream=stream0) return (buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class BothContextGate(nn.Module): """Apply the context gate to both contexts""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(BothContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh((1.0 - z) * target + z * source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = tmp1 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(16)](buf1, buf4, buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class BothContextGateNew(nn.Module): """Apply the context gate to both contexts""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(BothContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
BradLin0819/kg2text
BothContextGate
false
13,419
[ "Apache-2.0" ]
86
e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
https://github.com/BradLin0819/kg2text/tree/e586eb2027c0d85db9826cbe1d9e14f2d26fc93f
PlanarFlow
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/il/cil5hpoi7ygpsypgim2u7imeqozhugxjb3qehifbgnc6wf4rjrsp.py # Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log] # Source node to ATen node mapping: # abs_1 => abs_1 # add_4 => add_4 # add_5 => add_5 # logdet_jacobian => log # mul => mul_1 # muw => add # mv => mul_2, sum_3 # pow_1 => pow_1 # psi => mul_4 # psi_u => mul_5, sum_4 # softplus => exp, gt, log1p, where # sub => sub # sum_1 => sum_2 # truediv => div # uhat => add_1 # uw => mul, sum_1 # zwb => add_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sum_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 20), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %log1p), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, -1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %sum_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sum_2), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %div), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %primals_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %primals_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_3), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add_4,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_5,), kwargs = {}) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=(8,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp10 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (2)) tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (3)) tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr3 + (0)) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + (0)) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp52 = tl.load(in_ptr0 + (1)) tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp60 = tl.load(in_ptr0 + (2)) tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp68 = tl.load(in_ptr0 + (3)) tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tmp1 * tmp1 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp13 = tmp10 * tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp19 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp24 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp28 + tmp30 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 * tmp32 tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = tmp35 * tmp12 tmp39 = 20.0 tmp40 = tmp5 > tmp39 tmp41 = tl_math.exp(tmp5) tmp42 = libdevice.log1p(tmp41) tmp43 = tl.where(tmp40, tmp5, tmp42) tmp44 = -1.0 tmp45 = tmp43 + tmp44 tmp46 = tmp45 - tmp5 tmp47 = tmp46 * tmp12 tmp48 = tmp47 / tmp9 tmp49 = tmp38 + tmp48 tmp50 = tmp36 * tmp49 tmp51 = tmp35 * tmp16 tmp54 = tmp46 * tmp16 tmp55 = tmp54 / tmp9 tmp56 = tmp53 + tmp55 tmp57 = tmp51 * tmp56 tmp58 = tmp50 + tmp57 tmp59 = tmp35 * tmp21 tmp62 = tmp46 * tmp21 tmp63 = tmp62 / tmp9 tmp64 = tmp61 + tmp63 tmp65 = tmp59 * tmp64 tmp66 = tmp58 + tmp65 tmp67 = tmp35 * tmp26 tmp70 = tmp46 * tmp26 tmp71 = tmp70 / tmp9 tmp72 = tmp69 + tmp71 tmp73 = tmp67 * tmp72 tmp74 = tmp66 + tmp73 tmp75 = tmp74 + tmp34 tmp76 = tl_math.abs(tmp75) tmp77 = 1e-08 tmp78 = tmp76 + tmp77 tmp79 = tl_math.log(tmp78) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp31, None) tl.store(in_out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp79, None) tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kk/ckkz4nmmavawr3cwhzxvsdtcrjydick2txrs43laojgo3e6wua2r.py # Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # f_z => add_3 # mul_1 => mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_3), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (0)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = -1.0 tmp10 = tmp8 + tmp9 tmp11 = tmp10 - tmp3 tmp13 = tmp11 * tmp12 tmp16 = tmp13 / tmp15 tmp17 = tmp1 + tmp16 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp17 * tmp19 tmp21 = tmp0 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) buf4 = empty_strided_cuda((4, ), (1, ), torch.float32) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [uw, softplus, muw, sub, mul, pow_1, sum_1, truediv, uhat, mv, zwb, psi, psi_u, add_4, abs_1, add_5, logdet_jacobian], Original ATen: [aten.dot, aten.softplus, aten.add, aten.sub, aten.mul, aten.pow, aten.sum, aten.div, aten.mv, aten.abs, aten.log] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0.run(buf5, primals_1, primals_2, primals_3, primals_4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, f_z], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_1.run(primals_3, primals_1, buf0, primals_2, buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) del buf0 del buf1 del buf2 return (buf3, buf5, primals_1, primals_2, primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F class PlanarFlow(nn.Module): """Planar normalizing flow [Rezende & Mohamed 2015]. Provides a tighter bound on the ELBO by giving more expressive power to the approximate distribution, such as by introducing covariance between terms. @param in_features: integer number of input dimensions. this is often the dimensionality of the latent variables """ def __init__(self, in_features): super(PlanarFlow, self).__init__() self.u = nn.Parameter(torch.randn(in_features)) self.w = nn.Parameter(torch.randn(in_features)) self.b = nn.Parameter(torch.ones(1)) def forward(self, z): uw = torch.dot(self.u, self.w) muw = -1 + F.softplus(uw) uhat = self.u + (muw - uw) * torch.transpose(self.w, 0, -1 ) / torch.sum(self.w ** 2) zwb = torch.mv(z, self.w) + self.b f_z = z + uhat.view(1, -1) * torch.tanh(zwb).view(-1, 1) psi = (1 - torch.tanh(zwb) ** 2).view(-1, 1) * self.w.view(1, -1) psi_u = torch.mv(psi, uhat) logdet_jacobian = torch.log(torch.abs(1 + psi_u) + 1e-08) return f_z, logdet_jacobian def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp10 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + 1) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + 2) tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + 3) tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp29 = tl.load(in_ptr3 + 0) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp37 = tl.load(in_ptr0 + 0) tmp38 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp52 = tl.load(in_ptr0 + 1) tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp60 = tl.load(in_ptr0 + 2) tmp61 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp68 = tl.load(in_ptr0 + 3) tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK]) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tmp1 * tmp1 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp13 = tmp10 * tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp19 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp24 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp28 + tmp30 tmp32 = libdevice.tanh(tmp31) tmp33 = tmp32 * tmp32 tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = tmp35 * tmp12 tmp39 = 20.0 tmp40 = tmp5 > tmp39 tmp41 = tl_math.exp(tmp5) tmp42 = libdevice.log1p(tmp41) tmp43 = tl.where(tmp40, tmp5, tmp42) tmp44 = -1.0 tmp45 = tmp43 + tmp44 tmp46 = tmp45 - tmp5 tmp47 = tmp46 * tmp12 tmp48 = tmp47 / tmp9 tmp49 = tmp38 + tmp48 tmp50 = tmp36 * tmp49 tmp51 = tmp35 * tmp16 tmp54 = tmp46 * tmp16 tmp55 = tmp54 / tmp9 tmp56 = tmp53 + tmp55 tmp57 = tmp51 * tmp56 tmp58 = tmp50 + tmp57 tmp59 = tmp35 * tmp21 tmp62 = tmp46 * tmp21 tmp63 = tmp62 / tmp9 tmp64 = tmp61 + tmp63 tmp65 = tmp59 * tmp64 tmp66 = tmp58 + tmp65 tmp67 = tmp35 * tmp26 tmp70 = tmp46 * tmp26 tmp71 = tmp70 / tmp9 tmp72 = tmp69 + tmp71 tmp73 = tmp67 * tmp72 tmp74 = tmp66 + tmp73 tmp75 = tmp74 + tmp34 tmp76 = tl_math.abs(tmp75) tmp77 = 1e-08 tmp78 = tmp76 + tmp77 tmp79 = tl_math.log(tmp78) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp31, None) tl.store(in_out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp79, None) tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + 0) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp4 = 20.0 tmp5 = tmp3 > tmp4 tmp6 = tl_math.exp(tmp3) tmp7 = libdevice.log1p(tmp6) tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = -1.0 tmp10 = tmp8 + tmp9 tmp11 = tmp10 - tmp3 tmp13 = tmp11 * tmp12 tmp16 = tmp13 / tmp15 tmp17 = tmp1 + tmp16 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp17 * tmp19 tmp21 = tmp0 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) buf4 = empty_strided_cuda((4,), (1,), torch.float32) buf5 = buf4 del buf4 get_raw_stream(0) triton_per_fused_abs_add_div_dot_log_mul_mv_pow_softplus_sub_sum_0[grid (1)](buf5, primals_1, primals_2, primals_3, primals_4, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(16)](primals_3, primals_1, buf0, primals_2, buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 return buf3, buf5, primals_1, primals_2, primals_3, primals_4 class PlanarFlowNew(nn.Module): """Planar normalizing flow [Rezende & Mohamed 2015]. Provides a tighter bound on the ELBO by giving more expressive power to the approximate distribution, such as by introducing covariance between terms. @param in_features: integer number of input dimensions. this is often the dimensionality of the latent variables """ def __init__(self, in_features): super(PlanarFlowNew, self).__init__() self.u = nn.Parameter(torch.randn(in_features)) self.w = nn.Parameter(torch.randn(in_features)) self.b = nn.Parameter(torch.ones(1)) def forward(self, input_0): primals_1 = self.u primals_2 = self.w primals_4 = self.b primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
BratChar/variational-item-response-theory-public
PlanarFlow
false
13,420
[ "MIT" ]
52
12862157e99506a0ed7018f1b8a485d4e61fb5bf
https://github.com/BratChar/variational-item-response-theory-public/tree/12862157e99506a0ed7018f1b8a485d4e61fb5bf
group
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/az/cazxolgp2ne6vc522yhqcdzkhjb6btel7txdrpwzpkcc5t6sm46x.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] # Source node to ATen node mapping: # x_1 => maximum # Graph fragment: # %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem, %getitem_1), kwargs = {}) # %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem, %getitem_1), kwargs = {}) triton_poi_fused_eq_gt_lt_maximum_0 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x3 = xindex % 64 x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (128*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + (128*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x4), tmp7, xmask) tl.store(out_ptr2 + (x4), tmp8, xmask) tl.store(out_ptr3 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dx/cdxsiauqixxznc5upksv4k5qv54fs7gz2sgvr4qfd5yyu72syijl.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] # Source node to ATen node mapping: # x_3 => maximum_1 # Graph fragment: # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%getitem_2, %getitem_3), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%getitem_2, %getitem_3), kwargs = {}) triton_poi_fused_eq_gt_lt_maximum_1 = async_compile.triton('triton_poi_fused_eq_gt_lt_maximum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*i1', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_gt_lt_maximum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 324) x3 = xindex % 324 x1 = (xindex // 81) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (648*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (324 + x3 + (648*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x4), tmp7, xmask) tl.store(out_ptr2 + (x4), tmp8, xmask) tl.store(out_ptr3 + (x4), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] stream0 = get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0.run(buf0, primals_2, buf1, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1)) buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.maximum, aten.eq, aten.gt, aten.lt] triton_poi_fused_eq_gt_lt_maximum_1.run(buf2, primals_5, buf3, buf4, buf5, buf6, 1296, grid=grid(1296), stream=stream0) del buf2 del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) class group(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding ): super(group, self).__init__() self.conv_a = mfm(in_channels, in_channels, 1, 1, 0) self.conv = mfm(in_channels, out_channels, kernel_size, stride, padding ) def forward(self, x): x = self.conv_a(x) x = self.conv(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp8, xmask) tl.store(out_ptr3 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_eq_gt_lt_maximum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 324 x3 = xindex % 324 x1 = xindex // 81 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 648 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (324 + x3 + 648 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp8, xmask) tl.store(out_ptr3 + x4, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (8, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2, buf1, buf7, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 9, 9), (648, 81, 9, 1)) buf3 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.bool) triton_poi_fused_eq_gt_lt_maximum_1[grid(1296)](buf2, primals_5, buf3, buf4, buf5, buf6, 1296, XBLOCK=256, num_warps=4, num_stages=1 ) del buf2 del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, buf6, buf7, buf8, buf9) class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) class groupNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding ): super(groupNew, self).__init__() self.conv_a = mfm(in_channels, in_channels, 1, 1, 0) self.conv = mfm(in_channels, out_channels, kernel_size, stride, padding ) def forward(self, input_0): primals_1 = self.conv_a.filter.weight primals_2 = self.conv_a.filter.bias primals_4 = self.conv.filter.weight primals_5 = self.conv.filter.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BradyFU/DVG
group
false
13,421
[ "MIT" ]
102
53fd50cdc51d783b33394726b8f8a2b2216f157b
https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/um/cumdt56px4jhgi4x7ers5m2jlyr4stfdyfhyb47o43khr5qzdg6f.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ja/cjapoylwc442ttbiaridhuezkvo2e7durqwl2lytr7aq6togjqw3.py # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # attn_weights_4 => div_1 # sum_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_17, [1]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_poi_fused_div_sum_4 = async_compile.triton('triton_poi_fused_div_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_7 buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_4.run(buf6, buf10, 64, grid=grid(64), stream=stream0) return (reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float('-inf')).type_as(t) def _get_full_incremental_state_key(module_instance, key): module_name = module_instance.__class__.__name__ if not hasattr(module_instance, '_fairseq_instance_id'): INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1 module_instance._fairseq_instance_id = INCREMENTAL_STATE_INSTANCE_ID[ module_name] return '{}.{}.{}'.format(module_name, module_instance. _fairseq_instance_id, key) def get_incremental_state(module, incremental_state, key): """Helper for getting incremental state for an nn.Module.""" full_key = _get_full_incremental_state_key(module, key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state(module, incremental_state, key, value): """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = _get_full_incremental_state_key(module, key) incremental_state[full_key] = value class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self._mask = None self.in_proj_weight = nn.Parameter(torch.Tensor(3 * embed_dim, embed_dim)) if bias: self.in_proj_bias = nn.Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) def forward(self, query, key, value, mask_future_timesteps=False, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Future timesteps can be masked with the `mask_future_timesteps` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: if static_kv: assert kv_same and not qkv_same key = value = None else: saved_state = None if qkv_same: q, k, v = self.in_proj_qkv(query) elif kv_same: q = self.in_proj_q(query) if key is None: assert value is None k = v = q.new(0) else: k, v = self.in_proj_kv(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if saved_state is not None: if 'prev_key' in saved_state: k = torch.cat((saved_state['prev_key'], k), dim=0) if 'prev_value' in saved_state: v = torch.cat((saved_state['prev_value'], v), dim=0) saved_state['prev_key'] = k saved_state['prev_value'] = v self._set_input_buffer(incremental_state, saved_state) src_len = k.size(0) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) k = k.contiguous().view(src_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) v = v.contiguous().view(src_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if mask_future_timesteps and incremental_state is None: assert query.size() == key.size( ), 'mask_future_timesteps only applies to self-attention' attn_weights += self.buffered_mask(attn_weights).unsqueeze(0) if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.float().masked_fill(key_padding_mask .unsqueeze(1).unsqueeze(2), float('-inf')).type_as(attn_weights ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as( attn_weights) attn_weights = F.dropout(attn_weights, p=self.dropout, training= self.training) attn = torch.bmm(attn_weights, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self. head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads else: attn_weights = None return attn, attn_weights def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=None, end=None): weight = self.in_proj_weight bias = self.in_proj_bias if end is not None: weight = weight[:end, :] if bias is not None: bias = bias[:end] if start is not None: weight = weight[start:, :] if bias is not None: bias = bias[start:] return F.linear(input.type_as(weight), weight, bias) def buffered_mask(self, tensor): attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads else: attn_weights = None return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=None, end=None): weight = self.in_proj_weight bias = self.in_proj_bias if end is not None: weight = weight[:end, :] if bias is not None: bias = bias[:end] if start is not None: weight = weight[start:, :] if bias is not None: bias = bias[start:] return F.linear(input.type_as(weight), weight, bias) def buffered_mask(self, tensor): dim = tensor.size(-1) if self._mask is None: self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1) if self._mask.size(0) < dim: self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_( dim, dim)), 1) return self._mask[:dim, :dim] def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return get_incremental_state(self, incremental_state, 'attn_state' ) or {} def _set_input_buffer(self, incremental_state, buffer): set_incremental_state(self, incremental_state, 'attn_state', buffer) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 16)](buf7, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_7, reinterpret_tensor(buf8, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_7 buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_div_sum_4[grid(64)](buf6, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) return reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0 ), buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0) def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float('-inf')).type_as(t) def _get_full_incremental_state_key(module_instance, key): module_name = module_instance.__class__.__name__ if not hasattr(module_instance, '_fairseq_instance_id'): INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1 module_instance._fairseq_instance_id = INCREMENTAL_STATE_INSTANCE_ID[ module_name] return '{}.{}.{}'.format(module_name, module_instance. _fairseq_instance_id, key) def get_incremental_state(module, incremental_state, key): """Helper for getting incremental state for an nn.Module.""" full_key = _get_full_incremental_state_key(module, key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state(module, incremental_state, key, value): """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = _get_full_incremental_state_key(module, key) incremental_state[full_key] = value class MultiheadAttentionNew(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self._mask = None self.in_proj_weight = nn.Parameter(torch.Tensor(3 * embed_dim, embed_dim)) if bias: self.in_proj_bias = nn.Parameter(torch.Tensor(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=None, end=None): weight = self.in_proj_weight bias = self.in_proj_bias if end is not None: weight = weight[:end, :] if bias is not None: bias = bias[:end] if start is not None: weight = weight[start:, :] if bias is not None: bias = bias[start:] return F.linear(input.type_as(weight), weight, bias) def buffered_mask(self, tensor): attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads else: attn_weights = None return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query): return self._in_proj(query, end=self.embed_dim) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=None, end=None): weight = self.in_proj_weight bias = self.in_proj_bias if end is not None: weight = weight[:end, :] if bias is not None: bias = bias[:end] if start is not None: weight = weight[start:, :] if bias is not None: bias = bias[start:] return F.linear(input.type_as(weight), weight, bias) def buffered_mask(self, tensor): dim = tensor.size(-1) if self._mask is None: self._mask = torch.triu(fill_with_neg_inf(tensor.new(dim, dim)), 1) if self._mask.size(0) < dim: self._mask = torch.triu(fill_with_neg_inf(self._mask.resize_( dim, dim)), 1) return self._mask[:dim, :dim] def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer[k] = input_buffer[k].index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return get_incremental_state(self, incremental_state, 'attn_state' ) or {} def _set_input_buffer(self, incremental_state, buffer): set_incremental_state(self, incremental_state, 'attn_state', buffer) def forward(self, input_0, input_1, input_2): primals_4 = self.in_proj_weight primals_5 = self.in_proj_bias primals_6 = self.out_proj.weight primals_7 = self.out_proj.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
Blind-Aid/sentiment-discovery
MultiheadAttention
false
13,422
[ "BSD-3-Clause" ]
1,093
081c7c855e00864b52e97cac0b0e097cc86d9731
https://github.com/Blind-Aid/sentiment-discovery/tree/081c7c855e00864b52e97cac0b0e097cc86d9731
HypergradTransform
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/t5/ct5aym6gkkwcylmnrw44a7ehpexj5bq6osxrw6a5hw6xslsepzf6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class HypergradTransform(torch.nn.Module): """Hypergradient-style per-parameter learning rates""" def __init__(self, param, lr=0.01): super(HypergradTransform, self).__init__() self.lr = lr * torch.ones_like(param, requires_grad=True) self.lr = torch.nn.Parameter(self.lr) def forward(self, grad): return self.lr * grad def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'param': torch.rand([4, 4])}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class HypergradTransformNew(torch.nn.Module): """Hypergradient-style per-parameter learning rates""" def __init__(self, param, lr=0.01): super(HypergradTransformNew, self).__init__() self.lr = lr * torch.ones_like(param, requires_grad=True) self.lr = torch.nn.Parameter(self.lr) def forward(self, input_0): primals_1 = self.lr primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Brikwerk/learn2learn
HypergradTransform
false
13,423
[ "MIT" ]
1,774
7997c13c26ec627d13ce77ba98427260df78ada8
https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8
EncoderImagePrecomp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ng/cngpcyff472xmahalfd4udr74dej5n23g5wwo5ojifycq5hfsy5l.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div] # Source node to ATen node mapping: # X => div # norm => add # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %add), kwargs = {}) triton_poi_fused_add_div_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2v/c2v6byid3mgkwe3kidoq46zpvtz63pzqlij5nqqh2jb4aeqxsxr7.py # Topologically Sorted Source Nodes: [features_mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # features_mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%div, [1]), kwargs = {}) triton_poi_fused_mean_1 = async_compile.triton('triton_poi_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_pow_sqrt_sum_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [features_mean], Original ATen: [aten.mean] triton_poi_fused_mean_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) return (buf1, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from collections import OrderedDict import torch.nn as nn import torch.nn.init def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class EncoderImagePrecomp(nn.Module): def __init__(self, img_dim, embed_size, no_imgnorm=False): super(EncoderImagePrecomp, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.fc = nn.Linear(img_dim, embed_size) self.init_weights() def init_weights(self): """Xavier initialization for the fully connected layer """ r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features) self.fc.weight.data.uniform_(-r, r) self.fc.bias.data.fill_(0) def forward(self, images): """Extract image feature vectors.""" features = self.fc(images) if not self.no_imgnorm: features = l2norm(features, dim=-1) """features_mean: visual initial memory""" features_mean = torch.mean(features, 1) """choose whether to l2norm""" return features, features_mean def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImagePrecomp, self).load_state_dict(new_state) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'img_dim': 4, 'embed_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np from collections import OrderedDict import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_pow_sqrt_sum_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mean_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf1, buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0 def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class EncoderImagePrecompNew(nn.Module): def __init__(self, img_dim, embed_size, no_imgnorm=False): super(EncoderImagePrecompNew, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.fc = nn.Linear(img_dim, embed_size) self.init_weights() def init_weights(self): """Xavier initialization for the fully connected layer """ r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features) self.fc.weight.data.uniform_(-r, r) self.fc.bias.data.fill_(0) def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImagePrecompNew, self).load_state_dict(new_state) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
BruceW91/CVSE
EncoderImagePrecomp
false
13,424
[ "MIT" ]
152
20fa1ff50d1dcb4a7b3799071fa78038e52db804
https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804
JointsMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oz/cozcvms5imf5eaepem6n7j5ycrknvfez7heocrew5cbjvurugsw3.py # Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, loss, mul_2, mul_3, mse_loss_1, loss_1, mul_4, mul_5, mse_loss_2, loss_2, mul_6, mul_7, mse_loss_3, loss_3], Original ATen: [aten.mul, aten.mse_loss, aten.add] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_1, pow_2, sub_1 # mse_loss_2 => mean_2, pow_3, sub_2 # mse_loss_3 => mean_3, pow_4, sub_3 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, %select_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, %select_3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, %select_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_5, %select_5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_2), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_6, %select_6), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_7, %select_7), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mean_3), kwargs = {}) triton_per_fused_add_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp12 = tmp10 * tmp11 tmp14 = tmp13 * tmp11 tmp15 = tmp12 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp22 = tmp20 * tmp21 tmp24 = tmp23 * tmp21 tmp25 = tmp22 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp32 = tmp30 * tmp31 tmp34 = tmp33 * tmp31 tmp35 = tmp32 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 4.0 tmp41 = tmp9 / tmp40 tmp42 = 0.0 tmp43 = tmp41 + tmp42 tmp44 = tmp19 / tmp40 tmp45 = tmp43 + tmp44 tmp46 = tmp29 / tmp40 tmp47 = tmp45 + tmp46 tmp48 = tmp39 / tmp40 tmp49 = tmp47 + tmp48 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp49, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, loss, mul_2, mul_3, mse_loss_1, loss_1, mul_4, mul_5, mse_loss_2, loss_2, mul_6, mul_7, mse_loss_3, loss_3], Original ATen: [aten.mul, aten.mse_loss, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mse_loss_mul_0.run(buf4, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.multiprocessing class JointsMSELoss(nn.Module): def __init__(self, use_target_weight): super(JointsMSELoss, self).__init__() self.criterion = nn.MSELoss(size_average=True) self.use_target_weight = use_target_weight def forward(self, output, target, target_weight): batch_size = output.size(0) num_joints = output.size(1) heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1 ) heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1) loss = 0 for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx].squeeze() heatmap_gt = heatmaps_gt[idx].squeeze() if self.use_target_weight: loss += self.criterion(heatmap_pred.mul(target_weight[:, idx]), heatmap_gt.mul(target_weight[:, idx])) else: loss += self.criterion(heatmap_pred, heatmap_gt) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'use_target_weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp12 = tmp10 * tmp11 tmp14 = tmp13 * tmp11 tmp15 = tmp12 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp22 = tmp20 * tmp21 tmp24 = tmp23 * tmp21 tmp25 = tmp22 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp32 = tmp30 * tmp31 tmp34 = tmp33 * tmp31 tmp35 = tmp32 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 4.0 tmp41 = tmp9 / tmp40 tmp42 = 0.0 tmp43 = tmp41 + tmp42 tmp44 = tmp19 / tmp40 tmp45 = tmp43 + tmp44 tmp46 = tmp29 / tmp40 tmp47 = tmp45 + tmp46 tmp48 = tmp39 / tmp40 tmp49 = tmp47 + tmp48 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp49, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mse_loss_mul_0[grid(1)](buf4, arg0_1, arg2_1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf4, class JointsMSELossNew(nn.Module): def __init__(self, use_target_weight): super(JointsMSELossNew, self).__init__() self.criterion = nn.MSELoss(size_average=True) self.use_target_weight = use_target_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
CHUNYUWANG/imu-human-pose-pytorch
JointsMSELoss
false
13,425
[ "MIT" ]
72
f4813336571789f46eabdfb520e7ed5b20ac04ea
https://github.com/CHUNYUWANG/imu-human-pose-pytorch/tree/f4813336571789f46eabdfb520e7ed5b20ac04ea
Multi_feature_fusing
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lc/clcwvem23i2fuqeipij4ajgu7qjdq7yvfhrqdzpsbsflwmhlhpbt.py # Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, pow_1, sum_1, sqrt, norm], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # norm => add_1 # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # v_fused_emb => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.75), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {}) triton_poi_fused_add_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.75 tmp2 = tmp0 * tmp1 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp7 = tmp6 * tmp6 tmp9 = tmp8 * tmp1 tmp11 = tmp10 * tmp4 tmp12 = tmp9 + tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp7 + tmp13 tmp16 = tmp15 * tmp1 tmp18 = tmp17 * tmp4 tmp19 = tmp16 + tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp14 + tmp20 tmp23 = tmp22 * tmp1 tmp25 = tmp24 * tmp4 tmp26 = tmp23 + tmp25 tmp27 = tmp26 * tmp26 tmp28 = tmp21 + tmp27 tmp29 = libdevice.sqrt(tmp28) tmp30 = 1e-12 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4y/c4yboiqpel4x7zs3szg5qgd3pivn42eh3kaxvluafam467w3pxmw.py # Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, X], Original ATen: [aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # X => div # mul => mul # mul_1 => mul_1 # v_fused_emb => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.75), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_1), kwargs = {}) triton_poi_fused_add_div_mul_1 = async_compile.triton('triton_poi_fused_add_div_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp7 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp1 = 0.75 tmp2 = tmp0 * tmp1 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, pow_1, sum_1, sqrt, norm], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_sqrt_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, v_fused_emb, X], Original ATen: [aten.mul, aten.add, aten.div] triton_poi_fused_add_div_mul_1.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul_2, mul_3, t_fused_emb, pow_2, sum_2, sqrt_1, norm_1], Original ATen: [aten.mul, aten.add, aten.pow, aten.sum, aten.sqrt] triton_poi_fused_add_mul_pow_sqrt_sum_0.run(arg2_1, arg3_1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, mul_3, t_fused_emb, X_1], Original ATen: [aten.mul, aten.add, aten.div] triton_poi_fused_add_div_mul_1.run(arg2_1, arg3_1, buf2, buf3, 256, grid=grid(256), stream=stream0) del arg2_1 del arg3_1 del buf2 return (buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.init def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class Multi_feature_fusing(nn.Module): """ Emb the features from both modalities to the joint attribute label space. """ def __init__(self, embed_dim, fuse_type='weight_sum'): """ param image_dim: dim of visual feature param embed_dim: dim of embedding space """ super(Multi_feature_fusing, self).__init__() self.fuse_type = fuse_type self.embed_dim = embed_dim if fuse_type == 'concat': input_dim = int(2 * embed_dim) self.joint_emb_v = nn.Linear(input_dim, embed_dim) self.joint_emb_t = nn.Linear(input_dim, embed_dim) self.init_weights_concat() if fuse_type == 'adap_sum': self.joint_emb_v = nn.Linear(embed_dim, 1) self.joint_emb_t = nn.Linear(embed_dim, 1) self.init_weights_adap_sum() def init_weights_concat(self): """Xavier initialization""" r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 2 * self.embed_dim) self.joint_emb_v.weight.data.uniform_(-r, r) self.joint_emb_v.bias.data.fill_(0) self.joint_emb_t.weight.data.uniform_(-r, r) self.joint_emb_t.bias.data.fill_(0) def init_weights_adap_sum(self): """Xavier initialization""" r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 1) self.joint_emb_v.weight.data.uniform_(-r, r) self.joint_emb_v.bias.data.fill_(0) self.joint_emb_t.weight.data.uniform_(-r, r) self.joint_emb_t.bias.data.fill_(0) def forward(self, v_emb_instance, t_emb_instance, v_emb_concept, t_emb_concept, alpha=0.75): """ Forward propagation. :param v_emb_instance, t_emb_instance: instance-level visual or textual features, shape: (batch_size, emb_dim) :param v_emb_concept, t_emb_concept: consensus-level concept features, shape: (batch_size, emb_dim) :return: joint embbeding features for both modalities """ if self.fuse_type == 'multiple': v_fused_emb = v_emb_instance.mul(v_emb_concept) v_fused_emb = l2norm(v_fused_emb) t_fused_emb = t_emb_instance.mul(t_emb_concept) t_fused_emb = l2norm(t_fused_emb) elif self.fuse_type == 'concat': v_fused_emb = torch.cat([v_emb_instance, v_emb_concept], dim=1) v_fused_emb = self.joint_emb_instance_v(v_fused_emb) v_fused_emb = l2norm(v_fused_emb) t_fused_emb = torch.cat([t_emb_instance, t_emb_concept], dim=1) t_fused_emb = self.joint_emb_instance_v(t_fused_emb) t_fused_emb = l2norm(t_fused_emb) elif self.fuse_type == 'adap_sum': v_mean = (v_emb_instance + v_emb_concept) / 2 v_emb_instance_mat = self.joint_emb_instance_v(v_mean) alpha_v = F.sigmoid(v_emb_instance_mat) v_fused_emb = alpha_v * v_emb_instance + (1 - alpha_v ) * v_emb_concept v_fused_emb = l2norm(v_fused_emb) t_mean = (t_emb_instance + t_emb_concept) / 2 t_emb_instance_mat = self.joint_emb_instance_t(t_mean) alpha_t = F.sigmoid(t_emb_instance_mat) t_fused_emb = alpha_t * t_emb_instance + (1 - alpha_t ) * t_emb_concept t_fused_emb = l2norm(t_fused_emb) elif self.fuse_type == 'weight_sum': v_fused_emb = alpha * v_emb_instance + (1 - alpha) * v_emb_concept v_fused_emb = l2norm(v_fused_emb) t_fused_emb = alpha * t_emb_instance + (1 - alpha) * t_emb_concept t_fused_emb = l2norm(t_fused_emb) return v_fused_emb, t_fused_emb def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.75 tmp2 = tmp0 * tmp1 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp7 = tmp6 * tmp6 tmp9 = tmp8 * tmp1 tmp11 = tmp10 * tmp4 tmp12 = tmp9 + tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp7 + tmp13 tmp16 = tmp15 * tmp1 tmp18 = tmp17 * tmp4 tmp19 = tmp16 + tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp14 + tmp20 tmp23 = tmp22 * tmp1 tmp25 = tmp24 * tmp4 tmp26 = tmp23 + tmp25 tmp27 = tmp26 * tmp26 tmp28 = tmp21 + tmp27 tmp29 = libdevice.sqrt(tmp28) tmp30 = 1e-12 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) @triton.jit def triton_poi_fused_add_div_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x2, xmask) tmp7 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp1 = 0.75 tmp2 = tmp0 * tmp1 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_pow_sqrt_sum_0[grid(64)](arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_1[grid(256)](arg0_1, arg1_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf2 = buf0 del buf0 triton_poi_fused_add_mul_pow_sqrt_sum_0[grid(64)](arg2_1, arg3_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_1[grid(256)](arg2_1, arg3_1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg2_1 del arg3_1 del buf2 return buf1, buf3 def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class Multi_feature_fusingNew(nn.Module): """ Emb the features from both modalities to the joint attribute label space. """ def __init__(self, embed_dim, fuse_type='weight_sum'): """ param image_dim: dim of visual feature param embed_dim: dim of embedding space """ super(Multi_feature_fusingNew, self).__init__() self.fuse_type = fuse_type self.embed_dim = embed_dim if fuse_type == 'concat': input_dim = int(2 * embed_dim) self.joint_emb_v = nn.Linear(input_dim, embed_dim) self.joint_emb_t = nn.Linear(input_dim, embed_dim) self.init_weights_concat() if fuse_type == 'adap_sum': self.joint_emb_v = nn.Linear(embed_dim, 1) self.joint_emb_t = nn.Linear(embed_dim, 1) self.init_weights_adap_sum() def init_weights_concat(self): """Xavier initialization""" r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 2 * self.embed_dim) self.joint_emb_v.weight.data.uniform_(-r, r) self.joint_emb_v.bias.data.fill_(0) self.joint_emb_t.weight.data.uniform_(-r, r) self.joint_emb_t.bias.data.fill_(0) def init_weights_adap_sum(self): """Xavier initialization""" r = np.sqrt(6.0) / np.sqrt(self.embed_dim + 1) self.joint_emb_v.weight.data.uniform_(-r, r) self.joint_emb_v.bias.data.fill_(0) self.joint_emb_t.weight.data.uniform_(-r, r) self.joint_emb_t.bias.data.fill_(0) def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1]
BruceW91/CVSE
Multi_feature_fusing
false
13,426
[ "MIT" ]
152
20fa1ff50d1dcb4a7b3799071fa78038e52db804
https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804
MetaCurvatureTransform
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ws/cws2widmnufjuyq7fjq4jjvoqutr4ip5yocpl7jr6f3fz7oo2hfm.py # Topologically Sorted Source Nodes: [matmul, update], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # matmul => clone_1 # update => view_2 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone_1, [64, 4]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jl/cjlbjijtpvxoudyymgohb6gbqmwikkpwupbw3wtza3pwdycfsg4x.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul, update], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [update], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_3, out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np class MetaCurvatureTransform(torch.nn.Module): """ [[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/optim/transforms/module_transform.py) **Description** Implements the Meta-Curvature transform of Park and Oliva, 2019. Unlike `ModuleTranform` and `KroneckerTransform`, this class does not wrap other Modules but is directly called on a weight to instantiate the transform. **Arguments** * **param** (Tensor) - The weight whose gradients will be transformed. * **lr** (float, *optional*, default=1.0) - Scaling factor of the udpate. (non-learnable) **References** 1. Park & Oliva. 2019. Meta-curvature. **Example** ~~~python classifier = torch.nn.Linear(784, 10, bias=False) metacurvature_update = MetaCurvatureTransform(classifier.weight) loss(classifier(X), y).backward() update = metacurvature_update(classifier.weight.grad) classifier.weight.data.add_(-lr, update) # Not a differentiable update. See l2l.optim.DifferentiableSGD. ~~~ """ def __init__(self, param, lr=1.0): super(MetaCurvatureTransform, self).__init__() self.lr = lr shape = param.shape if len(shape) == 1: self.dim = 1 self.mc = torch.nn.Parameter(torch.ones_like(param)) elif len(shape) == 2: self.dim = 2 self.mc_in = torch.nn.Parameter(torch.eye(shape[0])) self.mc_out = torch.nn.Parameter(torch.eye(shape[1])) elif len(shape) == 4: self.dim = 4 self.n_in = shape[0] self.n_out = shape[1] self.n_f = int(np.prod(shape) / (self.n_in * self.n_out)) self.mc_in = torch.nn.Parameter(torch.eye(self.n_in)) self.mc_out = torch.nn.Parameter(torch.eye(self.n_out)) self.mc_f = torch.nn.Parameter(torch.eye(self.n_f)) else: raise NotImplementedError('Parameter with shape', shape, 'is not supported by MetaCurvature.') def forward(self, grad): if self.dim == 1: update = self.mc * grad elif self.dim == 2: update = self.mc_in @ grad @ self.mc_out else: update = grad.permute(2, 3, 0, 1).contiguous() shape = update.shape update = update.view(-1, self.n_out) @ self.mc_out update = self.mc_f @ update.view(self.n_f, -1) update = update.view(self.n_f, self.n_in, self.n_out) update = update.permute(1, 0, 2).contiguous().view(self.n_in, -1) update = self.mc_in @ update update = update.view(self.n_in, self.n_f, self.n_out).permute(1, 0, 2).contiguous().view(shape) update = update.permute(2, 3, 0, 1).contiguous() return self.lr * update def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'param': torch.rand([4, 4])}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_clone_view_1[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf3 = buf1 del buf1 extern_kernels.mm(buf2, primals_3, out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_mul_2[grid(256)](buf4, 256, XBLOCK=256, num_warps= 4, num_stages=1) return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (4, 64), (1, 4), 0), reinterpret_tensor( primals_3, (4, 4), (1, 4), 0) class MetaCurvatureTransformNew(torch.nn.Module): """ [[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/optim/transforms/module_transform.py) **Description** Implements the Meta-Curvature transform of Park and Oliva, 2019. Unlike `ModuleTranform` and `KroneckerTransform`, this class does not wrap other Modules but is directly called on a weight to instantiate the transform. **Arguments** * **param** (Tensor) - The weight whose gradients will be transformed. * **lr** (float, *optional*, default=1.0) - Scaling factor of the udpate. (non-learnable) **References** 1. Park & Oliva. 2019. Meta-curvature. **Example** ~~~python classifier = torch.nn.Linear(784, 10, bias=False) metacurvature_update = MetaCurvatureTransform(classifier.weight) loss(classifier(X), y).backward() update = metacurvature_update(classifier.weight.grad) classifier.weight.data.add_(-lr, update) # Not a differentiable update. See l2l.optim.DifferentiableSGD. ~~~ """ def __init__(self, param, lr=1.0): super(MetaCurvatureTransformNew, self).__init__() self.lr = lr shape = param.shape if len(shape) == 1: self.dim = 1 self.mc = torch.nn.Parameter(torch.ones_like(param)) elif len(shape) == 2: self.dim = 2 self.mc_in = torch.nn.Parameter(torch.eye(shape[0])) self.mc_out = torch.nn.Parameter(torch.eye(shape[1])) elif len(shape) == 4: self.dim = 4 self.n_in = shape[0] self.n_out = shape[1] self.n_f = int(np.prod(shape) / (self.n_in * self.n_out)) self.mc_in = torch.nn.Parameter(torch.eye(self.n_in)) self.mc_out = torch.nn.Parameter(torch.eye(self.n_out)) self.mc_f = torch.nn.Parameter(torch.eye(self.n_f)) else: raise NotImplementedError('Parameter with shape', shape, 'is not supported by MetaCurvature.') def forward(self, input_0): primals_1 = self.mc_in primals_3 = self.mc_out primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Brikwerk/learn2learn
MetaCurvatureTransform
false
13,427
[ "MIT" ]
1,774
7997c13c26ec627d13ce77ba98427260df78ada8
https://github.com/Brikwerk/learn2learn/tree/7997c13c26ec627d13ce77ba98427260df78ada8
EncoderImageWeightNormPrecomp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vx/cvxzmthv4i2niuhjkx7pdwegys74ubmwp36fuzpk743r7lkqg4tm.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_per_fused_div_mul_norm_0 = async_compile.triton('triton_per_fused_div_mul_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp8 = tmp7 / tmp5 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o5/co5cdabzbupnjencqkkpbxe3og4msok4322pvm3hncpx45zyl64c.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div] # Source node to ATen node mapping: # X => div_1 # norm => add # pow_1 => pow_3 # sqrt => sqrt # sum_1 => sum_2 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %add), kwargs = {}) triton_poi_fused_add_div_pow_sqrt_sum_1 = async_compile.triton('triton_poi_fused_add_div_pow_sqrt_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sqrt_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_sqrt_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_div_mul_norm_0.run(buf1, primals_2, primals_1, buf2, 1, 16, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div] triton_poi_fused_add_div_pow_sqrt_sum_1.run(buf3, buf4, 256, grid=grid(256), stream=stream0) return (buf4, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict import torch.nn as nn import torch.nn.init from torch.nn.utils.weight_norm import weight_norm def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class EncoderImageWeightNormPrecomp(nn.Module): def __init__(self, img_dim, embed_size, no_imgnorm=False): super(EncoderImageWeightNormPrecomp, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.fc = weight_norm(nn.Linear(img_dim, embed_size), dim=None) def forward(self, images): """Extract image feature vectors.""" features = self.fc(images) if not self.no_imgnorm: features = l2norm(features, dim=-1) return features def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImageWeightNormPrecomp, self).load_state_dict(new_state) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'img_dim': 4, 'embed_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from collections import OrderedDict import torch.nn as nn import torch.nn.init from torch.nn.utils.weight_norm import weight_norm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp8 = tmp7 / tmp5 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None) @triton.jit def triton_poi_fused_add_div_pow_sqrt_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_mul_norm_0[grid(1)](buf1, primals_2, primals_1, buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_pow_sqrt_sum_1[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4 , (64, 4), (4, 1), 0), buf3 def l2norm(X, dim=-1, eps=1e-12): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps X = torch.div(X, norm) return X class EncoderImageWeightNormPrecompNew(nn.Module): def __init__(self, img_dim, embed_size, no_imgnorm=False): super(EncoderImageWeightNormPrecompNew, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.fc = weight_norm(nn.Linear(img_dim, embed_size), dim=None) def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImageWeightNormPrecompNew, self).load_state_dict(new_state ) def forward(self, input_0): primals_3 = self.fc.bias primals_1 = self.fc.weight_g primals_2 = self.fc.weight_v primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
BruceW91/CVSE
EncoderImageWeightNormPrecomp
false
13,428
[ "MIT" ]
152
20fa1ff50d1dcb4a7b3799071fa78038e52db804
https://github.com/BruceW91/CVSE/tree/20fa1ff50d1dcb4a7b3799071fa78038e52db804
GraphConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rl/crljeqnoa6ykpfmvk4fgvc6cahtaak6ilhiaoxyzgcd7ynbpfnj2.py # Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones] # Source node to ATen node mapping: # ones => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_ones_0 = async_compile.triton('triton_poi_fused_ones_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ones_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 1.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dn/cdnkxcepcwle4u3a2zcw72axoqvmyd4bn2kvjp72wctqmnh3vrpp.py # Topologically Sorted Source Nodes: [result, result_1], Original ATen: [aten.div, aten.add] # Source node to ATen node mapping: # result => div # result_1 => add # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_6, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %view_8), kwargs = {}) triton_poi_fused_add_div_1 = async_compile.triton('triton_poi_fused_add_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [ones], Original ATen: [aten.ones] stream0 = get_raw_stream(0) triton_poi_fused_ones_0.run(buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [ones, norm], Original ATen: [aten.ones, aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) del primals_5 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [result, result_1], Original ATen: [aten.div, aten.add] triton_poi_fused_add_div_1.run(buf5, buf1, buf4, primals_6, 256, grid=grid(256), stream=stream0) del buf4 del primals_6 return (buf5, buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn import torch.autograd def sparse_bmm(sparse_matrix, dense_matrix_batch): """ Perform torch.bmm on an unbatched sparse matrix and a batched dense matrix. Args: sparse_matrix (torch.sparse.FloatTensor): Shape = (m, n) dense_matrix_batch (torch.FloatTensor): Shape = (b, n, p) Returns: (torch.FloatTensor): Result of the batched matrix multiplication. Shape = (b, n, p) """ m = sparse_matrix.shape[0] b, n, p = dense_matrix_batch.shape dense_matrix = dense_matrix_batch.transpose(0, 1).reshape(n, b * p) result = torch.sparse.mm(sparse_matrix, dense_matrix) return result.reshape(m, b, p).transpose(0, 1) class GraphConv(nn.Module): """A simple graph convolution layer, similar to the one defined by *Kipf et al.* in `Semi-Supervised Classification with Graph Convolutional Networks`_ ICLR 2017 This operation with self_layer=False is equivalent to :math:`(A H W)` where: - :math:`H` is the node features with shape (batch_size, num_nodes, input_dim) - :math:`W` is a weight matrix of shape (input_dim, output_dim) - :math:`A` is the adjacency matrix of shape (num_nodes, num_nodes). It can include self-loop. With normalize_adj=True, it is equivalent to :math:`(D^{-1} A H W)`, where: - :math:`D` is a diagonal matrix with :math:`D_{ii}` = the sum of the i-th row of A. In other words, :math:`D` is the incoming degree of each node. With self_layer=True, it is equivalent to the above plus :math:`(H W_{\\text{self}})`, where: - :math:`W_{\\text{self}}` is a separate weight matrix to filter each node's self features. Note that when self_layer is True, A should not include self-loop. Args: input_dim (int): The number of features in each input node. output_dim (int): The number of features in each output node. bias (bool): Whether to add bias after the node-wise linear layer. Example: >>> node_feat = torch.rand(1, 3, 5) >>> i = torch.LongTensor( ... [[0, 1, 1, 2, 2, 0], [1, 0, 2, 1, 0, 2]]) >>> v = torch.FloatTensor([1, 1, 1, 1, 1, 1]) >>> adj = torch.sparse.FloatTensor(i, v, torch.Size([3, 3])) >>> model = GraphConv(5, 10) >>> output = model(node_feat, adj) >>> # pre-normalize adj >>> adj = normalize_adj(adj) >>> output = model(node_feat, adj, normalize_adj=False) .. _Semi-Supervised Classification with Graph Convolutional Networks: https://arxiv.org/abs/1609.02907 """ def __init__(self, input_dim, output_dim, self_layer=True, bias=True): super(GraphConv, self).__init__() self.self_layer = self_layer self.linear = nn.Linear(input_dim, output_dim, bias=bias) if self_layer: self.linear_self = nn.Linear(input_dim, output_dim, bias=bias) else: self.linear_self = None self.initialize() def initialize(self): nn.init.xavier_uniform_(self.linear.weight.data) if self.linear.bias is not None: self.linear.bias.data.uniform_(-1.0, 1.0) if self.self_layer: nn.init.xavier_uniform_(self.linear_self.weight.data) if self.linear_self.bias is not None: self.linear_self.bias.data.uniform_(-1.0, 1.0) def forward(self, node_feat, adj, normalize_adj=True): """ Args: node_feat (torch.FloatTensor): Shape = (batch_size, num_nodes, input_dim) The input features of each node. adj (torch.sparse.FloatTensor or torch.FloatTensor): Shape = (num_nodes, num_nodes) The adjacency matrix. adj[i, j] is non-zero if there's an incoming edge from j to i. Should not include self-loop if self_layer is True. normalize_adj (bool): Set this to true to apply normalization to adjacency; that is, each output feature will be divided by the number of incoming neighbors. If normalization is not desired, or if the adjacency matrix is pre-normalized, set this to False to improve performance. Returns: (torch.FloatTensor): The output features of each node. Shape = (batch_size, num_nodes, output_dim) """ if adj.type().endswith('sparse.FloatTensor'): if normalize_adj: norm = torch.sparse.mm(adj, torch.ones((adj.shape[0], 1), device=node_feat.device)) result = sparse_bmm(adj, self.linear(node_feat)) / norm else: result = sparse_bmm(adj, self.linear(node_feat)) elif normalize_adj: norm = torch.matmul(adj, torch.ones((adj.shape[0], 1), device= node_feat.device)) result = torch.matmul(adj, self.linear(node_feat)) / norm else: result = torch.matmul(adj, self.linear(node_feat)) if self.self_layer: result += self.linear_self(node_feat) return result def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_ones_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 1.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_div_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_ones_0[grid(4)](buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, out=buf1) del buf0 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = buf2 del buf2 extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf4) del primals_5 buf5 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_add_div_1[grid(256)](buf5, buf1, buf4, primals_6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_6 return buf5, buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0) def sparse_bmm(sparse_matrix, dense_matrix_batch): """ Perform torch.bmm on an unbatched sparse matrix and a batched dense matrix. Args: sparse_matrix (torch.sparse.FloatTensor): Shape = (m, n) dense_matrix_batch (torch.FloatTensor): Shape = (b, n, p) Returns: (torch.FloatTensor): Result of the batched matrix multiplication. Shape = (b, n, p) """ m = sparse_matrix.shape[0] b, n, p = dense_matrix_batch.shape dense_matrix = dense_matrix_batch.transpose(0, 1).reshape(n, b * p) result = torch.sparse.mm(sparse_matrix, dense_matrix) return result.reshape(m, b, p).transpose(0, 1) class GraphConvNew(nn.Module): """A simple graph convolution layer, similar to the one defined by *Kipf et al.* in `Semi-Supervised Classification with Graph Convolutional Networks`_ ICLR 2017 This operation with self_layer=False is equivalent to :math:`(A H W)` where: - :math:`H` is the node features with shape (batch_size, num_nodes, input_dim) - :math:`W` is a weight matrix of shape (input_dim, output_dim) - :math:`A` is the adjacency matrix of shape (num_nodes, num_nodes). It can include self-loop. With normalize_adj=True, it is equivalent to :math:`(D^{-1} A H W)`, where: - :math:`D` is a diagonal matrix with :math:`D_{ii}` = the sum of the i-th row of A. In other words, :math:`D` is the incoming degree of each node. With self_layer=True, it is equivalent to the above plus :math:`(H W_{\\text{self}})`, where: - :math:`W_{\\text{self}}` is a separate weight matrix to filter each node's self features. Note that when self_layer is True, A should not include self-loop. Args: input_dim (int): The number of features in each input node. output_dim (int): The number of features in each output node. bias (bool): Whether to add bias after the node-wise linear layer. Example: >>> node_feat = torch.rand(1, 3, 5) >>> i = torch.LongTensor( ... [[0, 1, 1, 2, 2, 0], [1, 0, 2, 1, 0, 2]]) >>> v = torch.FloatTensor([1, 1, 1, 1, 1, 1]) >>> adj = torch.sparse.FloatTensor(i, v, torch.Size([3, 3])) >>> model = GraphConv(5, 10) >>> output = model(node_feat, adj) >>> # pre-normalize adj >>> adj = normalize_adj(adj) >>> output = model(node_feat, adj, normalize_adj=False) .. _Semi-Supervised Classification with Graph Convolutional Networks: https://arxiv.org/abs/1609.02907 """ def __init__(self, input_dim, output_dim, self_layer=True, bias=True): super(GraphConvNew, self).__init__() self.self_layer = self_layer self.linear = nn.Linear(input_dim, output_dim, bias=bias) if self_layer: self.linear_self = nn.Linear(input_dim, output_dim, bias=bias) else: self.linear_self = None self.initialize() def initialize(self): nn.init.xavier_uniform_(self.linear.weight.data) if self.linear.bias is not None: self.linear.bias.data.uniform_(-1.0, 1.0) if self.self_layer: nn.init.xavier_uniform_(self.linear_self.weight.data) if self.linear_self.bias is not None: self.linear_self.bias.data.uniform_(-1.0, 1.0) def forward(self, input_0, input_1): primals_3 = self.linear.weight primals_4 = self.linear.bias primals_5 = self.linear_self.weight primals_6 = self.linear_self.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Burningdust21/kaolin
GraphConv
false
13,429
[ "ECL-2.0", "Apache-2.0" ]
3,747
23e8a0fa4e2cb0249cee4c3c0c1ab1f7e6793531
https://github.com/Burningdust21/kaolin/tree/23e8a0fa4e2cb0249cee4c3c0c1ab1f7e6793531
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn import torch.nn.init import torch.optim class Model(nn.Module): """ Class representing sampleable neural network model """ def num_params(self): """ Get the number of model parameters. """ return sum(p.numel() for p in self.parameters()) def summary(self, hashsummary=False): None None self.num_params() None None if hashsummary: None for idx, hashvalue in enumerate(self.hashsummary()): None def hashsummary(self): """ Print a model summary - checksums of each layer parameters """ children = list(self.children()) result = [] for child in children: result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes() ).hexdigest() for x in child.parameters()) return result def loss(self, x_data, y_true, reduce='mean'): """ Forward propagate network and return a value of loss function """ if reduce not in (None, 'sum', 'mean'): raise ValueError('`reduce` must be either None, `sum`, or `mean`!') y_pred = self(x_data) return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce) def loss_value(self, x_data, y_true, y_pred, reduce=None): """ Calculate a value of loss function """ raise NotImplementedError class Encoder(Model): """ Linear encoder """ def __init__(self, c_in, c_out, affine=True): super(Encoder, self).__init__() assert c_out % 2 == 0 self.fc1 = nn.Linear(c_in, c_in // 2) self.fc2 = nn.Linear(c_in // 2, c_in) def forward(self, x): x = torch.relu(x) x = self.fc1(x) return self.fc2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c_in': 4, 'c_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn import torch.nn.init import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, primals_4 class Model(nn.Module): """ Class representing sampleable neural network model """ def num_params(self): """ Get the number of model parameters. """ return sum(p.numel() for p in self.parameters()) def summary(self, hashsummary=False): None None self.num_params() None None if hashsummary: None for idx, hashvalue in enumerate(self.hashsummary()): None def hashsummary(self): """ Print a model summary - checksums of each layer parameters """ children = list(self.children()) result = [] for child in children: result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes() ).hexdigest() for x in child.parameters()) return result def loss(self, x_data, y_true, reduce='mean'): """ Forward propagate network and return a value of loss function """ if reduce not in (None, 'sum', 'mean'): raise ValueError('`reduce` must be either None, `sum`, or `mean`!') y_pred = self(x_data) return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce) def loss_value(self, x_data, y_true, y_pred, reduce=None): """ Calculate a value of loss function """ raise NotImplementedError class EncoderNew(Model): """ Linear encoder """ def __init__(self, c_in, c_out, affine=True): super(EncoderNew, self).__init__() assert c_out % 2 == 0 self.fc1 = nn.Linear(c_in, c_in // 2) self.fc2 = nn.Linear(c_in // 2, c_in) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data
Encoder
false
13,430
[ "MIT" ]
51
2b1213f944cf5f2c60799099a469989a1f0a6d3a
https://github.com/CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data/tree/2b1213f944cf5f2c60799099a469989a1f0a6d3a
LinearDrop
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_dropout] buf2 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf1, (4, 4, 4, 8), (128, 32, 8, 1), 0), 0.5, True) del buf1 buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_5 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_dropout] buf6 = torch.ops.aten.native_dropout.default(reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), 0.5, True) del buf5 buf7 = buf6[0] buf8 = buf6[1] del buf6 return (buf7, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf8, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn import torch.nn.init import torch.optim class Model(nn.Module): """ Class representing sampleable neural network model """ def num_params(self): """ Get the number of model parameters. """ return sum(p.numel() for p in self.parameters()) def summary(self, hashsummary=False): None None self.num_params() None None if hashsummary: None for idx, hashvalue in enumerate(self.hashsummary()): None def hashsummary(self): """ Print a model summary - checksums of each layer parameters """ children = list(self.children()) result = [] for child in children: result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes() ).hexdigest() for x in child.parameters()) return result def loss(self, x_data, y_true, reduce='mean'): """ Forward propagate network and return a value of loss function """ if reduce not in (None, 'sum', 'mean'): raise ValueError('`reduce` must be either None, `sum`, or `mean`!') y_pred = self(x_data) return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce) def loss_value(self, x_data, y_true, y_pred, reduce=None): """ Calculate a value of loss function """ raise NotImplementedError class LinearDrop(Model): """ Linear block with dropout """ def __init__(self, c_in, c_out, affine=True): super(LinearDrop, self).__init__() assert c_out % 2 == 0 self.fc1 = nn.Linear(c_in, c_in * 2) self.fc2 = nn.Linear(c_in * 2, c_out) def forward(self, x): x = torch.relu(x) x = F.dropout(self.fc1(x)) out = F.dropout(self.fc2(x)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c_in': 4, 'c_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn import torch.nn.init import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf1, (4, 4, 4, 8), (128, 32, 8, 1), 0), 0.5, True) del buf1 buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = torch.ops.aten.native_dropout.default(reinterpret_tensor( buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), 0.5, True) del buf5 buf7 = buf6[0] buf8 = buf6[1] del buf6 return buf7, reinterpret_tensor(buf0, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf8, primals_4 class Model(nn.Module): """ Class representing sampleable neural network model """ def num_params(self): """ Get the number of model parameters. """ return sum(p.numel() for p in self.parameters()) def summary(self, hashsummary=False): None None self.num_params() None None if hashsummary: None for idx, hashvalue in enumerate(self.hashsummary()): None def hashsummary(self): """ Print a model summary - checksums of each layer parameters """ children = list(self.children()) result = [] for child in children: result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes() ).hexdigest() for x in child.parameters()) return result def loss(self, x_data, y_true, reduce='mean'): """ Forward propagate network and return a value of loss function """ if reduce not in (None, 'sum', 'mean'): raise ValueError('`reduce` must be either None, `sum`, or `mean`!') y_pred = self(x_data) return y_pred, self.loss_value(x_data, y_true, y_pred, reduce=reduce) def loss_value(self, x_data, y_true, y_pred, reduce=None): """ Calculate a value of loss function """ raise NotImplementedError class LinearDropNew(Model): """ Linear block with dropout """ def __init__(self, c_in, c_out, affine=True): super(LinearDropNew, self).__init__() assert c_out % 2 == 0 self.fc1 = nn.Linear(c_in, c_in * 2) self.fc2 = nn.Linear(c_in * 2, c_out) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data
LinearDrop
false
13,431
[ "MIT" ]
51
2b1213f944cf5f2c60799099a469989a1f0a6d3a
https://github.com/CBIIT/NCI-DOE-Collab-Pilot2-Autoencoder_MD_Simulation_Data/tree/2b1213f944cf5f2c60799099a469989a1f0a6d3a
InstanceNormLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bt/cbty6aktspcpn2i4hqhd57tuurtxy7jyiq6n7smwcnjcrfghdp6t.py # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # mean_1 => mean_1 # pow_1 => pow_1 # sqrt => sqrt # x => sub # x_1 => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2, 3], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_per_fused_add_div_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + (16*x0)), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InstanceNormLayer(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, x): if len(x.shape) != 4: raise ValueError( f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!' ) x = x - torch.mean(x, dim=[2, 3], keepdim=True) x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.epsilon) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + 16 * x0), tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class InstanceNormLayerNew(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
CV-IP/interfacegan
InstanceNormLayer
false
13,432
[ "MIT" ]
855
5a556b8e693f6e1888f769f653aaafaaccca5dc2
https://github.com/CV-IP/interfacegan/tree/5a556b8e693f6e1888f769f653aaafaaccca5dc2